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Abstract This study investigates the topological form of a network and its impact
on the uncertainty entrenched in descriptive measures computed from observed so-
cial network data, given ubiquitous data-error. We investigate what influence a net-
work’s topology, in conjunction with the type and amount of error, has on the ability
of a measure, derived from observed data, to correctly approximate the same of the
ground-truth network. By way of a controlled experiment, we reveal the differing ef-
fect that observation error has on measures of centrality and local clustering across
several network topologies: uniform random, small-world, core-periphery, scale-free,
and cellular. Beyond what is already known about the impact of data uncertainty, we
found that the topology of a social network is, indeed, germane to the accuracy of
these measures. In particular, our experiments show that the accuracy of identifying
the prestigious, or key, actors in a network—according observed data—is consider-
ably predisposed by the topology of the ground-truth network.
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1 Introduction

Social network datasets are often incomplete and prone to observation error due to
the intricacy of collection-instrument design and the inherent vagueness of human-
informant reliability and bias (Stork and Richards 1992; Feld and Carter 2002). The
error in the observed data may be unintentional or intentional (Albert et al. 2000;
Carley 2002; Calloway and Morrissey 1993; Freeman et al. 1987; Killworth and
Bernard 1976). No matter its nature, the presence of this error is a nontrivial issue
(Marsden 1990; McKnight et al. 2007) and it raises the question of the impact of the
uncertainty, relative to the accuracy of network measures computed from this data.
In extensive efforts to ameliorate this problem, researchers have been examining and
estimating the impact of observation error and exploring the reliability of descrip-
tive network measures given the confines of errant data (e.g., Borgatti et al. 2006;
Costenbader and Valente 2003; Kossinets 2006; Marsden 1993; Zemljic and Hlebec
2005).

Past research taking the functional approach! to the problem of uncertain data has
primarily consisted of two complementary strategies; although, there are certainly
several other strategies (see Butts 2003; Robins et al. 2004). In the first strategy, re-
searchers have used a variety of sampling techniques on the observed data (Erickson
and Nosanchuk 1983; Frank 1978, 1981; Galaskiewicz 1991; Gile and Handcock
2006; Granovetter 1976; Handcock and Gile 2007). This strategy has been found to
provide “reasonable, if not excellent” (Galaskiewicz 1991, p. 347) estimates of the
bona fide centrality measures for the true network. In the Galaskiewicz study, it was
shown that the lower the density of the network, the better the estimates of centrality
were, while network size did not appear to be an important factor. In another study,
Costenbader and Valente (2003) showed that most of the centrality measures were
sensitive to sampling size, network size and network density; however, the measures
remained robust for sampling levels between 50% and 80%. Further, they found that
eigenvector centrality was considerably more robust relative to the other measures.

A second strategy used to estimate robustness of network measures, involves con-
trolled experiments that statistically analyze computer-generated network data, i.e.,
virtual experiments. Bolland (1998) uncovered considerable redundancy in central-
ity measures under the condition of data uncertainty and found that such redundancy
actually increases with the level of error. In a study that explored both generated and
real-world networks, Kossinets (2006) found that observation error involving missing
nodes can significantly alter network-level statistics such as average degree centrality,
clustering, and a variety of other descriptive measures. In another controlled experi-
ment, Borgatti et al. (2006) explored measure robustness specific to case of uniform-
random networks. They found that the common measures of centrality have a similar
pattern of robustness across network size and density, and that the different type of
errors (missing or superfluous; nodes and edges) have surprisingly similar robustness
profiles. Recently, Kim and Jeong (2007) found that in certain networks, closeness
was generally the most robust of the basic centrality measures.

"Much research investigating missing or over sampled data has taken the structural approach, which fo-
cuses on what the incorrect data might be, whereas the functional approach focuses on the impact of the
incorrect data and what to do about it (McKnight et al. 2007).
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Concurrent to the mounting research on the robustness of network measures, there
has also been growing interest in understanding the characteristics of the more holis-
tic aspects of networks, and in particular, the topological aspects of a social network
(e.g., Newman et al. 2002). The mathematically elegant Erdos and Rényi (1959) net-
work topology, which we refer herein as the uniform random network, has been
well studied by social scientists for many years. Recently, attention has shifted to-
ward understanding the more complex, stylized networks—networks with a more
intricately defined topology—to the point that some related terms have even entered
the populous vernacular. One topology, the small-world (Milgram 1967; Newman
and Watts 1999), has been found in numerous social settings (Davis et al. 2003;
Watts 1999a), such as in the networks of film actors (Watts and Strogatz 1998) and
computer discussion groups (Ravid and Rafaeli 2004), and is a notion that has even
been the basis for a popular play (Guare 1990). In other cases, such as business net-
works (Powell et al. 2005), the Internet and other communication networks, it has
been found that they have a scale-free topology (Albert et al. 1999; Faloutsos et al.
1999), likely as a result of the social phenomenon of preferential attachment (Simon
1955). As Borgatti and Everett (1999) reported, the core-periphery topology has been
found in areas such as systems, economics, collective actions, interlocking direc-
torates, and other organizational areas, e.g., inter-organizational alliances (Stuart and
Robinson 2000). Lastly, the cellular topology (Frantz and Carley 2005; Krebs 2002;
Mayntz 2004; Tsvetovat and Carley 2005) is a socially-constructed network often
associated with covert organizations such a terrorist groups and is a topology that is
frequently associated with the “dark side” (Ronfeldt and Arquilla 2001, p. 2). Since
the events of 9/11, the cellular form has garnered a great deal of academic and gov-
ernment interest.

In this study, we conjoin the interest in the robustness of network measures with
that of network topology, and conjecture that the topology of the network has critical
relevance to the robustness profiles of descriptive social-network measures. In the
formal sense, we scrutinize the following conjecture: in the ubiquitous circumstance
of data uncertainty, the topological form of the true network has a measurable effect
on the robustness of node-level measures when computed from the observed network
data, relative to the analogous values computed from the ground-truth network.

