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Abstract 
Previous research suggests that one field with a strong yet unsatisfied need for automated 
extraction of instances of various entities classes from text data is the analysis of socio-technical 
systems (Carley, 2002; Diesner & Carley, 2005). Domain-specific entity classes and the relations 
between them are often specified in ontologies or taxonomies. We present a Conditional Random 
Field-based approach to distilling a non-canonical set of entities, which is defined in an ontology 
that originates from organization science. The supervised learning technique applied herein 
facilitates the derivation of relational data from corpora by locating and classifying instances of 
various entity classes. The classified entities can then be used as nodes for the construction of 
socio-technical networks. We envision researchers to use the presented methodology as one 
crucial step in the process of advanced modeling and analysis of complex and dynamic real-
world organizations or networks. We find the outcome, particularly in the critical recall statistic, 
sufficiently successful for being applied in the described problem domain in the future. 
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1.  Introduction 

The key challenge in Information Extraction is distilling instances of certain types of information 
from unstructured natural language text data (McCallum, 2005). In the case of Named Entity 
Recognition (NER), for instance, the relevant types of information are typically people, 
organizations, locations and other Named Entities (NE) that are referred to by a name (Bikel, 
Schwartz & Weischedel, 1999). Alternative sets of relevant classes or entities can be defined in 
ontologies or taxonomies.  

Previous research has shown that one field with a strong yet unsatisfied need for the 
automated extraction of various entities is the analysis of socio-technical networks such as 
business corporations, governmental organizations or covert networks (Carley, 2002; Diesner & 
Carley, 2005). We envision researchers in the field of organizational science to apply entity 
extraction as one crucial step in the process of distilling relational data from text collections. By 
using the methodology presented herein, such relational data can be derived from corpora by 
locating and classifying instances of various entity classes, where the entity classes do not need 
to match the canonical set of NE, but might be specified in domain-specific ontologies. These 
classified entities can then be used as nodes for the construction of socio-technical networks.   

 
2.  Background  

For corpora or text analysis projects with a focus on organizational science and behavior, one 
applicable ontology is the meta-matrix (Krackhardt & Carley, 1998; Carley, 2002). The meta-
matrix is a multi-mode, multi-plex model that contains the following entity classes: agent, 
knowledge, resource, task, event, organization, location, time. Each instance of an entity class 
can furthermore have attributes, e.g. the attribute of agent John might be age, 42 and gender, 
male. The relations among the elements within and across any entity classes form certain types 
of networks (see Figure 1). For example, a social network is composed of relations among 
agents, and a membership network consists of connections among agents and organizations. The 
meta-matrix model allows for analyzing socio-technical systems as a whole or in terms of one or 
more of the networks contained in the model. This ontological schema has been used to 
empirically assess power, vulnerability, and organizational change in a diversity of contexts such 
as situational awareness in distributed work teams, email communication in business 
corporations and counter terrorism (Carley, Frantz & Diesner, 2006; Diesner & Carley, 2005; 
Weil et al., 2005).  
 
Meta-
Matrix 
Agent Social nw Knowledge nw Capabilities nw Assignment nw Membership nw Agent loc. nw
Knowledge Information nw Training nw Knowledge 

requirement nw
Org. knowledge nw Knowledge loc. nw

Resource Resource nw Resource require-
ment nw

Org. Capabilities nw Resource loc. nw

Events Precedence nw Org. Assignment nw Task/Event loc. nw

Organization Interorg. nw Org. loc. nw
Location Proximity nw

Organization LocationAgent Knowledge Resource Event

 
Figure 1: Meta-Matrix Model: Types of Nodes and Relations 
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We refer to the task of locating and classifying terms that represent instances of entity classes 
of the meta-matrix or of other models or ontologies that deviate from the classical set of NE in 
text data as Entity Extraction (EE). With this term we deviate from the term NER in order to 
adequately account for the fact that for the given task not only named entities are relevant, but 
also more fuzzy entities, such as tasks (e.g. signing a contract) and resources (e.g. vehicles), 
which are not necessarily referred to by a name. The following excerpt from an UN News 
Service (New York) article released on 12-28-2004I illustrates the EE task:   

