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ABSTRACT
There has been a significant increase in the use 

of multi-agent social-network models due to their ability 
to flexibly model emergent behaviors in complex socio-
technical systems while linking to real data. These models 
are growing in size and complexity which requires 
significant time and effort for calibration, validation, 
model-improvement, and to gain understanding as to why 
the models behave as they do. In this paper, we present
our knowledge-based simulation-aided approach for
automating model-improvement and WIZER, our tool 
implementing this approach. WIZER is capable of 
calibrating and validating multi-agent social-network 
models, and facilitates model-improvement and 
understanding. By employing knowledge-based search, 
causal analysis, and simulation control and inference 
techniques, WIZER can reduce the number of simulation 
runs needed to calibrate, validate, and improve a model 
and improve the focus of these runs. We ran a preliminary 
version of WIZER on BioWar – a city-scale social agent 
network simulation of the effects of weaponized 
biological attacks on a demographically-realistic 
population within a background of naturally-occurring 
diseases. The results demonstrate the efficacy of WIZER.

Keywords: knowledge-based search, probabilistic 
argumentation causal inference, model improvement, 
simulation control, validation

1. INTRODUCTION

Currently, a sea change is occurring in how we 
model and think about knowledge, individuals, teams, 
groups, networks, organizations, markets, institutions, and 
other societal systems due to developments in the field of 
computational modeling and analysis [Axelrod 
1997][Carley and Prietula 1999][Epstein and Axtell
1996][Prietula et al., 1998][Taber and Timpone 
1996][Gilbert and Troitzsch 1999][Ward 1985].
Computational modeling and analysis is becoming a 
useful scientific tool for addressing socio-technical 
problems which have complex interrelated dynamic parts. 
Societal problems such as natural disaster response and 

biological attacks are complex and do not happen in a 
vacuum but rather within a complex context of social, 
organizational, geographical, technological, regulatory, 
and other constraints. 

There has been a rapid increase in the use of 
multi-agent models [Lucena et al., 2004] – as well as
social network analysis [Wasserman and Faust 1994] – to 
address complex socio-technical problems. Model 
assessment – determining how valid, how explainable, and 
how robust a model is – is becoming a major concern
[Cioffi-Revilla 2002]. Indeed, identifying reliable 
validation methods for complex systems such as electronic 
medical surveillance systems is a critical research area 
[Reifman et al., 2004]. Calibration and validation serve as 
a foundation for model improvement through simulation
and inference.

Models contain both explicit and implicit 
assumptions about some portion of the real world. These 
assumptions form abstractions of reality and these 
abstractions may or may not be sound. Moreover, the real 
world changes continuously and in unexpected ways. The 
required fidelity of the model varies as a function of the 
research and/or policy questions being asked. Calibration, 
validation, and model-improvement are hard due to the 
changes in the real world, altered goals, inherent 
assumptions and abstractions, and human cognitive 
limitations (such as biases, bounded rationality [Simon
1957], and memory capacity). 

Information exploitation is a technique that has
yet to be fully employed to deal with the problem of 
calibration, validation, and model improvement. (The 
term “validation” will be used from now on to denote 
calibration, validation, and model-improvement.) Few 
multi-agent simulations have exploited the depth and 
breadth of available knowledge and information for 
validation that resides in journals, books, websites, human 
experts, and other sources. Simulations results are also 
normally designed solely for human analysis. While this 
may be sufficient for small-scale simulations, for large-
scale simulations, automated help for validation and 
analysis is crucial. Most agent-based toolkits focus on 
providing a programming environment to build and 
execute the model; little work to date probes the important 
aspect of automating validation and analysis (this is 
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conventionally left to humans to perform). To successfully 
automate validation and analysis, domain knowledge must
be exploited, for example by an expert system inference 
engine. A simulation and inference engine that can do 
virtual experiments and knowledge inference in concert
would facilitate focused search by using both the 
simulation engine’s search space and the inference 
engine’s knowledge space to arrive at better parameter 
and meta-model values for validation. This paper 
describes our approach for doing knowledge-based 
simulation-aided validation in multi-agent social-network 
systems, embodied in a tool called WIZER (What-If 
AnalyZER). WIZER applies knowledge control of the
simulation, inference and intelligent search in multi-agent 
social-network simulations. 