By undertaking a combined perspective and endeavoring to conduct an experi-
ment involving both the robustness of network measures and network topology, so-
cial scientists and practitioners will improve their understanding of the impact that
observation error has on network measures and, thus, will move closer to conceiv-
ing a remedy to the inherent data-uncertainty problem. We explore the robustness
of network measures via a virtual experiment in a manner akin to that of Borgatti
et al. (2006), but with a poignant focus on the topology of the network; specifically,
we handle network topology of the true social-network as an independent variable
in our experiments. We concentrate on the five topologies mentioned above, as we
examine the robustness of four traditional node-level, centrality measures: degree
(Freeman 1979), betweenness (Freeman 1977), closeness (Freeman 1979), eigenvec-
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tor (Bonacich 1987). We also examine the local clustering2 (Watts and Strogatz 1998;
Watts 1999b) measure because we suspect that it may be relevant to future social net-
work studies that are oriented toward topology-related classification.

The remainder of the paper is organized as follows: we detail the methodology
of the experiment, present the quantitative results, qualitatively discuss the findings,
and present our conclusions. Finally, the limitations of the study and suggested future
research directions are presented.

2 Method

The aim of this experiment is to examine the relationship of a network’s ground-
truth topology to the robustness of network measures that are derived from observed
data. In order to accomplish this, we designate the topology of a true-network as an
independent control variable of primary focus; other independent control variables
include the size and density of the true network as well as specific characteristics
of error approximating the uncertainty, resulting in an observed-network. Based on
their involvement in the process, the control variables are organized into two groups:
the network class and the uncertainty class. The network class variables specify the
characteristics of the true network and are used in the generation of the true-network
data. The uncertainty class variables are those that specify the characteristics of the
data error, i.e., the error in the observed network data and are used in transforming
the ground-truth data to an observed dataset. For response outcome variables, we
focus on observed-network-based metrics determined from rank-ordered lists of five
widely-used node-level measures, namely: degree centrality, betweenness centrality,
closeness centrality, eigenvector centrality, and local clustering. These measures will
be further expressed using two types of metrics: top-node and top-group; detail about
these outcome variables is provided later in this section (see Sect. 2.3).

This experiment has an amalgamated factorial block and randomized design: four
of the control variables are non-probabilistic, tiered samples constructed in a factorial
and purposeful fashion, and one control variable has a combined quota and purposeful
sampling methodology. Considering the five control variables, as shown in Table 1,
some topological forms are infeasible at some network densities, so some experiment
cell expectations are not fully satisfied. For example, a cellular network generated
with a density of 0.70 is not possible to achieve, thus there are no samples of cellular
topologies at this density level; while for other topologies, such as uniform random,
density at this level is realizable.

Procedurally, for each replication, we start by generating an undirected graph of
the prearranged topology, size (number of nodes) and of a specific density (number
of edges), and then label it the frue network, representing what the absolute truth
network scenario is to be. Next, an exact copy of the true network is systematically
perturbed according to the prearranged error class variables (type and level), resulting

2Local clustering is a measure of how well connected the neighbors of a specific node are. The exact
definition is: the count of the number of existing ties among an ego’s alters, divided by the count of the
number of ties possible among the same alter nodes; its resulting value will be between 0 and 1.
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Table 1 Parameter space of control variables

Variable Number/nature of values Values

Network class: (used in generation of true network)

Network size? 3 25, 50, 100
Network density Range 0.01-0.90
Topology 5 Uniform-random, small-world,

scale-free, core-periphery, cellular

Uncertainty class: (used in transformation to observed network)

Error type 4 Edge-remove, edge-add, node-remove,
node-add

Error level® 5 1%, 5%, 10%, 25%, 50%

Replications® Range 10-250

@Number of nodes

bPercemage of nodes or edges to be perturbed, according to the error type

€ Actual number of replication per cell varies due to stochastic nature of the network generation algorithms

in a transformation to a separate, undirected graph, which is labeled, the observed
network. This observed network represents what uncertain data the researcher in point
of fact collects; therefore, in the real-world, it is this data that is actually used to
compute measures that are reported. It follows that then each experimental replication
is represented by a pair of networks composed of a true network and its corresponding
observed network.

For each network in the pair, we compute the five node-level measures for each
individual node in the network, and then rank order the nodes according to their
measure value in decreasing order. This results in five node-lists for each network
and therefore, five paired node-lists; each pair consists of one rank-ordered list for the
true network and one for the observed network. Using the paired node-list for each
measure, several metrics are computed using the lists that indicate the congruence of
the two lists, resulting in the ability to quantify and evaluate the discrepancy between
the ground-truth values and the observed values.

For the remainder of this section, we describe how the true networks are gener-
ated specific to their topology, how uncertainty is introduced in the corresponding
observed network, and how the robustness metrics are determined.

2.1 Generating the true networks

In order to independently generate each true network, we applied an algorithm de-
signed to produce a plausible approximation of the particular topology; accordingly,
we have five generating-algorithms, each unique to a specific topology. Each algo-
rithm takes as one of its input parameters the size of the desired network (number of
nodes), whose value is set as specified by the network size variable. The properties of
each algorithm restricts the implementation of a consistent network density specifi-
cation across all the algorithms. In some cases density is a direct input parameter and
results in networks of that exact density, e.g., uniform random and core-periphery,
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while in other cases, e.g., small-world, scale-free and cellular, the density of the ac-
tual network generated is approximately the value of the desired density. The gen-
erative algorithms have been reviewed and the density of the networks produced is
sufficiently near the desired density value. The details and the parameter settings for
each of these topologies are described below.

To generate a uniform random network, we used the method to generate an Erdos
Random Graph (Bollobas 2001) as implemented in the Organizational Risk Analyzer
(ORA) software. We selected this generator over equivalent others both because it
was used in the Borgatti et al. (2006) experiment—therefore our experimental pro-
cedures can be straightforwardly authenticated—and because its parameter require-
ments fit precisely with the experiment’s variables. The algorithm requires two input
parameters: number-of-nodes, and number-of-edges. We simply compute the value
for the number-of-edges parameter based on the density and network size variables.
To generate the graph, the algorithm randomly selects pairs of vertices (without re-
placement) from the set of all possible and joins the pair, until the number-of-edges
parameter has been satisfied. Each pair has an equal probability of being selected.
The probability value is the inverse of the number of nodes, squared. Any resulting
self-loops are discarded. This algorithm produces a graph with the network density
value matching exactly the density parameter and variable.