Jan Pronk, the Special Representative of Secretary-General Kofi Annan to Sudan, today 
called for the immediate return of the vehicles to World Food Programme (WFP) and NGOs. 
Underlined are the entities relevant with respect to the meta-matrix. From this text snippet, 

the following network can be extracted (please note that here we focus on extracting and 
classifying relevant nodes, while disregarding how they are linked into statements):  

 
 
 
 
 
 
 

 
We define EE as a two step process. First, terms that can be associated with an entity class of 

the ontology under consideration (in the case of this paper the meta-matrix model) need to be 
identified. As terms we consider unigrams (such as WFP) as well as meaningful N-grams (such 
as World Food Programme). Identification refers to correctly locating the boundaries (begin and 
end) of an entity in a text. Second, the identified entities need to be classified as one or more of 
the applicable entity classes. Mapping text terms to entities classes is a non-exhaustive, non-
exclusive process. Non-exhaustive means that not all text terms need to be mapped to a category. 
In fact, most terms are irrelevant (e.g. the, today, called, etc.). Non-exclusive means that relevant 
terms might be associated with one or more entity types, depending on the given context. For 
example, World Food Programme might be a resource in the context of aid provision, and an 
organization in the context of negotiating parties.  

Ultimately, the goal with EE for the described problem domain is the identification and 
classification of instances of certain entity classes in text data as accurately as possible. We 
expect the output of this process to facilitate the automated extraction of relevant nodes for 
coding texts as social-technical networks according to the meta-matrix model. Furthermore, we 
suggest exploring the methodology presented herein for its general applicability to ontological 
text coding.  

 
3.  Data 

Supervised learning (explained in more detail under 4. Methods) requires tagged training and test 
data. More specifically, for EE, a corpus is needed in that the beginning and end of instances of 
entity classes are marked as such. Traditional NER text sets cover the entities person, 
organization, location, miscellaneous and other (e.g. CoNLL, 2003). While these categories can 
be mapped to parts of the meta-matrix (agent, organization, location), the entities knowledge, 

Figure 2: Sample network in which nodes are identified from sample text and classified according to the meta-matrix 
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resource, task, event and time are missing. Over the last decade, the classical set of NE has been 
extended to also cover e.g. time (e.g. date), quantities (e.g. monetary values), geographical-
political entities (e.g. countries), and facilities (e.g. buildings) (MUC 2006, LDC/ACE, 2007).  

Unfortunately, none of the existing NER sets fully resembles the entity classes of the meta-
matrix. In order to solve this problem, we searched for corpora tagged for other purposes. This 
search led us to the “BBN Pronoun Coreference and Entity Type Corpus”, which was originally 
annotated for question answering tasks (Weischedel & Brunstein, 2005). The BBN corpus 
closely resembles the meta-matrix such that all meta-matrix entities are represented (mostly with 
a different name), while some additional entities are present in BBN that are irrelevant for the 
meta-matrix. The BBN corpus contains 1,133,218 words organized in 95 files. We matched and 
merged BBN’s 12 NE types and 64 subtypes to the meta-matrix categories (the Appendix 
provides details on this mapping and matching). Though a valuable tagged data set, the original 
BBN data had XML consistency issues, which we corrected for. The final data set we worked 
with consisted of 95 tagged XML documents in that tags represent meta-matrix entity classes 
only.  

 
4.  Methods 

If instances of the meta-matrix categories are to be identified in text data and classified, some list 
or mechanism needs to associate relevant words with one or more categories. Lists that contain 
the relevant terms for a given domain or research problem might exist in some cases (such all 
agents in a parliament, all countries and all languages in the world, etc.). However, such positive 
lists are unlikely to generalize well to unrelated projects or across time due to their 
incompleteness, static nature, and spelling variations, among other issues. This shows that EE is 
a non-deterministic process, which calls for an alternative solution.  

