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Introduction

Social-behavioral simulation is often turned to as a way of reasoning about
the human condition and thinking through what might happen under various
interventions. Potential advantages include overcoming human decision bias,
thinking through a large number of alternative situations, and reasoning about
context and over periods of time that are too complex for the human unaided by
the computation to reason about. While these advantages exist, simulation of
complex social-behavioral systems is not routine. Nor are the simulation mod-
els, necessarily, accurate reflections of reality. There are more creditable models
where the logics built into the model reflect established theory or empirical reg-
ularities. Yet despite best efforts, the logics in these models may reflect human
biases. Further, in many simple models and in those where no theory exists,
the model may actually reflect simply the potentially nonsensicle opinions of
the creators.

Agent-based (e.g. Bonabeau 2002; Davidsson 2002; van Dam et al. 2012),
event history (Box-Steffensmeier and Jones 2004), Petri net (Tabak and Levis
1985; Murata 1989), and system dynamic models (Sterman 2001; Mohaghegh
and Mosleh 2009) are generally used as the simulation frameworks when mod-
eling complex systems in the social sciences. No one methodology is proving
adequate, so the field is moving toward hybrid modeling and a system of sys-
tems approach using interoperable models. These models make explicit the
gaps in underlying theories; support theory comparison, integration, and devel-
opment; and enable users to create a framework in which they can rapidly rea-
son about alternative explanations (useful forensically) or alternative courses of
action (useful for planning) (Gilbert and Troitzsch 2005).
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Complex systems are generally characterized as systems composed of many
interacting heterogeneous components, such that the behavior of the system
is nonlinear, is not predictable from the sum of the parts, and often exhibits
self-organization and such that actions at one level of granularity lead to emer-
gence at another level of granularity (Bar-Yam 2002; Miller and Page 2009).
Complex systems are difficult to understand and explain. It is difficult to predict
the effects of actions on them and to predict when new events will occur within
them. Social-behavioral systems are classic examples of complex systems. How-
ever, they also represent a special case of complexity because humans, who can
learn, are key elements of social-behavioral systems.

The field of simulation and the validation of simulations have their roots
in shop floor management and operations research. Most of the approaches
to model development, the theory of validation, and the expectations for how
models operate are based on an operations research conception predicated on
models of physical systems. Key assumptions underlying that body of work
include stationarity of process and the corollary that components do not learn.
These assumptions are violated in social-behavioral systems. Consequently,
the traditional science of validation does not apply, and a new science is
needed (National Research Council 2006, 2008). Developing such a science
will depend on meeting a number of challenges both in terms of how to
communicate social-behavioral models and their results and how to develop
such models to create reusable and scalable technologies.

Key Communication Challenges

Independent of the scientific challenges, there are a number of communica-
tion challenges faced by those interested in developing and using simulation to
address complex social-behavioral systems. These challenges take the forms of
cognitive biases that humans have when they try to understand the results of
models and the models themselves. Two of these will be considered:
Consumer bias: Human consumers of simulations are themselves humans

and so have a tendency to assume that they know how humans behave. In
contrast, many humans have placed physics on a pedestal, have deep-seated
math anxiety, and assume that mechanical and engineered systems are
hard to understand. This creates a situation where the consumers of
social-behavioral models think they should be able to understand and agree
with models of human activities, but do not make the same assumption for
physical system models. A consequence is that social-behavioral models are
held to a higher standard vis-à-vis communication than other models.