To generate a small-world network, we used an edge-add (as opposed re-wire)
approach described as TOPOLOGY 3 (Small-world) in Airoldi and Carley (2005).
However, we modify the original procedure slightly by converting the graph’s di-
rected edges to be undirected and by disabling some of the algorithm’s advanced
features by effectively nullifying several inessential parameters. Subsequently, the re-
configured algorithm calls for three parameters: number-of-nodes, number-of-edges,
and distance-of-close-neighbors. The algorithm first constructs a ring lattice with the
specified number-of-nodes set to the variable network size value, and the distance-of-
close-neighbors parameter set to one value in {1, 2, 3, 4, 5, 8, 10, 20}; this value is
bounded by what is possible given the number of nodes in the graph. This will gen-
erate a multitude of fixed ring-lattices with a pre-determined number of edges;> thus,
this is also a graph with a pre-determined density. Next, edges are added randomly
until the desired density, according to the density variable, is reached. Generated net-
works are then assigned into the appropriate experiment cell according to value of
the actual density of the true network.

To generate a scale-free network, we used the algorithm, SCALE FREE 2, pro-
posed by Airoldi and Carley (2005), which applies a power law with preferential
attachment technique, as proposed by Barabasi and Albert (1999), but allows for
generating graphs with a specified and fixed number of nodes and edges. The algo-
rithm requires three parameters: number-of-nodes, number-of-edges, and power-law-
exponent. Like other algorithms, we simply compute the value for the number-of-
edges parameter based on the density and network size variables. For all graphs of

3For example, a minimal lattice of 10 nodes, connected to 1 neighbor, has a fixed density of 0.11, therefore
it is impossible to have a small-world network of this node-size with density of 0.01, 0.02, etc. The experi-
ment cells for these impossibilities are left unfilled. The 100-node lattice provides a full range of densities
to fill the range of experiment cells for the small-world topology, accordingly.
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this topology, we arbitrarily fix the power-law-exponent parameter to 2.0 because this
rounded value approximates the exponent of scale-free networks empirically found in
the real-world, e.g. the Internet. The algorithm constructs an ordered degree distribu-
tion vector of normalized probabilities based on the sequential order of the node, the
total number of nodes, and power-law-exponent parameter. The normalized probabil-
ity is then computed by dividing the number of ties for the node (the current vector
value) by the total number of ties in the desired graph (based on the density desired).
Then the ties-creation processes based on the vector of probabilities is repeated until
all edges have been created as proscribed; that is, we randomly select a node pair
and add an edge or not between the pair with probability according to the distribution
probabilities in the vector.

To generate a core-periphery network, we used an algorithm, conceived and oper-
ationalized by Borgatti and Reminga (2005), that is part of the Organizational Risk
Analyzer (ORA) software, which reproduces the formalization described by Bor-
gatti and Everett (1999). The algorithm requires three parameters: number-of-nodes,
network-density, and power-law-exponent. As was done with the scale-free topology
generation process, we fixed the power-law-exponent to 2.0. The algorithm first cre-
ates a node-degree distribution vector in the same manner as the scale-free algorithm,
i.e., constructing an ordered degree distribution vector of normalized probabilities
based on the sequential order of the node, the total number of nodes, and power-law-
exponent parameter. From this vector, a two-dimension matrix of all possible edge
combinations is then formed, where each cell in the matrix is then filled with a score
value that is the product of the values from degree distribution vector for the two
paired nodes. Potential edges for the graph are then randomly selected from cells in
this matrix. The value of the selected cell is then used as an-exists probability until
the number of edges called for in the network construction is reached.

To generate a cellular network, we used the algorithm, CELLULAR 2, proposed
by Airoldi and Carley (2005). The algorithm requires five parameters: number-
of-nodes, number-of-cells, probability-of-edges-within-a-cell, probability-of edges-
between-cells, and a power-law-exponent. The number-of-cells parameter is deter-
mined by rotation though a value in {0.2 0.4, 0.6, 0.8} that is multiplied by the
number-of-nodes and rounded, to establish the value for the number-of-cells para-
meter, resulting in {2, 4, 6, 8} cells in the case of a 100-vertex graph, and {1, 2}
cells in the case of a 10-vertex graph. Both the probability-of-edges-within-a-cell and
the probability-of edges-between-cells parameters are each separately determined by
rotation though the values in {0.01, 0.02, 0.05, 0.10, 0.30, 0.50, 0.70, 0.90}. As with
the scale-free and core-periphery topology generation processes, we fix the power-
law-exponent to 2.0. Each generated network is then assigned into the appropriate
experiment cell according to value of the actual density of the true network.

2.2 Introducing uncertainty

The data for the observed network is generated by perturbing a copy of a previously-
generated true network. The uncertainty in the observed data is modeled using a ran-
dom process that perturbs the true network according to the error class variables (error

type and error level) of the experiment cell in which the network pair is a member of.
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Table 2 Description of error types

Error type Process Uncertainty model
Edge
Remove From set of all existing, edges are uniformly, Models the uncertainty of ties being
randomly selected for removal until level of erroneously unreported in the
error is achieved. observed network.
Add From the set of all non-adjacent node pairs, Models the uncertainty of
a pair is selected and an edge added between non-existing ties being erroneously
them until the level of error is achieved. reported in the observed network.
Node
Remove From set of all existing, nodes are uniformly, Models the uncertainty of nodes and
randomly selected for removal until level of their incident edges being
error is achieved. All edges incident to the erroneously unreported in the
removed nodes are also removed. observed network.
Add Nodes are added until the level of error is Models the uncertainty of

achieved. In addition, edges are added incident
to each new node to join the node to any other
non-adjacent node. The number of edges
added to each new node is determined by

non-existing nodes and their
non-existing incident edges being
erroneously reported in the observed
network.

randomly selecting a node from the original
set and matching its degree value.

The error type is one of {edge-remove, edge-add, node-remove, node-add}. The error
level is a specific percentage value from {1%, 5%, 10%, 25%, 50%}, that is relative to
the number of edges or nodes in the original true network according to the error type
variable. For example edge-remove at the 10% error level for a 10-node, 10% density
network, would result in 5 edges being removed; in the same scenario for edge-add, 5
edges would be inserted between 5 sets of two randomly selected nonadjacent nodes.
Essentially, the change in edges is equivalent to the absolute-value of the hamming
distance between the paired, true and the observed networks.

For error types involving nodes, the error level is related to the number of nodes
in the true network and also necessarily involves those edges directly related to the
affected nodes. With node-remove, all edges incident to each removed node are also
removed. In the case of node-add, each edge is added connecting the new node and a
random other node. The number of edges added to each new node is matched to the
degree of a randomly selected other, pre-existing node in the same true network.