Given the availability of training data, one way to approach this task is supervised machine 
learning. In order to select an appropriate learning technique, the characteristics of the training 
data need to be considered: First, the data is sparse. This means that only a small portion of the 
data is entities of interest, while the vast majority is irrelevant. For example, in the sample text 
shown on the previous page, only 11 out of 27 words match meta-matrix entity classes. In more 
randomly picked examples and across corpora, this ratio is likely to be even smaller. Data 
sparseness is one characteristic feature of NER (McCallum, 2005), which needs to be addressed 
in the stages of model selection and implementation. Second, the data is sequential. This is 
because language naturally flows into one direction, and because the elements that constitute the 
sequence (pairs of data points and class labels) are not drawn iid (independent and identically 
distributed) from a joint distribution, but exhibit significant sequential correlation. For example, 
the tokens in the trigram World Food Programme are not independent from each other given the 
semantics of the trigram. In order to not to only adequately represent the sequential nature of the 
data, but to also exploit this characteristic, a supervised sequential learning technique seems 
appropriate. 

  
4.1  Sequential Learning for Entity Extraction 

Sequential learning facilitates the modeling of relationships between nearby pairs of data points x 
and respective class labels y (Dietterich, 2002). Recent empiric work suggests that sequential, 
token-based models achieve higher accuracy rates for NER than more traditional models, such as 
Sliding Window techniques (Freitag, 1997). Our goal with sequential learning is to construct a 
classifier h that for each sequence of (x, y), where x are the words in a sequence and y are the 
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corresponding labels or meta-matrix entities, predicts with the highest accuracy possible an 
entity sequence y = h (x) for unseen sequences of x. For the sample sentence on the previous 
page, e.g., the desired y would be  

agent, other other other other other-other agent other location, other other other other other 
other other other resource other organization and organization. 
Various models exist for working towards this goal. Those models can be divided into 

generative versus conditional (aka discriminative) models. Figure 3 illustrates the models 
discussed for their applicability to EE in the following.  

 
Generative Models estimate a joint distribution P(x,y). Bikel et al. (1999) used a Hidden 

Markov Model (HMM) - a special instance of generative models that has been successfully 
applied to Speech Recognition and other NLP tasks - for NER. Specifically, they performed 
decoding via a HMM in order to find the sequence of hidden NE that most probably has 
generated an observed sentence. Their implementation, named IdentiFinder, considers multiple 
words features and achieves an accuracy of up to 94.9 percent. While NER accuracy rates gained 
with HMM are competitive with those achieved by using conditional models as will be shown 
later herein, HMM lack the capability of directly passing information between separated y 
values. This information, which can be particularly valuable in the face of spare data, can only be 
communicated indirectly through the y’s that are intervening a separated pair of y’s (Dietterich, 
2002). Another drawback of HMM is that each x is generated only from the corresponding y, 
while y’s surrounding the current y cannot be considered, which again might pose a serious 
disadvantage when working with sparse data.  

An alternative to conditional models are discriminative models, which directly estimate 
P(y|x). Thus, conditional models aim to find the most likely sequence of entities given an 
observed sequence, e.g. a sentence, without bothering to explain how the observed sequence was 
probabilistically generated from the y values. Therefore, the main advantage of conditional 
models over generative ones is that they facilitate the usage of arbitrary features of the x’s, such 
as global and long-distance features (Dietterich, 2002). For NER, discriminative models such as 
Maximum Entropy Markov Models (MEMM) (Borthwick et al., 1998) and Conditional Random 
Fields (CRF) (Lafferty, McCallum, & Pereira, 2001; Sha & Pereira, 2003) have been shown to 
outperform generative models (HMM) (Lafferty, McCallum, & Pereira, 2001). For example, 
Lafferty et al. (2001) report an error rate of 5.69% for HMM, 6.37% for MEMM, and 5.55% for 
CRF. 