The results presented in this paper are based on 
WIZER runs using BioWar. BioWar is a city-scale multi-
agent social-network simulator capable of modeling the 
effects of weaponized biological attacks on a 
demographically-realistic population within a background 
of naturally-occurring diseases [Carley et al., 2003]
[Carley et al., 2004]. BioWar currently runs a few 
thousand to several million agents. Unlike traditional 
models that look at hypothetical cities (such as the 
Brookings’ smallpox model [Epstein et al., 2004] and the 
SARS model [Huang et al., 2004]), BioWar is configured 
to represent real cities by loading census data, school 
district boundaries, etc. It models both healthy and 
infected agents as they go about their lives, enabling 
observation of absenteeism, drug purchases, hospital visits, 
and other data streams of interest.

2. PROBLEM STATEMENT

Today, multi-agent social-network systems are 
increasingly employed in modeling due to their power,
flexibility, and ability link to real data. These models are 
growing in size and complexity, resulting in a significant
increase in the time and effort required for calibration, 
validation, and to understand why the models behave as 
they do. An automated and intelligent tool is needed that 
can be used to calibrate such models and to facilitate 
validation and model-improvement, thereby increasing 
model fidelity and freeing user time for policy analysis.

3. RELATED WORK

Multi-agent systems are usually “validated” by 
strictly applying requirements engineering. In software 
engineering terms [Pressman 2001], validation means the 
determination of the correctness of the final program or 
software produced with respect to the user needs and 
requirements – not necessarily the empirical data or the 
real world. Formal methods [Dershowitz 2004] used in 
software engineering for control and understanding of 
complex multi-agent systems lack an effective means of 
determining if a program fulfills a given formal 

specification [Edmonds and Bryson 2004]. Complex 
societal problems contain “messy” interactions, dynamic
processes, and emergent behaviors, so it is often 
problematic to apply requirements engineering and/or 
formal methods.

Another validation method is evolutionary 
verification and validation or EVV [Shervais et al.,
2004][Shervais and Wakeland 2003], which utilizes 
evolutionary algorithms, including genetic algorithms and 
scatter search, for verification and validation. While EVV 
allows testing and exploitation of unusual combinations of 
parameter values via evolutionary processes, it employs
knowledge-poor genetic and evolutionary operators, not 
the scientific method, for doing experiments, forming and 
testing hypotheses, refining models, and inference, 
precluding non-evolutionary solutions.

Docking is another approach to validating multi-
agent systems [Axtell et al. 1996]. Docking is based on 
the notion of repeating a scientific experiment to confirm 
findings or to ensure accuracy. It considers whether two or 
more different simulation models align (produce similar
results), which is used in turn as a basis to determine if
one model can subsume another. The higher the degree of 
alignment among models, the more they can be assumed 
to be valid, especially if one (or both) of them has been 
previously validated. The challenges in applying docking 
are the limited number of previously validated models, the 
implicit and diverse assumptions incorporated into models
and the differences in data and domains among models.

One application of docking is to align complex 
multi-agent simulations against mathematical or system 
dynamics models. BioWar’s anthrax simulation has been
successfully docked against the Incubation-Prodromal-
Fulminant (IPF) mathematical model, a variant for anthrax
of the well-known Susceptible-Infected-Recovered (SIR) 
epidemiological model [Chen et al., 2003] and BioWar’s 
smallpox model has  been docked against a SIR model of 
smallpox [Chen et al., 2004]. While aligning a multi-agent 
model with a widely used mathematical model can show 
the differences and similarities between these two models, 
the validity is limited by the type of data the mathematical 
model uses. For example, the IPF model mentioned above 
operates on population-level data, so the result of the 
alignment will be only valid at the granularity of 
population-level data. Mathematical models also have 
difficulties representing non-numerical (symbolic) 
knowledge, including the knowledge base underlying 
complex context-sensitive agent interactions.

Validating complex multi-agent simulations by 
statistical methods alone [Jewell 2003] is problematic due 
to the coarse granularity required for statistical methods to 
operate properly and the insufficient representation of 
symbolic knowledge. Statistical methods are good at 
describing data and inferring distributional parameters 
from samples, but statistic methods alone are insufficient
to handle the highly dynamic, symbolic, causal, 
heterogeneous, and emergent nature of societal systems. 
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Complex multi-agent simulations are not 
normally validated using expert systems (such as OrgCon 
[Burton and Obel 1998]) as it is thought that it is 
sufficient to let human experts alone perform the analyses, 
experiment design, and quantitative and symbolic 
reasoning. This view is especially prevalent as most 
simulations are in the realm of purely numeric models.