The four error types each model a specific type of uncertainty found in obser-
vational data. Edge-remove, which may be the most common type of uncertainty
experienced in real-world studies, situates the observed data for missing edge infor-
mation. Edge-add models extraneous edges being reported in the observed network
data that do not exist in truth. Node-remove replicates the missing node, and thus
the additional adjacent edge situation. Node-add models the situation whereas false
nodes and adjacent ties are included in the observed network data, while in truth they
do not exist. Table 2 summarizes the description of the error type and their application
and implication to the uncertainty characteristic in the observed network data.
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2.3 Computing measure accuracy

Each distinct network-pair has several statistics associated with it that indicate mea-
sure agreement from a variety of standpoints, i.e., its exact accuracy from various
perspectives at several levels. There are 20 separate statistics computed for each dis-
tinct network-pair. The assemblage of these statistics can be envisaged as a two-
dimension table: across one dimension are the five network measures, e.g., degree
centrality; across the other dimension are four specially-crafted metrics.* We con-
ceptualize these metrics into two groups, labeled: top-node and top-group. Each met-
ric is delineated according to how it is derived; this, therefore reflects the level of
its expressiveness towards a measure’s accuracy. The top-node metrics are named:
top-1, top-3, and top-10%. The value assigned to each metric is the result of a com-
parison between a rank-ordered list of nodes obtained from the true network with
a similarly constructed list obtained from the observed network. The metrics are
so named according to the size of a rank-ordered list of nodes obtained from the
observed network. The resulting value indicates a quantity reflecting the level of
agreement between the paired true and observed networks; thus, the value for each
statistic indicates a given measure’s congruence, thus accuracy, at a different level
of strictness. The top-node metrics are indicative of how uncertainty affects the re-
liability of a measure to accurately identify the individual node that truly has the
highest value for that measure, e.g., the top-ranked node according to degree cen-
trality is the one note with the highest value of all nodes in the network. Essentially
these indicate the agreement, or not, of The top-node metrics are particularly useful
with respect to the key player question (Borgatti 2006), identifying nodes of rela-
tive importance (White and Smyth 2003), and identifying network elites (Burt 1978;
Masuda and Konno 2006), but can also be quantitatively indicative of measure ro-
bustness as established by Borgatti et al. (2006).

To determine the value of the various metrics in the top-node group, we di-
chotomize (a binary value, either 1 or O, for true and false, respectively) a comparison
of the membership between the two rank-based lists: 7op I is an indication that the
top-rank node in the true network is also the top-ranked node in the observed; Top 3
is an indication that the top-rank node in the true network is one of the top 3 nodes
in the observed network; and Top 10% is an indication that the top-rank node in the
true network is also ranked in the top 10% (relative to number of nodes in the true
network) in the observed network.

The metric in the top-group is overlap, which is a value indicative of how uncer-
tainty affects the reliability of a measure to accurately identify the top set of nodes in

4Herein, we adopted some of the same accuracy metrics as those crafted by Borgatti et al. (2006), so as to
ease the feasibility of conjoining our result and because of inherent limitations of the traditional statistical
approaches. Indeed, other more traditional statistical approaches for evaluating rank data are available,
e.g., Spearman rho and Kendall’s tau, but are not utilized here due to their constraint of requiring squared
data. In this study, there are situations when the two rank-ordered lists may not be complete, i.e., in the
case of node-remove error type. It should be noted that some work has been done on handling non-square
data in this realm (see Papaioannou and Loukas 1984; Alvo and Cabilio 1995), but we purposefully opt to
be in harmony with Borgatti et al. For an experiment that assessed the reliability of complete rank-ordered
lists under data uncertainty, we suggest reading Kim and Jeong (2007).
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Table 3 Metrics computation step 1: Determine true and observed network ordered rankings

Ranking True network Observed network
Node identifier Node-level Node identifier Node-level
=Set A measure value =Set B measure value
1 nodel5 0.561 nodel3 0.485
2 nodel3 0.511 nodel5 0.478
3 node22 0.482 node25 0.451
4 node25 0.482 node28 0.410
5 node28 0.455 node56 0.410
6 node31 0.332 node(02 0.400
7 node56 0.173 nodel4 0.396
8 node02 0.152 nodel7 0.373
9 nodel4 0.149 nodel9 0.104
10 nodel? 0.113 node58 0.098
etc. etc. etc. etc. etc.

a network according to the measure; whereas, the number of nodes in this top-ranked
set is determined relatively by taking 10% according to the number of nodes in the
true network. The sole top-group metric, overlap, is a value that reflects the broader
extent to which the measures are robust; it evaluates the how well the set of top-10
percent nodes in the true network match the set of top-10 percent nodes in the ob-
served network. The overlap metric is a similarity metric, in the form of the Jaccard’s
coefficient between the two node sets, which provides an index between 0 and 1, such
that O indicates the extreme circumstance that there is no overlap and 1 indicates strict
agreement.

A synopsis of the sequence of steps for determining the values for these metrics
is illustrated via Tables 3 through 6; these tables show the details of computing the
metrics for one example network-pair case. For clarity, we will use standard set no-
tation throughout this process description by referring to specific sets of individual
nodes using capitalized alphabetic characters. Step 1 (Table 3) requires separately
rank-ordering the individual nodes from each network in the specific network-pair
according to their value based on the particular measure, e.g., degree centrality. To
determine the rank-order of the nodes, from highest-to-lowest value for the particular
measure, we use the ordinal ranking approach; the node internal-identification num-
ber arbitrarily breaking value-based ties. The resulting rank-ordered list from the true
network we label, A, and the list from the observed network is labeled B.

Table 4 (step 2) is an illustration of how subsets of A and B are constructed. From
A, we identify the top node from the true network and label the unity-member C.
C is an instrumental aspect of the majority of metrics as it represents the most pres-
tigious, or key player that we want to be able to locate in the observed network at the
same most prestigious position. A set of varied length across the different samples of
network sizes is constructed and labeled D. This set has its number of members set
to 10% of the number of nodes in the true network. For example, a 100 node network
would have 10 elements in D. With respect to the observed network, three subsets
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Table 4 Metrics computation

step 2: Construct the sets for Count  True network (Set A) Observed network (Set B)

top-node metrics Top 1 Top 10%  Top 1 Top 3 Top 10%
=SetC =SetD =SetE =SetF =SetG
1 nodel5 nodel5 nodel3 nodel3 nodel3
2 nodel3 nodel5 nodel5
3 node22 node25 node25
4 node25 node28
5 node28 node56
6 node31 node(02
7 node56 nodel4
8 node02 nodel7
9 nodel4 nodel9
10 nodel7 node58
Table 5 Metrics computation
step 3: Construct the sets for Count Intersection A N B Union AU B
top-group metric =Set H =Set 1
1 node02 node02
2 nodel3 nodel3
3 nodel4 nodel4
4 nodel5 nodel5
5 nodel?7 nodel?7
6 node25 nodel9
7 node28 node22
8 node56 node25
9 node28
10 node31
11 node56
12 node58

are constructed from B. The top node makes up E, and the top 3 nodes make up F.
G is constructed in the same manner as D, but using B as its source.

