

Micro Simulations in ORA

Tom Magelinski tmagelin@andrew.cmu.edu

School of Computer Science, Carnegie Mellon Summer Institute 2020

IST institute for SOFTWARE RESEARCH

Carnegie Mellon

Center for Computational Analysis of Social and Organizational Systems http://www.casos.cs.cmu.edu/

Agenda

- · Micro Simulations Background
- Generate Stylized Networks for Micro Simulation Experiments
- Run Micro Simulations from ORA Visualizer
- Run Micro Simulations from ORA Menu
 - Visualization of networks over time
 - Visualization of agent trails
 - Utilized Network
- Questions

Agenda

- Micro Simulations Background
- Generate Stylized Networks for Micro Simulation Experiments
- Run Micro Simulations from ORA Visualizer
- Run Micro Simulations from ORA Menu
 - Visualization of networks over time
 - Visualization of agent trails
 - Utilized Network
- Questions

Carnegie Mellon

Simulation

- Networks are complicated!
- Hard if not impossible to find analytical solutions to some key network questions
 - How do nodes interact in a complex network?
 - How does something diffuse in a complex network?
 - How do conflicting ties playout in a complex network?
- Most practical approach is to try it out
 - Set up a probabilistic experiment
 - Repeat the experiment many times
 - Analyze the results

CASOS CASOS

What are Micro Simulations?

Simulations of something moving through a network over time

- Four Types of Diffusion Models in ORA:
 - "Disease" diffusion
 - "Monetary" diffusion
 - "Idea" diffusion
 - "Technology adoption"

CASOS Precio

Carnegie Mellon

Input / Output of Micro Sims In ORA

- Input:
 - A square network comprised of one node class
 - agent by agent, location by location, etc.
 - A subset of nodes to initialize the diffusion
 - Transmission Resistance
 - Number between 0 and 1
 - Model specific parameters
- Output of Micro Simulations
 - Diffusion networks
 - Dynamic visualizations of the diffusion process over time
 - only if run via ORA Visualizer

Micro Simulation Outline in ORA

- The Diffusion Process
 - Agents with resources try to propagate them to their neighbors
 - Resources are diffused across a link if BOTH checks are passed
- The Link Activation Checks
 - A probabilistic process
 - Link weight check:
 - $p = \frac{Link\ weight}{Maximum\ Link\ Weight}$
 - Stronger Links -> More Likely to Diffuse
 - Transmission resistance check:
 - p = 1 Transmission Resistance

Repeats for each time step

7

Carnegie Mellon

Types of Micro Sims: Idea Diffusion

- An agent can give away information it has access to
- An agent retains information even after giving it away
- An agent never loses information it gains
- An agent never stops giving away information

Types of Micro Sims: Money Diffusion

- An agent can give away money it posses (all or nothing) to only one of its neighbors (pick randomly)
- Once given, the agent lost the money immediately
- An agent can re-acquire money previously given away

9

Carnegie Mellon

Types of Micro Sims: Disease Diffusion

- An agent can give the disease to other entities while it is infectious.
- A agent will be "cured" after a user-specified number of time periods.
- Once the agent is cured, it becomes immune against it and can not become infected again.
- Additional model parameter: a user-specified parameter indicating the proportion of agents who are immune

Types of Micro Sims: Technology Adoption

- An agent may adopt a technology if enough of its neighbors use the technology
- An agent can stop using a technology, especially if its neighbors are not using the technology
- For an agent with no incoming links, it will flip a coin to adopt/drop a technology
- An agent can re-start using a technology

11

Carnegie Mellon

Overview of Micro Sim. Types

	I can give it to others	I lose it after sharing	I lose it after some time	I can get it back
Ideas	YES	No	No	N/A
Disease	YES	No	YES	No
Money	YES	YES	No	YES
Tech	YES	No	YES	YES

Key Takeaways

- Micros Simulations are random!
 - The results could be different each time you run the simulation
- Link weight is important
 - The larger the link weights are, the more likely diffusion is
 - In a network that has equal weights on links (e.g. binary networks), the probability to pass link weight check will always be 1 on each link
- Transmission resistance
 - Transmission resistant ↑ , diffusion ↓
 - If transmission resistance is 0, the diffusion is solely depends on the weights of every link in the network

13

Carnegie Mellon

Agenda

- Micro Simulations Background
- Generate Stylized Networks for Micro Simulation Experiments
- Run Micro Simulations from ORA Visualizer
- Run Micro Simulations from ORA Menu
 - Visualization of networks over time
 - Visualization of agent trails
 - Utilized Network
- Ouestions

Agenda

- Micro Simulations Background
- Generate Stylized Networks for Micro Simulation Experiments
- Run Micro Simulations from ORA Visualizer
- Run Micro Simulations from ORA Menu
 - Visualization of networks over time
 - Visualization of agent trails
 - Utilized Network
- Questions

Carnegie Mellon isf institute for SOFTWARE RESEARCH

Agenda

- Micro Simulations Background
- Generate Stylized Networks for Micro Simulation Experiments
- Run Micro Simulations from ORA Visualizer
- Run Micro Simulations from ORA Menu
 - Visualization of networks over time
 - Visualization of agent trails
 - Utilized Network
- Questions

Agenda

- Micro Simulations Background
- Generate Stylized Networks for Micro Simulation Experiments
- Run Micro Simulations from ORA Visualizer
- Run Micro Simulations from ORA Menu
 - Visualization of networks over time
 - Visualization of agent trails
 - Utilized Network
- Questions

Agenda

- Micro Simulations Background
- Generate Stylized Networks for Micro Simulation Experiments
- Run Micro Simulations from ORA Visualizer
- Run Micro Simulations from ORA Menu
 - Visualization of networks over time
 - Visualization of agent trails
 - Utilized Network
- Questions

47

Carnegie Mellon

What is the Utilization Network?

- A end-of-sim view of network links used for transmission
- Link Weight_{AB} = count of times transmission occurred from node A to node B (More useful for money and technology)
- If transmission occurs between Node A and B
 - Link Weight_{AB} := Link Weight_{AB} + 1

Micro-Sims vs Near Term Analysis & Construct

- Micro-sims use fixed probabilities of transmission, Construct's probabilities of interaction vary
- Micro-sims only require one node set and network type to run the simulation, Construct requires many
- Micro-sims used via two ways in ORA GUI, Construct is primarily non-GUI
- Micro-sims treat the examined network as static; none of the other networks (e.g. the knowledge network) will change during the simulation
- Micro-sims do not calculate diffusion metrics