Human experts can do validation by focusing on 
the most relevant part of the system and thinking about the 
problem intuitively and creatively. These subject matter 
experts (SMEs) have the knowledge needed to judge 
model performance in their specialized fields. Applying
learned expertise and intuition, SMEs can exploit hunches 
and insights, form rules, judge patterns, and analyze 
policies. Managed and administered properly, SMEs can 
be effective. Pitfalls include bounded rationality, implicit 
biases, implicit reasoning steps, judgment errors, and
others.

Another approach to validation is direct 
comparison with real world data and knowledge. 
Validation can be viewed as experimenting with data and 
knowledge, using models as the lab equipment for 
performing computational experiments [Guetzkow et al.,
1972][Bankes 2004]. Simulation models to be validated
should reflect the real world and results from experiments 
in simulation should emulate changes in the real world. If 
results from virtual or computational experiments are 
compared to real world data and match sufficiently, the 
simulation is sufficiently valid. Simulation [Law and 
Kelton 2000][Rasmussen and Barrett 1995] has an 
advantage over statistics and formal systems as it can 
model the world closely, free of the artifacts of statistics 
and formal systems.

There is related work in engineering design 
methods using Response Surface Methodology or RSM 
[Myers and Montgomery 2002] and Monte Carlo 
simulations [Robert and Casella 1999] to do direct 
validation, but only with numerical data and limited to a 
small number of dimensions. RSM is collection of 
mathematical and statistical techniques (e.g., gradient 
descent search) for the modeling and analysis of problems 
in which a response of interest is influenced by several 
variables. It can include virtual experiments using Monte 
Carlo simulation. It usually tests only a few variables and 
operates to find the best fit equation so that the correlation 
of equation’s predictions with real data is statistically 
significant. 

4. OUR APPROACH: KNOWLEDGE-BASED 
SIMULATION-AIDED MODEL-
IMPROVEMENT

WIZER (What-If AnalyZER) is a coupled 
inference and simulation engine that extends the Response 
Surface Methodology to deal with the high dimensional, 
symbolic, stochastic, emergent, and dynamic nature of 
multi-agent social-network systems. Viewing simulation 

systems as knowledge systems, WIZER is designed for 
controlling and validating them directly with empirical 
data and knowledge using pattern analyses and knowledge 
inferences (mimicking those of SMEs) and virtual 
experiments (mimicking those of RSM).

WIZER integrates an inference engine and 
simulation virtual experiments to do calibration and 
validation for model-improvement and to provide 
explanations. It improves on RSM features by performing 
knowledge-intensive data-driven search steps via an 
inference engine constrained by simulation outputs, 
instead of just doing statistical and mathematical 
calculations. WIZER facilitates knowledge-based 
simulation control and simulation-assisted inference, 
enabling reasoning about simulations and simulation-
assisted reasoning. It enables the management of model 
assumptions, contradictory or incomplete data, and 
increases the speed and accuracy of model validation and 
analysis. It is capable of explaining the reasoning behind 
inferences using both the simulation and inference engine. 
Searching in WIZER is performed using both simulation 
and knowledge inferences. The amount of searching is 
reduced as the knowledge inferences, empirical data and
knowledge, and virtual experiments constrain the search 
space.

WIZER seeks to emulate scientists doing 
experiments and analyses via the scientific method, 
instead of simply emulating an experimental setup. While 
other toolkits such as Swarm (http://wiki.swarm.org) and 
Repast (http://repast.sourceforge.net) are designed with 
the goal of assisting the design and implementation of 
agent-based simulations, WIZER is designed to help with 
scientific experimentation, validation, analysis, and model 
improvement. WIZER is conceptually able to run on top 
of any simulation system, including those crafted using 
Swarm and Repast toolkits. WIZER is basically a logical 
reasoning, experimentation, and simulation control engine 
with statistical and pattern recognition capabilities. This is 
similar to techniques scientists employ when designing, 
executing, and analyzing experiments. WIZER differs
from Evolutionary Programming [Fogel 1999] as it does 
not need a population of mutation candidates and the 
mutation operator. Instead, WIZER applies knowledge 
inference to simulations to design the next simulation run, 
based on scientific experimental method. If the result of 
inferences mandates a radical change, a revolution would 
occur. WIZER also differs from Evolutionary Strategies 
and Genetic Algorithms [Dianati et al. 2003] as it does not 
use recombination/crossover operators. In short, WIZER 
employs a unique logical reasoning, simulation control 
and scientific method for doing virtual experiments. 
WIZER emulates what scientists are doing to advance 
science.