Table 5 (step 3) is an illustration of how traditional intersection and a union sets
are constructed from both the true (A) and observed (B) rank-ordered lists using
the traditional set-algebraic techniques. This results in two distinct subsets, H and /,
from the true and observed networks, respectively.

Table 6 (step 4) is an illustration of the final step in the process which results in
the top-node and the top-group metrics. The value assigned to Top 1, a binary value,
is a truth value that specifies the subset agreement between C and E, and indicates
whether or not the top 1 node in the true network is also the top 1 node in the observed
network. The value assigned to Top 3, a binary value, is a truth value that specifies
the subset agreement between C and F, and indicates whether or not the top 1 node
in the true network is found within the top 3 nodes in the observed network. The
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Table 6 Metrics computation

step 4. Evaluate set algebras and Metric Determination Value
tati
compuiation Top 1 { | ifCeE 0
0 otherwise
Top 3 { 1 ifCeF 1
0 otherwise
Top 10% { 1 ifCeG 1
0 otherwise
Overlap |H|/|1] 8/12=10.750
Table 7 Example of
independent control variables Name Value
for a single network-pair
Topology Small-world
Node size 50
Density 0.10
Error level 20%
Error type Edge-remove

Table 8 Example of dependent
outcome variables for a single Name Topl  Top3  Topl0%  Overlap

network-pair

Degree centrality 0 1 1 0.468
Betweenness centrality 1 1 1 0.451
Closeness centrality 0 0 1 0.334
Eigenvector centrality 1 1 1 0.486
Local clustering 0 1 1 0.400

value assigned to Top 10%, a binary value, is a truth value that specifies the subset
agreement between C and G, and indicates whether or not the top 1 node in the true
network is found within the top 10% nodes in the observed network. To compute the
overlap value, the count of the number of members of H is divided by /. Recall, this
produces a ratio between zero and unity that reflects the amount of overlap between
the true and the observed rank-ordered lists. A value of 0 indicated no overlap and
a value of 1 indicates complete overlap, i.e., perfect accuracy between the true and
observed measurements.

To recapitulate the outcome of the above steps in a complete summarization for a
single network-pair, Tables 7 and 8 show an all-inclusive set of the variables and their
values for an arbitrary, example; Table 7 shows the complete independent control
variables and Table 8 shows the complete set of dependent outcome variables.

3 Results

We organize the discussion of the results in three sub-sections. First, we report on
our preliminary analysis of the sample data that were produced by the generative

@ Springer



Robustness of centrality measures under uncertainty 315

processes described in the Method section. Next, we report on our statistical analysis
of the effect of the network topology on the accuracy of top-node outcome metrics.
Lastly, we report on the statistical effects of network topology on the accuracy of
top-group outcome metrics.

3.1 Preliminary analysis of sample data

The sample-data generation process yielded 622,719 independent network-pairs;
each whose true-network was constructed by one of the topology-specific genera-
tive algorithms, and a copy then perturbed according to specific error characteristics.
The true-networks were constructed of fixed network size of 25, 50 or 100 nodes and
were effectively drawn from a range of possible densities according to the precincts
of the stylized topology. The uncertainty in the observed network was introduced in
the form of a specific error type and level, e.g., edge-remove, 10%.

The distribution of the resulting data is reported in Table 9 in the form of a con-
tingency table, which presents the count of independent samples according to the
topology and the error type; this provides a general sense of the actual outcome of the
generation process. The average number of replications for each distinct experimental
cell (as per all control variables, i.e., both the network and uncertainty classes) is 177
independently constructed network-pairs. Since the high-level accuracy measures are
either a probability or an average, experimental cell combinations with less than 10
replications were excluded from the analysis and are therefore excluded from this
622,719 count: this is specific to the network density as the actual value of density is
topology-dependent according to the properties of the network generation algorithm.

In order to provide a general sense of the robustness across the various topologies,
we present three graphs (Figs. 1-3) that illustrate a characteristic profile according to
control variables: network size, network density, and error level. Each graph shows a
very small cross-section of the sample data, which is a representation of the variable’s
profile more generally; however, in actuality, the details of the profiles can vary some-
what across the various cross-sections of the data. To keep the presentation simple,
we report only on the degree centrality, top 3 metric in these figures.

Figure 1 shows an accuracy profile of network size. The graphic indicates that
network size (number of nodes) can be described, by and large, as having a near-zero
slope and that the topologies are parallel, but are somewhat offset from one another.
This suggests, from a visual perspective, that network size may have relatively minor
influence on the robustness of the measures.

Table 9 Sample sizes by

topology and error type (number  1opology Edge Node Total
of independent network-pairs) Remove Add Remove Add
Uniform 30,000 30,000 30,000 30,000 120,000

Small world 29,649 29,645 29,658 29,667 118,619
Core periphery 30,000 30,000 30,000 30,000 120,000

Cellular 36,103 36,071 36,061 35,998 144,233
Scale free 29,958 29,979 29,996 29,964 119,867
Totals 155,710 155,695 155,685 155,629 622,719
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Accuracy Profile by True-Network Size
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Fig. 1 Accuracy profile for topologies by network size (degree centrality, top 3 metric; density 10%, edge
remove, error level 10%)
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Fig. 2 Accuracy profile for topologies by network density (degree centrality, top 3 metric; size 50, edge
remove, error level 10%)

Figure 2 shows an accuracy profile of network density. The graphic indicates that
network density can be described, by and large, as having mixed slopes at the lower
density values, but becomes more consistent with even greater prominence as density
increases. The topologies profiles are quite different at lower densities. This suggests,
from a visual perspective, that network density may have a material effect on the ro-
bustness and that the topology has even more influence than the density per se. In this
graphic, the limitations of the network generation algorithms and topological charac-
teristics become quite apparent, as discussed in the Method section. Specifically, the
accuracy for small-world has more variability due to data points being available at
each percentage unit of density, e.g., data for 20%, 21%, 22% density, etc., and with
differing sample sizes at each density; whereas, the sample-set for the small-world
has densities of no greater than 50% and the cellular topology has densities of no
greater than 20%.
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Accuracy Profile by Error-Level
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Fig.3 Accuracy profile for topologies by error level (degree centrality, top 3 metric; size 50, density 10%,
error remove)

Figure 3 shows an accuracy profile of error level. The graphic indicates that error
level can be described, as having very different slopes for each of the topologies.
The measure robustness in the Small-world network is substantially less that of the
Core-periphery and the others. This suggests, from a visual perspective, that the error
level may have a varying effect on the robustness and that the topology has even more
influence than the error level per se.