In comparative empiric studies on generative model, MEMM have led to higher error rate 
than generative models (e.g. Lafferty, McCallum, & Pereira, 2001). Given that MEMM (as well 
as CRF) allow for using a bag of features f that depend on yi and any property of sequence x, this 
drop in accuracy seems counterintuitive. It has been attributed to the label bias problem, which 
only MEMM exhibit. Why is that? MEMM is a log-linear model that learns P(yi| yi-1, xi). The 
learner uses maximum entropy to maximize the conditional likelihood of all x: ∏ P(yi| xi). Now 
the label bias problems occurs because all of the probability mass present in yi-1 must be passed 
to yi, even if xi fits it only poorly or not at all (Lafferty, McCallum, & Pereira, 2001).  

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Figure 3: Graphical Structure of Sequential Models: HMM (left), MEMM (middle), CRF (right) 
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4.2  Conditional Random Fields for EE 

Based on the empiric results presented by others, we decided to use CRF for the outlined EE 
task. In contrast to HMM and MEMM, CRF allow for modeling the relationship among yi and yi-

1 as a Markov Random Field (MRF) that is conditioned on x. MRF are a general framework for 
representing undirected, graphical models. In CRF, the conditional distribution of an entity 
sequence y given an observation sequence (string of text data) x is computed as the normalized 
product of potential functions Mi (Lafferty, McCallum, & Pereira, 2001; Sha & Pereira, 2003): 

⎟
⎠
⎞⎜

⎝
⎛ Σ+Σ= −− ),(),,((exp)|,( 11 xygxyyfxyyM iiiii βββααα

µλ  

Equation 1: Computation of Potentials  
 
In equation 1, fα(yi-1, yi,, x) represents the transition feature function of an entire observation 

sequence as well as the entities at position i and the preceding position. The gβ(yi, x) component 
represents the emission feature function of a term sequence and an entity. Fα and gβ represent 
given, fixed boolean feature vectors that depend on yi and any property sequence of x. Note that 
fα is an edge feature, and gβ is a vertex feature. Most of these features will be 0 most of the time, 
and will be turned on only rarely (e.g. the word identity feature is only positive when x contains 
that particular term). For each feature, the weights λα or µβ are learned from the training data. For 
CRF computation, equation 1 is multiplied by 1/Z(x), where Z is a normalizing constant over the 
data sequence x; so that un-normalized scores of the potentials Mi are being normalized. The 
conditional probability of the label sequence P(y|x), where both x and y are arbitrarily long 
vectors, is computed as:  

∏
∏

+

=

+

= −= 1

1 ,

1

1 1

)(

)|,(
)|( n

i stopstarti

n

t yiii

xM

xyM
xypθ  

Equation 2: Computation of conditional probability of entity sequence y 
 
In equation 2, n+1 is the length of the label sequence plus one, start = y0 and end = yn+1. 

Overall, CRF enable the consideration of arbitrarily large numbers of features as well as long-
distance information on at least x. As a result, more information can be exploited than generative 
models can make use of, which is critical given data sparseness.  

As a starting point for implementing CRF we used the CRF framework provided by Sunita 
Sarawagi of IIT Bombay (Sarawagi, n.d.). This framework provides a basic implementation of a 
CRF that can be adjusted and customized for specific types of CRF applications1. Features 
considered include the word identity, transitions among labels (including sequential 
information), start features, end features, word score features (log of the ratio of current word 
with the label y to the total words with label y), and features for dealing with yet unobserved 
words or words only observed in other states so far. Across multiple experiments, more than 
10,000 binary features were detected. The EE process consists of two steps in our 
implementation. First, the CRF is used to locate the terms that are relevant entities. These terms 
are then marked as being a part of a relevant entity. Second, the CRF is used to classify the 

                                                 
1 The specific network that we implemented in CRF is the naïve model graph type, since this structure and characteristic 

correspond to the linear nature of text data.  
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identified relevant entities. In order to do this, consecutive words that have been identified as 
belonging to entities are merged into one concept. This concept is represented as a concatenation 
of the consecutive entity words. In order to analyze and evaluate the accuracy achieved by both 
steps, we measure and report accuracy rates for both steps separately. 