As shown in Figure 1, WIZER includes Alert 
WIZER and the WIZER Inference Engine. Alert WIZER 
determines which data streams of the simulation outputs 
do not fall within the empirical data value ranges and how. 
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The WIZER Inference Engine takes the simulator’s 
influence diagram of what parameter influences which 
output data and the empirical constraints and confidence
intervals on parameters to make a judgment on which 
parameters to change and how (including causal links and 
the model or agent submodel itself, if necessary). This 
results in new parameters for the next simulation. This 
simulation in turn yields new outputs which are fed into 
Alert WIZER. This cycle repeats until a user-defined 
validity level is achieved. 

Figure 1. WIZER System Diagram. Rectangles are
components or processes and ovals are data. The arrows 
denote the flow of data in the direction of the arrowhead.

In other words, WIZER consists of:
• A system for determining which outcome variables 

match or fall within the acceptable range of the real 
data – Alert WIZER. This system will create an 
“alert” when there is not a match. Inputs to Alert 
WIZER include real and virtual data. Real data 
include various types of data such as subject matter 
experts’ (SMEs) estimation of behavior, 1st, 2nd, and
3rd order statistics for data streams at the yearly, 
seasonal, monthly, and day of week level, and actual 
streams of data. Alert WIZER also includes statistical 
tools.

• An intelligent system for identifying which of the 
“changeable” parameters should be changed and how 
to improve the fit of the virtual to the real data – the
WIZER Inference Engine. This component uses a 
database relating parameters to the variables and 
modules they impact. This includes assumptions 
about the expected range for parameter values 
(according to SMEs) or best guesses, thus placing 
confidence measures on parameters.

• A local response surface analysis feature that can run 
simple virtual experiments for parametric studies.

The knowledge bases in the inference engine are 
populated with the knowledge about the simulator, 

simulation outcomes, domain facts and knowledge, 
assumptions, ontology, problem solving strategies, 
information about statistical tools it employs and other
data. The knowledge bases contain both knowledge (hard 
or certain rules and facts) and assumptions (soft or 
uncertain rules and facts). Simulation outcomes provide 
measurements of the degree-of-support an assumption has. 
These different types of knowledge are included to enable 
the inference engine to reason about its reasoning. For 
example, knowledge about the simulation allows the 
inference engine to back up its symbolic reasoning with 
simulation outcomes and also to reason about the 
simulation. Part of the knowledge base is portable 
between simulations, but users need to provide the 
remainder.

The emergence of causal links based on low-
level interactions can be probed by the inference engine, 
including probes to see what an individual agent does in 
its life and what events affected this agent and why, in 
addition to sample based probes. For sample based 
probes, WIZER conducts inferences based on the 
application of its included statistical tests. 

The WIZER Inference Engine was inspired by
the rule-based Probabilistic Argumentation Systems
(PAS) [Haenni et al., 1999] for handling assumptions. 
While a rule-based system is sufficient if knowledge 
engineers are able to check the causal relations inherent in 
rules, for large knowledge bases manual checks are 
cumbersome and prone to errors. Thus, there is a need for 
automated and formal causal checking. Fortunately, causal 
analysis has been treated mathematically [Pearl 2003]. 
WIZER uses a novel probabilistic argumentation causal 
system (PACS), which utilizes the probabilistic 
argumentation [Haenni et al., 1999] in causal analysis
[Pearl 2000]. Users of WIZER specify which rules are 
causal in nature and WIZER is capable of suggesting
causal links and performing empirical computations to 
provide justification for these causal links. Results from 
social network analysis form one silo of domain 
knowledge fed into the WIZER inference engine. The 
inference engine in turn, along with the execution of 
virtual experiments in simulations, provides knowledge-
based grounding for the emergence and evolution of social 
networks from low-level agent behaviors and interactions.
The causal mechanisms encoded in WIZER enable formal 
computation of interventions or actions, instead of mere 
observation. This allows WIZER to make changes in 
parameters, causal links, and meta-models, and to analyze 
the consequences. In other words, WIZER can emulate 
what scientists do by changing and analyzing experiments.