As a concluding facet of this preliminary analysis, we conducted an informal com-
parison of our results with those of the Borgatti et al. (2006) study; thus, we consid-
ered only the results pertaining to the uniform random topology. We concluded that
our results are abundantly consistent with those analogously presented by the earlier
study. This confirmation provides an unsophisticated, but imperative, affirmation of
the consistency of the operational aspects of our experiment across the two indepen-
dent studies.

To summarize, via this preliminary analysis, we conclude that the operational as-
pect of the experimental process is sound and foreshadowing the more formal statisti-
cal analysis of the data, we can expect that there will likely be a noticeable difference
in the measure accuracy across topologies, although the statistical significance is not
yet presented. The next two sub-sections report the results of the more definitive,
statistical analysis of the data.

3.2 Effect of topology on top-node metrics

The top-node metrics are binary measures; hence, we constructed logistic regression
models to examine the impact of topology, and other factors, on the robustness of the
metrics. Since the independent variables for all of the models are the same, the trans-
formations of variables in both the top-node and the top-group models are likewise
the same. Recognizing that the topology variable is an unordered categorical variable
with five possible values, we transformed the topology variable into four distinct, bi-
nary dummy variables; the uniform random topology was designated as the baseline
value. Further, since the error type variable is also an unordered group of categorical
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values, it too was transformed into set of dummy variables; in the this case, we cap-
tured their values within two distinct, binary variables. The error type edge remove
was fashioned as the baseline value for this group, i.e., both dummy variables are si-
multaneously set with a value of zero. Moreover, we examined each of the remaining
three non-categorical, main effect variables (size, density and error level) for linearity
and determined that error level is the only variable that necessitated a transformation
to meet the assumptions of the regression technique. We found that the logarithmic
function provided the best linear transformation for the error level variable and used
this transformation for all models. Furthermore, it was not necessary to transform
either the size or the density variables. Moreover, we ruled out the utility of using
interaction terms in the regression equations as there was little expectation of a mate-
rial statistical interaction between the independent variables; our initial examination
of various regression mixture models corroborated this. An analysis of pairwise cor-
relation showed no colinearity problems. The resulting full, logit based, log-odds
regression model is shown as (1)

logit(p;) = Bo + P1 X size + B2 x In(density) + B3 x errorLevel

5 9
+ Z(,B,- x errorType) + Z(,Bi X topology) D

i=4 i=6

In order to appraise the extent to which a specific logit model is better than its base
model (the model with only an intercept), the deviance difference is regularly com-
puted between the two models of interest. These and all other combinations of possi-
ble models were constructed and deviance computed. Table 10 reports the coefficients
of the logistic regression for a selected set of these models, specific to the degree
centrality measure, top-node metrics. We describe three complete models for Top 1,
constructed step-wise by increasing the number of factors, then we present only the
selected, best full-models for the Top 3 and Top 10% metrics. Since the models are
constructed using logistic regression, thus the regression equation is evaluated using
maximum likelihood, the deviance is used as a criterion for quantifying the lack of
fit for a model to the observed data; therefore, the lower the value of the deviance
statistic, the better the model. When looking at only the first three Top 1 models re-
ported in the table, the deviance is smallest for the model with the topology factors
and is an improvement over the simpler models. As would be expected, the deviance
increases as more terms are added to at the model, but since the Akaike (1973) in-
formation criterion (AIC), which introduces a penalty for the number of parameters
in a model, confirms that the additional parameters, thus increased complexity, of
the model is justified. Focusing on the three finalized models Top 1, Top 3, and Top
10%, reported in Table 10, error level has high negative-effect on accuracy and both
size and density have relatively little effect on the accuracy. However, collectively,
the topology variables have a larger effect on accuracy that approaches and even sur-
passes the effect of log (error level). The negative coefficient of a logit model implies
that the predicted probability curve goes down to the right, which is the case in all
of the factors except the Core Periphery and Scale Free topologies. From this we can
conclude there is a relationship between topology and the measures that differs across
differing topologies.
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Table 10 Logistic regression models for degree centrality measure (across all top-node metrics)

Factor Degree centrality

Top 1 Top 1 Top 1 Top 3 Top 10%
(Intercept) 2.896"" 2.907""" 3.144™ 4181 3.941"
Network size —0.006""  —0.006""" —0.007"*  —0.008"™  0.002""
Density —0.002""*  —0.002""  —0.007"""  —0.008"""  —0.005"""
Log(error level) —0.758""  —0.765""  —0.8177"" = —0.868""" = —0.904"""
Error type dummy 1 0.324™" 0.347"" 0.310""" 0.230"""
Error type dummy 2 —0.293"""  —0313"  —0.001 0.252""*
Cellular topology —0.070""  —0.024" 0.006
Core periphery topology 0.838""" 0.533""" 0.481"""
Scale free topology 0.584™"" 0.617""" 0.505"""
Small world topology —0.920""  —1.049"  —1.003""
Deviance—null model 296310.9 296310.9 296310.9 261686 228823.7
Deviance 184367.0 178839.3 141597.2 141779.6 1332322
Deviance ratio 03777921  0.396447 05221328  0.458207 0.4177518
AIC 198699.3 193175.7 155941.6 153182.1 143035.4
*2<0.05
2 <0.001

In can be useful to provide a more intuitive interpretation of the logistic regression
model. For instance, we can convert the coefficients reported in Table 10 for the de-
gree centrality, top 1 model by changing the topology coefficients to odds values (take
the anti-log of the odd-based coefficient); the model indicates that Core-periphery has
a 2.31 times greater positive effect on accuracy than the Uniform Random topology.
Likewise, Scale-Free has 1.79 times greater effect on accuracy, relative to uniform
random. However, Small-world and Cellular affect accuracy at 0.39 and 0.93 times,
respectively, thus less than that of Uniform Random topology.