 
5.  Results 

The accuracy of EE has two components to it: the correct identification of entity boundaries 
(start and end), and the correct assignment of class labels. We evaluate the accuracy of our 
system in terms of recall, precision, and the F-measure (Bikel et al., 1999). Recall measures how 
many of the entities in the test data have been extracted. Thus, recall resembles coverage: 
  
Recall  =  

st set ties in terrect entitotal # co
ystemed by EE ss identifict entitie# of corre  

Precision measures how many of the extracted entities are actually correctly identified and 
classified. Thus, precision resembles accuracy: 
 
Precision = 

systemE given by E# answers 
ystemed by EE ss identifict entitie# of corre  

 
Typically, recall and precision are inversely related. The F-measures accounts for this tradeoff; 
computing the harmonic mean between precision and recall: 
 

)(5.0
*

precisionrecall
precisionrecallF
+

=   

 
The validation effort for our EE implementation consists of two parts: 1) assessing the 

accuracy of locating entities and 2) assessing the accuracy of classifying the located entities 
(assigning a class label to them). For locating entities, we applied a two-fold cross validation, 
where 90% of the data were used for learning, and the remainder for validation. For 
classification, we set the number of iterations to 50, used 10 files for training and 45 files for 
validation. The entire procedure took about 3.5 hours to run. Please note that different validation 
strategies were applied for both steps due to practicality reason: The learning process for 
classification is computationally very expensive in terms space and time complexity of the CRF 
algorithm: 

 
For EE, to our knowledge, no empiric point of comparison for our results exists. In comparison 
to classical NER, our accuracy rates appear to be considerably lower, which we attribute to the 
learning of highly fuzzy categories such as knowledge, resource, event and tasks. We assume 
that for the learner, instances of those categories are hard to distinguish from irrelevant terms, 
e.g. because they do not exhibit a certain capitalization pattern, and because they cover a much 
broader range of word identities than classical NE. As a result, in EE, it is even more likely than 

Identification Classification
Precision 75.51% 64.88%
Recall 52.33% 54.90%
F-Value 61.82% 59.47%

Table 1: EE results 
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in NER that some terms in some cases are relevant entities, while in other cases they are not, 
depending on the context, the domain, and the rules for labeling the training data. Overall, we 
assess the outcome, particularly in the critical recall statistic, sufficiently successful for being 
applied in the described problem domain in the future.  

 
6.  Limitations and Future Work 

The global learning of features along with their corresponding weights comes at a price: Training 
the identifier and classifier while using a reasonable iteration rate for the gradient takes a very 
long time. This limitation can be addressed to some degree by using more powerful hardware, 
especially by using more memory. However, this limitation made experimentation highly 
difficult and time consuming, which can rather limit the practicality of exploring the parameter 
space and tinkering with a variety of sample data types, sizes, and origins. Furthermore, an 
ability to add, change, or remove labels from the used ontology is essential to having a flexible 
yet robust learning and research process. While the meta-matrix, today, has eight specific labels 
of interest, it is likely that the model may be altered as it evolves in the future. Finally, the 
limitations include a strong reliance on the training data for learning, which may or may not 
generalize well when EE is run on unseen data. 
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Appendix 

 
BBN meta-matrix detailed meta-matrix coarse 
Person Descriptor agent_general agent
Person Name agent_specific agent
NORP attribute attribute
Events Name event_specific event
Disease Name or Descriptor event_specific event
Law Name knowledge_specific knowledge
Language Name knowledge_specific knowledge
Facility Descriptor location_general location
GPE Descriptor location_general location
Facility Name location_specific location
GPE Name location_specific location
Location Name location_specific location
Organization Descriptor organization_general organization
Organization Name organization_specific organization
Product Descriptor resource_general resource
Product Name resource_specific resource
Money resource_specific resource
Substance Name or Descriptor resource_specific resource
Date time time
Time time time
Percent not applicable not applicable
Quantity not applicable not applicable
Ordinal not applicable not applicable
Cardinal not applicable not applicable
Plant Name or Descriptor not applicable not applicable
Animal Name or Descriptor not applicable not applicable
Work of Art Name not applicable not applicable
Contact info not applicable not applicable
Game Name or Descriptor not applicable not applicable  
Appendix: Mapping the BBN categories to the meta-matrix at different levels of detail 