Storytelling bias: Humans have a tendency to think they understand how some-
thing works when they can tell a story about it. Storytelling is a cognitive
crutch by which we keep track of the order in which things occur and the
relations among things. The more complex the story, the harder it is to recall.
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Simple models such as the model of racial segregation (Schelling 1969) or
the garbage can model (Cohen et al. 1972) or the NK model (Kauffman and
Weinberger 1989) lend themselves to stories that are easy to retell even in
contexts distinct from that used to justify the original model. Complex mod-
els, such as EpiSims (Mniszewski et al. 2008) or BioWar (Carley et al. 2006),
do not lend themselves to such simple stories. Humans are also more likely
to view as accurate models they think they understand. A result is that con-
sumers of the NK model and the garbage can model think they understand
how the models work and are more likely to view them as credible and accu-
rate when, in fact, they really do not understand the scope conditions and the
models themselves cannot be validated. In contrast, more complex models,
even if they are validated, are harder to tell stories about, are less likely to be
viewed as understandable, and so are less likely to be viewed as credible.

Key Scientific Challenges

Independent of the communication challenges, there are a number of scientific
challenges faced by those interested in developing and using simulation to
address complex social-behavioral systems. Overcoming these challenges is
critical for creating scalable, reusable social-behavioral simulation systems
and for reducing the high cost of developing credible simulation systems.
These key challenges center around speed of development, reuse, and
approaches to validation. These challenges are itemized in Table 32.1. They

Table 32.1 Summary of scientific challenges for social-behavioral modeling.

Challenge Meaning Example

Reuse across
context

Explains/forecasts how
phenomena x evolve in
sociocultural context y1 at time n1
and in sociocultural context y2 at
time n2

Use model to explain terrorist
recruitment for IRA before 2000
in the United Kingdom and then
for ISIS recruitment in Syria,
2010–2017

Reuse across
level

Explains/forecasts behavior of
actor and group of those actors

Use model with data set 1 to
explain an individual’s anger
toward election fraud for a
candidate and on data set 2 to
explain population-level anger
toward election fraud for a
national election

Reuse across
time

Explains/forecasts behavior of
entities at time period n1 and at
time period n2

Use model with data set 1 to
predict state stability in 1910 and
on data set 2 to predict state
stability in 2010

(Continued)
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Table 32.1 (Continued)

Challenge Meaning Example

Multi-scale Explains/forecasts the behavior
or change in opinions/beliefs of x,
and sets of x in the same
simulation run

Use model to forecast behavior of
individuals moving between
firms, and/or organizations
moving between conglomerates
or merged firms, using the same
set of data and during the same
set of simulation runs

Rapid
instantiation

Shortens time to prepare and
import data to model and adjust
model parameters

Construct and use model
repeatedly on different data sets,
and observe a decrease in the
time to prepare and ingest data

Multi-group Generates model that remains
valid as actor granularity is
changed

Use model on data set 1 where
agent is a human to predict
consensus, on data set 2 where
agent is an organization to
predict consensus, and on data
set 3 where agent is a nation state
to predict consensus

Multi-temporal Generates model that remains
valid as time steps change

Use model to explain escalation
of commitment of individuals to
groups’ goals using data set 1
where individual commitment is
measured each day and data set 2
where individual commitment is
measured each year

Multi-spatial Generates model that remains
valid as spatial region is changed

Use model to explain the
formation of crime zones using
data set 1 where the zones are
measured at the city block level
and data set 2 where the zones are
measured at the city level

Interoperability Allows model to be used with
other models as part of a
modeling workflow

Use model in a system of systems,
demonstrating the ability to
ingest data from and export data
to other models

Data fusion Allows model to use data at
different temporal, spatial, and
group levels with different levels
of fidelity

Use model to ingest and use for
instantiation, and then again for
validation, with two sets of data
that vary in granularity of actor,
time period, or spatial region or
have other collection
inconsistencies

Response
surface

Generates boundary conditions
and the full response surface

Conduct virtual experiments to
estimate the response surface via
statistical calculations
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overlap with the challenges discussed in overview chapter of this volume
(Davis and O’Mahony 2019). Rather than providing a detailed discussion of
each challenge, three issues that apply to multiple challenges will be discussed:

Model granularity: Social-behavioral systems are often reasoned about,
explained, and measured at different levels of granularity. Among the levels
of granularity of interest are time (minute, day, week, year), space (block,
city, county, country), agent group (neuron, person, decision-making unit,
organization, nation), and knowledge group (word, concept, topic, theme).
Typically models that are accurate or designed for one level of granularity do
not work at other levels of granularity. For example, models that are accurate
at the cognitive and task level do not scale to the community or even large
group level, whereas models that are informative about populations are
inaccurate at the cognitive level. One reason for this is that the logics of
interaction may change fundamentally with scale. Basic research on how
logics change with scale is needed. Another reason for this is that the
aggregation processes and disaggregation processes needed as one moves
up and down the levels of granularity are not known. Two advances in
this area are dynamic network modeling and social cognition modeling
(Morgan et al. 2017). Dynamic network models provide a mechanism
whereby the pattern of interaction among the components can be used
to affect the decision logic or behavior of the component whose internal
logic can also be represented as a network (networks where the nodes
are networks). Social cognition is a set of mechanisms whereby individual
humans make sense of the world by reasoning not about every individual
but about collectives in the same way they reason about individuals. This
includes social cognitive mechanisms such as recognizing and responding
to a generalized other, inferring individual traits from perceptions about
a group, generalizing group traits from activities of an individual, and
recalling average rather than actual behavior. Focusing on these types of
logics that support connecting one level of a model with another is critical
for improved model accuracy and reuse.

Level of validation: Historically, the science of validation has treated validation
as a single process. A model was either valid or not, and there was a single
approach to validation. In contrast, for social-behavioral simulations it is
generally recognized that there are multiple levels or types of validation
and that the level of relevance and the extent of validation depend on the
model’s purpose (Burton 2003; National Research Council 2008). There
are various ways of characterizing the various aspects of validation. For
example, Davis and O’Mahony (2019) describe the components as being
description, explanation, postdiction, coarse exploration, and prediction.
An alternative approach is to think in terms of the empirical precision at
which the model is validated and/or matched to the predictions of another
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model (i.e. docked) – including similarity in the pattern of results, the
distribution, the range, or the exact value (Axtell et al. 1996). Still more
detailed schemes exist that take into account the number of features on
which to validate, the level of empirical match, and the extent of revalidation
(Yahja and Carley 2005). To move forward with a science of validation
for social-behavioral simulations, a validation framework is needed that
accounts both for the various components of validation, the purpose of the
model, the level of empirical match, and the nature of the underlying data to
support match. See also another paper in this volume discussing validation
(Grace et al. 2019).
Identifying the right level and type of validation for a model is further
complicated in a reuse model–expansion situation. The crux of the problem
has to do with interaction among subtheories. Most social-behavioral
simulations are at their core multi-theoretical. Typically the way in which
these theories linked together is not known. Model development often
means suggesting a theory for these gaps. Validation then becomes a process
of creating an empirically grounded mega-theory (e.g. see Schreiber and
Carley 2004). This is counter to another assumption of traditional validation
science, which assumes that the theory is known and well specified. This is
one of the gaps through which human biases creep into these models. In a
related vein, typically social-behavioral simulations are built in a building
block fashion. That is, the basic model is built, possibly validated, and used
to explore an issue. Then the model is reused, generally expanded on, and
the process repeats. The issue here is that as models are expanded, the earlier
parts of the model may no longer behave as they did previously. This is par-
ticularly true in nonlinear complex systems. This means that the results of
earlier validation exercises may no longer hold, hence, leading to a situation
where the model needs to be revalidated for each reuse/expansion situation.

Validation vs. tuning: Historically, the science of validation for simulation has
been based around two assumptions: stationarity of process and measura-
bility. Stationarity of process means that you can collect a data set from time
period N or machine y and tune the model until you get a high level of pre-
dictive accuracy (e.g. 98%). Tuning is done by changing internal processes in
the model. The resultant model is considered validated and can then be used
to predict the behavior of the system at other time periods or the behav-
ior of objects from comparable machines. Social-behavioral system violates
this assumption. Consequently, tuning the model to a historic case study is
actually overfitting. The resultant model is then fragile and unlikely to apply
in other situations. Consider, for example, the artificial intelligence/machine
learning (AI/ML) models, particularly those that require training sets. Such
models typically use data from a single context/time period and split it into
two sets. The model is built based on the first part of the data and then
applied to the second part. Accuracy of such models can become quite high
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(e.g. approaching 98%). However, if moved into the wild and used in other
contexts, they often will not work, and/or the accuracy can decrease dra-
matically due to the nonstationarity of process.