Causal analysis involves mechanisms (stable 
functional relationships), interventions (surgeries on 
mechanisms), and causation (encoding of behavior under 
interventions). Associations common in statistics can 
characterize static conditions, while causal analysis deals 
with the dynamics of events under changing conditions. 
Simply turning off some potential causal links and re-
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simulating is insufficient and while counterfactual testing
– checking would happen if (true) facts were false – can 
uncover causal effects, the method can fail in the presence 
of other causes or when other causes are preempted and it 
ignores the sufficiency aspect. These weaknesses of this 
(global) counterfactual test can be addressed by 
sustenance, providing a method to compute actual 
causation [Pearl 2000]. Sustenance means minimally 
supporting an effect. Actual cause is computed by 
constructing causal beams and doing local counterfactual 
test within the beams. Causal beams are causal links that 
have been pruned to retain a subset of causal links that 
sustains the occurrence of an effect. Dynamic beams are 
simply causal beams with a time dimension [Pearl 2000].

To account for the probability of causation, the
causal model [Pearl 2003][Pearl 2000] specifies the use of 
Bayesian priors to encode the probability of an event 
given another event. It does not distinguish between 
different kinds of uncertainty. It is unable to model 
ignorance, ignores contradictions and is incapable of 
expressing evidential knowledge without the use of the 
probability distribution format. Since the intended use of 
WIZER is to do validation in environments with 
incomplete, contradictory, and uncertain knowledge and 
because WIZER needs to clearly delineate between 
assumptions and facts, we need an improved causal 
model, built by borrowing concepts from the Probabilistic 
Argumentation Systems (PAS). Table 1 shows the 
encoding of facts, assumptions, and rules for rule-based 
systems using probabilistic argumentation, while Table 2
shows the encoding of facts, assumptions, and causations 
for causal analysis enhanced with PAS-like assumption 
management. In both tables, let Pi be proposition i, ai be 
assumption i, caused be the causation operator, and => be
the implication operator.

Table 1. Rule-Based Encoding

Table 2. Causation Encoding

We call Table 2’s formalism the probabilistic 
argumentation causal systems (PACS). WIZER includes 
both rule-based and causal formalisms. PACS algorithmic 
details are derived from both PAS [Haenni et al., 1999]
and causal analysis [Pearl 2003]. Simulation virtual 
experiments can be seen as a proxy for real world 
experiments when doing real world interventions would 

be unrealistic or unethical. Causal analysis uses 
computations based on real-world experimental and non-
experimental data. WIZER adds another dimension to 
causal analysis: allowing quasi-experimental – that is, 
simulated – data. Additionally, WIZER enhances PACS by

• Providing a mechanism to arrive at probability 
distributions or profiles for assumptions related to 
causations.

• Automating causal analysis for simulations and 
enhancing it with virtual experiments. In particular, 
WIZER improves upon dynamic beams [Pearl 2003] 
by doing virtual experiments, and allows the 
estimation of sufficiency [Pearl 2003] by virtual 
experiments. 

• Utilizing simulations or virtual experiments as a 
proxy of the real world when evaluating interventions 
and using causal beam calculations to uncover true 
causal relations. WIZER can modify causal links and 
infer missing ones.

• Allowing better inference by letting the inference 
engine run simulations (e.g., supports for dynamic 
beam) in the midst of causal inferences as needed. 
This allows the examination of the empirical claims 
of causal inferences.

The internal workings of the WIZER Inference 
Engine are complex, but its basic operations are simple. 
Let P = {p1, …, pn} be propositions, A = {a1, …, an} be
assumptions, h be the hypothesis and K = c1 /\ c2 /\ … /\ cn

be the knowledge base of clauses, where ci is an element 
of the set of all possible A and P clauses.
Let α be the (conjunctive) arguments supporting h
We have

α /\ K |== h
or equivalently

α |== ~K \/ h
or equivalently

~(~K \/ h) |== ~α
K /\ ~h |== ~α

In other words, if we know K and h, we can compute the 
supports, that is, the arguments supporting h. The 
hypothesis h is a clause produced by Alert WIZER after 
comparing simulation data streams with empirical data. 
After finding the arguments supporting h, the degree of 
support can be found, defined as

dsp(h, K) = prob(a support α of h is valid | 
no contradiction, K)

Similarly, the degree of plausibility can be found, defined 
as

dpl(h, K) = prob(no support of ~h is valid |
no contradiction, K)

These two measures are used to determine which 
arguments are the most relevant to the hypothesis at hand, 
pinpointing which parameter values, causal links, and/or 
submodels should be changed. In other words, hypothesis 
h is the input to WIZER Inference Engine and the 
arguments supporting h are the output, leading to changes 
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in parameter and meta-model values.
The operations described above are performed 

for both rule-based and causal clauses. Then, for clauses 
denoted as causal, additional operations are performed to 
see whether and to what degree the causal relations are 
empirically correct, partially based on the degree of 
support and the degree of plausibility. Sustenance, causal 
beams and actual cause are also computed.