Table 11 reports the selected best models for the remaining centrality measures
(betweenness, closeness and eigenvector) and their respective top-node metrics (top
1, top 3, and top 10%). Across all of these statistical models, the sign of the coefficient
for each topology is uniformly either positive or negative, which indicates consistency
of the nature of the effect of topology in these metrics; a negative value means that
the factor has less effect than the baseline factor value. The Core Periphery and Scale
Free topologies both have a greater effect on the measure accuracy, relative to uniform
random topology, while Cellular and Small World have a less so effect on measure
accuracy. Moreover, it is unambiguous that topology has a far greater relative effect
on measure accuracy than does the size or density of the network according to the
size of the coefficients.

Table 12 reports the selected best models for the three top-node metrics computed
from the local clustering measure. For each of the models featured in the table, all
of the topologies have a relatively lesser effect on accuracy relative to the Uniform
Random topology; although, the statistical strength of the coefficients do vary in these
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Table 12 Logistic regression

models for local clustering Factor Local clustering

measure, across all top-node Top 1 Top 3 Top 10%

metrics
(Intercept) 3.443" 3757 3.334™
Network size —0.0117*  —0.011™"  —0.002""*
Density —0.011""  0.000™"" 0.003™
Log(error level) —0.848""  —0.852"""  —0.813"""
Error type dummy 1 0.894™"" 0.824™" 0.821"""
Error type dummy 2 —1.393" 1297 _1.048"""
Cellular topology —0.007 —0.017 —-0.016
Core periphery topology ~ —0.024" —0.294™*  —0.352""
Scale free topology —0.070""  —0327""  —0431""
Small world topology —0.718""  —0.484™"  —0.430"""
Deviance-null model 3798144 3424067  320473.0
Deviance 168120.7 1580702 174891.6

005 Deviance ratio 0.557361 0.5383554 0.4542704

o AIC 1823244 172015.1 188064.4

2 <0.001

models, particularly in the case of the Cellular topology, which suggests that accuracy
for Cellular differs little from the uniform random topology. As with the previous
models, relative to the effect that network size and density have on accuracy, the
network’s topology has substantially more effect and varies between the different
stylized topology types.

In summary, the analysis of the regression models for the top-node metrics con-
vincingly demonstrates, in nearly all circumstances, that the type of topology does
have various amount of effects on the accuracy of the measure metric. For example,
as detailed earlier, in the case of the Degree Centrality for the top 1 metric model, the
Core-periphery topology has over twice as much effect on the accuracy than does the
Uniform Random topology.

3.3 Effect of topology on top-group metrics

In order to investigate the effect of topology on the top-group metric, e.g., overlap, we
constructed several independent statistical models for each of the five measures. Since
the overlap metric is characteristically a continuous value, the models are constructed
using a linear regression. We followed the same procedure as described above to
transform the categorical independent variables and examined each of the main ef-
fect variables for linearity. Recall, we determined that error level is the only variable
that necessitated a transformation to meet the linear assumptions of the regression
technique; hence, we applied the logarithm function to the error level variable. Fur-
thermore, we ruled out the utility of using interaction terms in the regressions as
there was little expectation of a statistical interaction between the independent vari-
ables; our exploratory analysis corroborated the prudence of this. An analysis of pair-
wise correlation showed no colinearity problems. The resulting full, linear regression
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Table 13 Linear regression models for all measures (top-group metrics: overlap)

Factor Degree Betweenness  Closeness Eigenvector ~ Local
centrality centrality centrality centrality clustering
overlap overlap overlap overlap overlap

(Intercept) 0.851°"" 0.853""" 0.905""* 1.040™*

Network size —0.001"*" —0.000”""  —0.001"""  —0.001"""

Density 0.001" 0.001"""  —0.000""  —0.002"""

Log(error level) —0.117""  —0.124™ —0.129"  —0.126™"  —0.134"""

Error type dummy 1 0.137"* 0.105"" 0.187"*"

Error type dummy 2 . —0.113™"  —0.146™"  —0.222"

Cellular topology 0.068"" 0.048™" —0.039"" 0.016"™ 0.019"

Core periphery topology ~ 0.204™" 0.195"" 0215 0.227"" 0.000

Scale free topology 0.126™" 0.103"** 0.093""  —0.044™"

Small world topology —0.128"" —0.135""  —0.141™"  —0.103""

Adjusted R? 0.4760208  0.4156237 0.4674364  0.3922854  0.4290301

. <0.001

model is shown as (2)

pi = Bo + B1 X size + B2 x In(density) + B3 x errorLevel

5 9

+ Z BierrorType + Z Bitopology + €. 2)
i=4 =6

Table 13 reports the OLS coefficients of the best regression models for the overlap
metric for each of the five measures. These models are not nearly as consistent as
those reported in the prior section for the top-node metrics. For example, the size
of the coefficients is much smaller than in the prior models and the coefficients of
the stylized topology factors are generally positive, which implies that they affect
greater metric accuracy, relative to the uniform random network. The adjusted R>
values indicate that there is much of the final accuracy explained by these models.
The various R? values in these reported models reflect that roughly 43% of the data
can be explained via each model.

Since the models reported in Table 13 are constructed using linear regression,
transformation of the coefficients is not necessary prior to interpreting them. Each
model indicates that the effect on accuracy of the Small-world topology is statistically
different than the effect of the baseline Uniform Random topology and that Scale-free
differs as well, albeit positively.

In summary, the analysis of the statistical models for the top-group metric, pre-
sented in this section, strongly shows, in all circumstances, that the type of topology
does have statistically different levels of effect on the accuracy of the measures’ over-
lap metric.
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4 Discussion

This paper reports a systematic examination of the robustness of several network
measures under different conditions of uncertainty, when controlling across several
stylized network topologies. The results supported the conjecture: in the circumstance
of uncertainty, the topological form of the true network has a measurable effect on
the robustness of the measures when taken from the observed network data, relative
to value taken from the ground truth. The chief finding this study is that the topology
of the in-truth network does have a statically strong effect on the level of reliability
of the centrality and the local clustering measures as computed from the observed
data. Our findings suggest that making a priori classification of the topology of a
network provides important additional information about the probabilistic reliability
of the network measures that are computed over the observed data. Moreover, our
results highlight the specific quantitative vulnerabilities of different topologies to the
various combinations of error type, level and specific network measures.