Simply tuning a model to two historical cases is not a sufficient solution.
Recall that as a model is reused from one situation to the next, new modules are
often added. A possible consequence is that if a model is tuned to one histori-
cal case and then reused, expanded, and tuned to a second case, the model may
no longer be tuned to the first case. In complex social-behavioral simulations,
the relationship between model components and validation is so complicated
that special artificial intelligence (AI) tools may be needed to track and predict
which parts of the model will become invalidated as the model is expanded and
retuned (Yahja and Carley 2005).

Another assumption of the traditional science of validation is measurabil-
ity; i.e. it is possible to delineate all aspects of the physical system and mea-
sure its properties. Social-behavioral systems violate this assumption in part
because we often cannot know what people are thinking, particularly in situa-
tions where people themselves are unable to forecast their own behavior – such
as life-threatening situations. For these and other reasons, such as measure-
ment imprecision, and propagating measurement errors, predictive accuracy
(i.e. predicting future behavior) of social-behavioral models is often much lower
than those for physical systems. While ML/AI models often claim they are
doing prediction – as was noted – the high accuracy they achieve is often using
data from the same time period and context as they were tuned (i.e. trained) on
and rarely have this high a level of prediction for future events.

For such reasons, simulation often plays a different role in the social-
behavioral context than in the physical system context. Its value is in forecast-
ing, not prediction. In other words, social-behavioral simulations are generally
the most useful for describing the space of future possibilities and the relative
likelihood of particular outcomes. Trying to express this difference to policy-
makers and those not steeped in simulation is difficult for a variety of reasons
(see also Davis and O’Mahony 2019). First is the terminology. As was alluded
to the term, prediction means, depending on the user, a priori predicting a spe-
cific event in the future (aka point prediction), explaining behavior in one part
of the data given the other part of the data, and a priori estimating the relative
likelihood of different outcomes (aka probabilistic forecast). Similarly the term
prediction also has been used to mean extrapolation (as is often done with
regression models), suggesting possibilities (aka qualitative forecast), equiv-
alent to prediction, and a priori estimating the relative likelihood of different
outcomes (aka probabilistic forecast or prediction). Using this terminology,
the difference can be described as simulation of physical systems as being
more capable of point prediction and simulation of social-behavioral systems
as being more capable of probabilistic forecasting or qualitative forecasting.
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A second difficulty is that the differences are in part a matter of degree. That
is, the vast majority of physical system simulations support point prediction.
Certainly the science of validation is designed for this type of prediction. In
contrast, the vast majority of social-behavioral simulations support either prob-
abilistic forecasting or qualitative forecasting. For those few social-behavioral
simulations that can do point prediction, they do so only under specific scope
conditions. At this point a science of validation that supports forecasting does
not exist in its entirety. Further, the tactics and techniques needed to determine
whether the scope conditions and the logics in social-behavioral simulations
are such that they will support point prediction are understood more in the
abstract than in practice. For example, stationarity of process is needed, but
measuring it is often an open challenge.