The causal computation capability of WIZER is 
useful in simulations to:

• Provide a formal computational means to convert 
simulation results or happenings to user-friendly 
causal sentences.

• Allow examination and perhaps modification of the
implicit and explicit causal assumptions and links in 
the incomplete and often erroneous real world picture
employed by simulation models, based on empirical 
data. For example, a model of biological attacks on a 
city should include empirical data for the city and 
realistic causal relations.

• Allow probing of potential causal links and 
examination of the robustness of causal links using 
empirical data and quasi-experimental data obtained 
by simulations based on other known mechanisms
and data values. For example, a simulation may have 
modeled Washington DC and policy analysts would 
like to know the effects of quarantining certain city 
blocks or closure of some major roads to mitigate the 
spread of smallpox. The mechanisms, data values, 
and stochastic processes in the city model themselves 
do not contain direct answers to the above causal 
question. Utilizing causal computation would allow 
this question to be answered – based empirical data 
and quasi-experimental/simulation data. 

• Allow the formal modeling of interventions in 
simulations. Again, if city officials want to close some 
major roads to mitigate the spread of smallpox, the 
effects of this action could be examined by causal 
computation. Furthermore, since human policy 
language is often vague, coarse, and incomplete. 
WIZER can help refine policies computationally. 
Evaluation of policy using statistics alone is unsound, 
as statistical methods observe the outcome but cannot 
capture the intervention policy itself.

• Allow symbolic values to be considered in 
determining causal relations. For example, the recent 
shortage of flu vaccine caused the CDC to 
recommend restrictions on who received the vaccine. 
The effect of this policy is that CDC now has a 
stockpile of unused flu vaccine. One cause of this 
outcome is that people who were eligible to receive 
shots did not do so, as they believed that none were 
available. WIZER would be able to probe similar 
kinds of cause and effect relationships.

• Allow experimentation and simulation control. As 
WIZER modifies, runs, re-modifies, and re-runs 

simulations, it uses causal mechanisms to keep track 
of and help inform what causes a certain series of 
modifications to work or fail and to suggest possible 
next steps. 

5. RUN SETUP AND EMPIRICAL DATA

WIZER was used to validate BioWar. As 
mentioned earlier, BioWar [Carley et al., 2003] is a city-
scale spatial multi-agent social-network model capable of 
bioattack simulations. BioWar has a large number of 
variables and interactions. Application of the Spiral 
Development model [Boehm 2000] to BioWar code
development means that any previous validation of model 
predictions may no longer apply to a new version. Figure 
2 shows the partial causal relationships among entities in 
BioWar used in WIZER Inference Engine. Note that the 
arrow direction implies “may cause or influence”.

Figure 2. Partial Causal Diagram for BioWar

We have implemented Alert WIZER, which 
takes the empirical data on school absences, workplace 
absenteeism, doctor visits, emergency room visits, with 
additional emergency room visitation data from SDI 
(Surveillance Data Inc.), and over-the-counter drug 
purchase data. It also uses the outputs of the BioWar 
simulator and conducts minimum bound checking, 
maximum bound checking and mean comparison.

The following empirical data was used to 
compute the empirical bounds and means for the Alert 
WIZER:

• NCES Indicator 17, 2002 (Year 2000 data), for calculating 
school absenteeism 
http://nces.ed.gov/programs/coe/2002/section3/indicator17.
asp

• CDC Advance Data, from Vital and Health Statistics, no. 
326, 2002, for calculating ER visits 
http://www.cdc.gov/nchs/data/ad/ad326.pdf

• CDC Advance Data, from Vital and Health Statistics, no. 
328, 2002, for calculating doctor visits 
http://www.cdc.gov/nchs/data/ad/ad328.pdf
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• 1997 US Employee Absences by Industry Ranked for 
determining work absenteeism 
http://publicpurpose.com/lm-97absr.htm

• Over-the-counter (OTC) Drug Sales extracted from 
Pittsburgh Supercomputing Center’s “FRED” data
containing pharmacy sales data.