Relative to a uniformly random network—one exclusive of being characterized as
being of a stylized topology—topology can have either a greater positive or negative
effect on the accuracy of measure, but often a material effect nonetheless. In other
words, we found that the probability of the most prestigious actor or group of actors
identified by an observed network dataset being accurate, in-actuality, is impacted by
the topology of the in-truth network.

In the situation of the uniform random topology, our results are consistent with
those reported by Borgatti et al. (2006). In terms of the other four topologies, the
magnitudes of the effects on accuracy differ significantly across error type and the
topology. In particular, the results show that the level of the affect on accuracy dif-
fers according to topology, more so than it differs across network size, density, error
type and error level. For instance, node-remove errors tend to impact scale-free net-
works severely, particularly in the case of betweenness centrality. On the other hand,
node-add error types have significantly higher impact on small-world networks, when
considering the local clustering measure, than to the rest of the topologies.

Our findings have implications to researchers and practitioners alike. In short, the
amount of confidence we can have for estimating the truly prestige actors in a net-
work, according to their network position, is affected, either hindered or improved,
by the topology of the network. When estimating the level of confidence for a mea-
sure taken from the data, we must first estimate the topology classification of the
true network. The identification of these weaknesses in a particular network topolo-
gies provide important guidance for future empirical work, particularly in the area of
identifying “key players” (Borgatti 2006), in terms of the reliability of results under
conditions of measurement error. This level of confidence may even be applicable
to individuals during the selection process of them seeking new relationships (see
Fortunato et al. 2006).

Finally, our results also have important implications from a data collection point
of view. In the inherent trade-off between resource cost and completeness of data
collected, our findings indicate that the researchers should include an estimate of the
true topology of the subject network in making an assessment of this important trade-
off. For instance, if we are interested in a key node based on degree centrality, in
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order to achieve an 85% level of confidence that we accurately identified the most
prestigious actor in a 100-node, 10% density network, within a group of three, we
would require a 50% or greater level of accuracy in the data collection process if the
network is a Small World, but only a 40% level of accuracy for a Cellular network.
Indeed, at this juncture, how to determine this accuracy level itself is an unknown
task. In other words, our findings provide guidelines on how accurate the data must be
when collected in order to reach particular levels of accuracy in the network measures
under consideration.

4.1 Limitations

We draw attention to three limitations of the methodology applied in this study. Each
of these is a matter that warrants future research. The most relevant limitation is the
unproven nature of the network creation algorithms used in the true-network gen-
eration procedure. It remains an open question whether the algorithms statistically
and accurately simulate the drawing of a random sample from the complete distrib-
ution of all the possible networks of a specific topology. There may be an unequal
bias towards particular instances of isomorphic networks, within the topology; we are
working with generative models rather than utilizing a much preferred random sam-
pling technique that draws uniformly from all possible configurations of a topology
with the given parameters. Verifying these algorithms is well known as a computa-
tionally prohibitive task. Secondly, we acknowledge that the various characteristics
particular to a given topology may alter the results when the entire range of possible
parameters for a topology is studied. That is to say, for example, the findings for a
scale-free network may differ for alpha being set to 3, rather than a value of 2 as set in
this experiment. Moreover, we operate on the supposition that errors in social data are
random in nature, when they may in fact have a variety of non-independent biases,
sources and patterns (see Rubin 1976), which in turn, may present influences in the
data actually observed and, therefore the character of the observed error. Finally, an
significant limitation of this study is that we only investigated errors of a single type
rather than the more real-world scenario of a mixture of errors, i.e., observed network
data having a blend of over and underreported, ties and nodes, in the same dataset.

4.2 Future research

We present five recommendations for future research that we believe would pro-
vide further advancement towards a remedy to the inherent data-uncertainty problem.
First, while we have shown that topology has an affect on the robustness of centrality
measures, there is the next question about the precise extent to which each of the
many different topologies and their variants distinctively affect the robustness pro-
files. In the guise of network topology labels, subtle differences in the methodology
for generating a given network may possibly result in diverse robustness levels. Per-
haps it is a characteristic of a topology (thus a family of topologies) that matter, not a
specific topology itself. For example, there are many ways to generate a core periph-
ery network; each variant needs to be explored and individually related to a specific
robustness profile. Further, technically, characteristically, a small-world network is
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also a scale-free network (Amaral et al. 2000), so there needs to be more attention
to the precise topological characteristics, beyond the approach of merely using the
label-names of a topology, as is used herein.

Second, as we and others have openly acknowledged, errors in observed social
network data most likely are not truly random in nature. Early, as well as this, re-
search specific toward investigating robustness has been limited to being based on
random error as opposed to more realistic, systemic or non-randomly influenced er-
rors in the data. One notable exception to this is the Marsden (1990) study which
examined both random and non-random errors. Certainly, this makes the research
much more complicated, but the community will be rewarded with theories based on
richer scenarios.

Third, it should prove invaluable to analysts when they have statistically valid con-
fidence levels and error bounds of descriptive network measures applicable to their
specific observed network. Such quantities may possibly be based on the known pa-
rameters and characteristics of the observed network combined with the a priori true
network information and error characteristics. To date, analysts are constrained by us-
ing measures determined only from the observed network, thus are being limited to
working with descriptive statistic only. The analysis of networks will take a huge leap
forward when confidence levels can be assigned to collected data that will ultimately
lead to including p-vales with the statistics we calculate from observed data.

Fourth, the issue of alias nodes is a matter of consequence. Particularly in studies
with data collection automated by computer, the problem of entity disambiguation,
i.e., a single node being recorded as separate multiple nodes, is type of error that
likely has very real implications to analysis. The resulting network measures based on
the observed data would most likely lead to meaningless information without some
mathematical adjustments being applied; foremost, the impact of this type of error
must be understood.

Finally, the fifth area that can contribute to addressing the data-error scenario is to
begin to verify the results drawn from virtual experiments, such as this, by testing the
results against real-world, empirical networks; although, at this point we only briefly
ponder how such a study might be designed, since the ground-truth in the real world
is never really known and thus cannot be used to verify the accuracy of the observed.
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