Toward a New Science of Validation

A consequence of these considerations is that a new science of validation is
needed for social-behavioral modeling. At the heart of such a science is the
practice of validation in parts and incremental validation, instead of tuning.
Validation in parts means that parts of the model (the input, the outputs,
and the internal processes) are validated separately, often on different data
and sometimes by different teams. Three factors are needed: (i) inputs of the
model have been shown to have at least the same distributional properties
as real world. In the limit the input data for the model are exactly real-world
data streams and/or empirically derived from real-world sensors. Under the
philosophy that the model should be able to do the task it seeks to explain, the
model must take as input the exact data that the real-world social-behavioral
system would. Models that fit these criteria could, in principle, be substitute
for the social-behavioral system in other contexts (much as AI personal
shoppers could substitute for a human personal shopper). (ii) The distribution
of model outputs contains, as special cases, historic examples. However, this
does not imply that the mean prediction of the model should agree with the
historical data point. Indeed if the model contains discontinuities in some
of the variables, the mean prediction of the model might be a situation that
logically cannot exist. Logically, one would expect that as the number of
historical cases increases, the distribution of historical data points should
come to reflect the plausibility distribution from the simulation. (iii) Internal
processes in the model have been shown to match at some level to processes
observed in the real world. This match might be very qualitative as when
confirming the face validity of a model by claiming that each element has an
analog in the real world. Or this match might be strongly empirical and precise
using exact values in equations that match the equations used to describe
the real world.
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Incremental validation means that the model is validated in steps, and at each
step the number of aspects that is validated and the level at which the model is
validated are increased. Incremental validation is an approach meant to over-
come the high level of complexity and the extensive number of variables and
processes needed to explain social behavior. For incremental validation a set of
features to be validated are identified. This set is often modularized by granular-
ity level, or theory being operationalized, or data context. The model is built and
it is validated against the base features. Then new modules/theories are added,
and the model is revalidated against the old features and also validated against
the new set of features. A key advantage of this approach is that it allows theory
to be developed to fill in the gaps linking different levels of granularity. Another
advantage is that this approach does not require a universal perfect data set, but
enables the simulationists and the consumers to make use of large diverse sets
of data from multiple sources and contexts that may or may not be fusible.

A science of validation appropriate for social-behavioral simulation may
be well served by the development of a model social agent (Carley and
Newell 1994). The model social agent is a conceptual framework that defines
the elements of a social agent and what behavior should emerge from any
model containing agents composed of those elements. A first attempt in this
direction was forwarded by Carley and Newell (1994). While not sufficient, the
suggested framework shows the power of having such a model in providing
guidance for what models should and should not be able to do and so what
type of and level of validation might be needed.

Conclusion

The state of the art in simulation of complex social-behavioral systems has
advanced in the past several decades. Gone are the days of all models being
rational actor models. Gone are the days of model assessment being done by
generating a single simulation run, viewing the results, and stating that “it looks
right.” That being said, the field needs some serious advances to become more
mainstream. Overcoming some of the challenges described herein will help.

Nevertheless, it is important to recognize that these are simulations of com-
plex social behavior. It is unreasonable to expect rapid development, high lev-
els of accuracy, and high levels of reuse when the subject being modeled is
still so poorly understood. The laws governing human interaction, learning,
social engagement, and cognition are still being discovered. Each new discovery
increases the value of and the ease of building simulations and validating them.
In that sense, advancing the field of simulation is codependent with advancing
our understanding of human social behavior.

It is also important to recognize that humans and the groups or communities
they form are an evolving system. This suggests that the simulations themselves
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will need to evolve. With complex and evolving systems, ensemble approaches
are often of value. For example, major advances in weather forecasting occurred
once sets of models were used in an ensemble fashion to provide estimates.
Standardization in output formats and levels of granularity for outputs enabled
cross-fertilization. Such an approach may do well in the social-behavioral con-
text as well.

A final approach is that social-behavioral modeling is big science. Strong,
reusable systems require substantial resources to be developed. Large teams
are needed to develop and fuse the data needed for model development and
validation, for building the infrastructure and tool chains for using models
in an interoperable fashion, to run virtual experiments using the model to
examine results, and to describe and document the model. The infrastructure
around the model needed to ensure its use requires more people and more
time than the model design and development itself. If we continue to think
of social-behavioral simulation as being comparable with running a statistical
analysis of a moderate data set, progress in this area will be slow.
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