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Illustrative Toy Example: 
“Jan Pronk, the Special Representative of Secretary-General Kofi Annan to 
Sudan, today called for the immediate return of the vehicles to World Food 
Programme (WFP) and NGOs.” (from UN News Service, New York, 12-28-2004): 

proximity-based extraction of relational data :
one node type                                       multiple entity classes
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Identification: 
For relational data with at 
least one node type: Locate/
identify relevant nodes  
(may be multi-word units)

Classification:
For ontologically coded 
networks: Classify relevant 
nodes according to an 
ontology or taxonomy

Development of Computational Solutions
 Utilize techniques from Machine Learning and 

Artificial Intelligence 
 Deploy and develop supervised and semi-

supervised sequential stochastic learning 
techniques in order to train classifiers and 
build models that generalize to new data

 Construct a classifier h that for every sequence 
of (x, y) (joint probability)  (where x = words 
per sequence and y = corresponding category) 
or (x|y) (conditional probability) predicts a 
sequence y = h (x) for any sequence of x, 
incl. new and unseen data

 We work with Generative (aka discriminative) 
models: P(x,y), such as Hidden Markov Model 
(HMM), and Conditional models: P(y|x), such 
as Maximum Entropy Markov Models (MEMM) 
and Conditional Random Fields  (CRF)
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Natural Language Processing and Relational 
Extraction Routines in AutoMap
Stemming: Convert words into their morphemes.
Reduction and Normalization:
Negative filters such as delete lists and removal of symbols
Positive filters such as spelling correction and assigning synonyms 

to unique key concept 
Part of Speech Tagging: Assign a single best word class to 

every word.
Anaphora Resolution: Convert personal pronouns into 

entity or entities that a pronoun refer to.
Feature Identification: Automatically find the most 

important terms in a dataset. 
Named Entity Extraction: Identify relevant types of 

information that are referred to by a name, such as people, 
organizations, and locations.
Ontological Text Coding: Identify and classify instances of 

pre- or user-defined node classes, such as Named Entities, 
resources, tasks, and time. 
Identification of and reasoning about node and edge 

attributes, such as demographic data, beliefs, and types of 
relationships. 
Email Data Analysis: Extract and combine different types of 

networks, such as social networks and knowledge 
networks, from emails.
Entropy Assessment:  Determine the variability of a text or 

text set with respect to its vocabulary. 
Classical Content Analysis. 
Read and write data and processing material from and to a 

default or user-specified database. 

Example: Conditional Random Fields for Entity Extraction
 Identify and classify words that represent instances of entity classes of models or 

ontologies that deviate from classical set of Named Entities.

 Crucial step for coding texts as social-technical networks according to domain-
specific ontologies and for advanced modeling of complex and dynamic real-world 
organizations or networks.

 Model relationship among yi and yi-1 as Markov Random Field conditioned on x

 Conditional distribution of entity sequence y given observation sequence x
computed as normalized product of potential functions Mi:

 Conditional probability of label sequence P(y|x), where both x and y are arbitrarily 
long vectors (consider arbitrarily large bag of features (> 10,000) )and any property 
of x, such as long-distance information)
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Evaluation
 Rigorous assessment of the impact of information and relation extraction techniques 

on relational data and respective interpretations of socio-technical networks

 Example: Impact of anaphora and coreference resolution: 

Visualization of relations in broadcast data of the ACE2 corpus (NIST, LDC): 
raw data (left image) and after applying anaphora and coreference resolution (right image),
showing links with strength > 1, isolates are hidden

Routine measurement newswire newspaper broadcast
raw unique nodes 4715 4884 3743

total node weight 5774 5916 4536
AR unique nodes 4599 4682 3659

node weight reduction rate 2.5% 4.1% 2.2%
CR unique nodes 3324 3213 2835

node weight reduction rate 29.5% 34.2% 24.3%
AR+CR unique nodes 3050 2894 2596

node weight reduction rate 35.3% 40.7% 30.6%
node weight reduction rate 

from AR to AR+CR 5.8% 6.5% 6.4%

Table: Impact of AR, CR on edge level
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