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Illustrative Toy Example: 
“Jan Pronk, the Special Representative of Secretary-General Kofi Annan to 
Sudan, today called for the immediate return of the vehicles to World Food 
Programme (WFP) and NGOs.” (from UN News Service, New York, 12-28-2004): 

proximity-based extraction of relational data :
one node type                                       multiple entity classes
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Identification: 
For relational data with at 
least one node type: Locate/
identify relevant nodes  
(may be multi-word units)

Classification:
For ontologically coded 
networks: Classify relevant 
nodes according to an 
ontology or taxonomy
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Development of Computational Solutions
 Utilize machinery from Machine Learning and 

Artificial Intelligence 
 Deploy and develop supervised and semi-

supervised sequential stochastic learning 
techniques in order to train classifiers and 
build models that generalize to new data

 Construct a classifier h that for every sequence 
of (x, y) (joint probability)  (where x = words 
per sequence and y = corresponding category) 
or (x|y) (conditional probability) predicts a 
sequence y = h (x) for any sequence of x, 
incl. new and unseen data

 We work with Generative (aka discriminative) 
models: P(x,y), such as Hidden Markov Model 
(HMM), and Conditional models: P(y|x), such 
as Maximum Entropy Markov Models (MEMM) 
and Conditional Random Fields  (CRF)
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Natural Language Processing and Relational 
Data Extraction Routines in AutoMap
 Stemming: Converts words into their morphemes.
 Reduction and Normalization:

 Negative filters such as delete lists, removal of symbols 
and formatting, removal of numbers 

 Positive filters such as thesauri, spelling correction, 
synonym sets, antonym sets

 Part of Speech Tagging: Assigns a single best 
grammar classifier or lexical category to every 
word.

 Anaphora Resolution: Converts personal 
pronouns into the entity or entities that the 
pronouns refer to.

 Named Entity Extraction: Identifies relevant types 
of information that are referred to by a name, 
such as people, organizations, and locations.

 Ontological Text Coding: Classifies relevant types 
of information according to an ontology or 
taxonomy. User-defined categorization schemata 
can be applied.

 Identification of and reasoning about node and 
edge attributes, such as demographic data, 
beliefs, and types of relationships. 

 Email Data Analysis: Extracts and combines 
different types of networks, such as social 
networks and knowledge networks, from emails.

 Feature Identification: e.g. term weights, TF*IDF
 Entropy Assessment:  Determines the variability 

or heterogeneity of a text document or corpus 
with respect to its vocabulary. 

 Classical Content Analysis. 
 Read and write data and processing material from 

and to a default or user-specified database. 

Example: Conditional Random Fields for Entity Extraction and 
Ontological Text Coding

 Identify and classify words that represent instances of entity classes of models or 
ontologies that deviate from classical set of Named Entities.

 Crucial step for coding texts as social-technical networks according to domain-
specific ontologies and for advanced modeling of complex and dynamic real-world 
organizations or networks.

 Model relationship among yi and yi-1 as Markov Random Field conditioned on x

 Conditional distribution of entity sequence y given observation sequence x
computed as normalized product of potential functions Mi:

 Conditional probability of label sequence P(y|x), where both x and y are arbitrarily 
long vectors (consider arbitrarily large bag of features (> 10,000) and any property 
of x, such as long-distance information)
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