BioWar simulation outputs include:
• Number present and absent per day for each school 
• Number present and absent per day for each workplace
• Number of visit records generated per day for each 

emergency room
• Number of visit records per day for each doctor office, 

based on insurance claims and assuming that each visit 
produces one insurance claim

• Number of units of seven types of over-the-counter drugs 
purchased per day at each pharmacy

6. PRELIMINARY RESULTS

WIZER was run on “Challenge 3” and 
“Challenge 4” data from BioWar [Carley et al., 2004] 
using an implementation of Alert WIZER. Challenge 3 
data consists of 4 data streams with 10 simulation runs for 
each attack case (no attack, anthrax attack, and smallpox 
attack) for each of 4 cities. The city population and 
locations (buildings and facilities) were scaled at 20%. 
The parameters were adjusted following an execution of 
preliminary inference engine steps based on a partial 
causal diagram of BioWar. We present the means from 
three of the Challenge 3 simulation output data streams in 
Tables 3-5. 

Table 3 shows that the simulated means of school 
absenteeism rates for normal simulation cases (no 
bioattack) fall between lower and upper empirical bounds 
for the simulations of Norfolk, Pittsburgh, San Diego, and 
“Veridian Norfolk” (a part of Norfolk specified by 
Veridian, Inc.). For anthrax attack cases, the simulated 
means are higher than normal means but still lower than 
the empirical higher bounds. This is plausible as the 
empirical higher bound contains (contagious) influenza
outbreaks and other disease cases. For smallpox attacks, 
however, the simulation mean for one city – San Diego –
is higher than the empirical higher bound. Smallpox is 
highly contagious so this is also plausible. For other cities, 
the simulated means of school absenteeism remain within 
expected bounds. 

Table 3. School Absenteeism

Table 4 shows that for doctor visits the simulated 
means for the four cities fall within the empirical bounds 
for normal (no attack) cases. For anthrax attack cases, the 
simulated means are higher than those for normal cases 
for two cities, and slightly lower for two other cities. For 
smallpox attacks, the means are higher than those for 
normal cases for three cities and the same for one city. 
The results for attack cases are imperfect but indicate 
correct trends. More runs of WIZER are needed to 
pinpoint the causes. All means for anthrax and smallpox 
attacks are within the empirical bounds. 

Table 4. Doctor Visits per Person per Year

Table 5. Emergency Room Visit per Person per Year

For emergency room visits (Table 5), the 
simulated means for four cities fall within the empirical 
bounds for normal (no attack) cases. For anthrax attacks, 
the simulated means are higher than those of normal cases 
for two cities and slightly lower for two others. For 
smallpox attacks, the simulated means are higher than 
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those for normal cases for three cities and the same for 
one city. The results for attack cases are imperfect but 
indicate correct trends.

Challenge 4 data has 12 data streams: school 
absenteeism, work absenteeism, doctor visits, emergency 
room visits, emergency room visits using the Surveillance 
Data Inc. data, and seven drug type purchase data streams. 
Table 6 shows the percentage of validated data streams for 
six cities for the no attack case. 

Table 6. Percentage of Challenge 4 Data Streams 
Validated

7. DISCUSSION

Automation of simulation experiment control and 
analysis is rarely viewed as a critical feature of simulation 
systems; instead, experimental control, analysis, 
intervention, validation, and model-improvement are left 
for humans to perform. Most simulation platforms aim to 
provide tools to ease the coding of simulation systems, 
rather than automating the analysis, control, validation, 
intervention, and model-improvement. WIZER indicates 
that such automation can be very useful, especially when 
dealing with socio-technical and public health problems 
which have a high degree of uncertainty and interactions.
Based on empirical data and knowledge, simulations can 
bound the inferences and allow the empirical claims of the 
inferences to be investigated. At the same time, 
knowledge-based inference and control of simulation can 
reduce the number of simulation searches and virtual 
experiments that need to be conducted. Simulations – and 
inferences on them – here act like a dynamic version 
space on both search and knowledge spaces.

The results presented in this paper are 
preliminary. More WIZER and simulation runs are needed 
to get better statistics – such as the median and variance –, 
and to evaluate error margins, the effects of sample 
choices, search space traversal, and the performance of
combined simulation and knowledge search.
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