
MASCOT: An Agent-Based Architecture for Coordinated
Mixed-Initiative Supply Chain Planning and Scheduling

Norman M. Sadeh, David W. Hildum, Dag Kjenstad,y and Allen Tseng

Intelligent Coordination and Logistics Laboratory
The Robotics Institute

School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213-3890

412.268.f8827,2357,6676g
fax: 412.268.5569fSADEH,HILDUM,YHTSENGg@CS.CMU.EDU

y SINTEF Applied Mathematics
Department of Optimization

PO Box 124 Blindern
N-0314 Oslo

Norway
(47) 22 06 75 33

fax: (47) 22 06 73 50
DAG.KJENSTAD@MATH.SINTEF.NO

Abstract

A key to agility in today’s dynamic high-mix production environments is the ability to (1) effec-

tively coordinate production across multiple facilities, whether internal or external to the company,

and (2) quickly and accurately evaluate new product/subcomponent designs and strategic business

decisions (e.g., make-or-buy or supplier selection decisions) with regard to capacity and material

requirements across the supply chain. This paper provides an overview of MASCOT (“Multi-

Agent Supply Chain cOordination Tool”), a reconfigurable, multilevel, agent-based architecture

for coordinated supply chain planning and scheduling aimed at supporting these functionalities. It

reviews key innovative elements of the MASCOT architecture with a special emphasis on its sup-

port of real-time mixed-initiative “what-if ” functionalities, enabling end-users at different levels

within the architecture to rapidly evaluate alternative tradeoffs and their respective impact across

the supply chain. The paper also discusses new coordination protocols aimed at better exploiting

the power of finite capacity scheduling functionalities across the supply chain. Empirical results

are presented quantifying the benefits afforded by these new protocols under different loads and

supply chain configurations.

1 Introduction

A key to agility in today’s dynamic high-mix environments is the ability to (1) effectively coordinate
production across multiple facilities, whether internal or external to the company, and (2) quickly and
accurately evaluate new product/subcomponent designs and strategic business decisions (e.g., make-
or-buy and supplier-selection decisions) with regard to capacity and material requirements across the
supply chain. This paper provides an overview of MASCOT (“Multi-Agent Supply Chain cOordi-
nation Tool”) a reconfigurable, multilevel, agent-based architecture for coordinated mixed-initiative
supply chain planning and scheduling aimed at supporting these key functionalities.

The MASCOT architecture is built around a customizable mixed-initiative agent wrapper. The
agent wrapper serves two functions:

This is a revised version of a paper that appeared in the workshop notes of the Third International Conference on Autonomous
Agents (Agents ‘99) Workshop on Agent-Based Decision Support for Managing the Internet-Enabled Supply Chain, Seattle WA,
1 May 1999.



1. It provides an open and uniform communication and coordination interface between planning
and scheduling modules operating at different levels within the architecture (e.g., facility-level
planning/scheduling modules, transportation planning/scheduling modules, and Master Pro-
duction Scheduling (MPS) or Available-To-Promise (ATP)-level modules responsible for one or
more facilities).

2. It supports customizable mixed-initiative functionalities that enable users at different levels
within the architecture to interactively manipulate and evaluate alternative planning and schedul-
ing solutions while selectively coordinating the requirements of these solutions with those gener-
ated by other agents within the architecture (e.g., agents responsible for other facilities or agents
sitting at different levels within the architecture). The architecture supports easy reconfigura-
tion to accommodate the introduction of new products, new process flows, new suppliers and/or
customers, new facilities and new transportation arrangements.

The first part of this paper provides an overview of the MASCOT architecture with a particu-
lar emphasis on its support for mixed-initiative functionalities. The second part discusses different
coordination policies studied within the context of MASCOT and reports on an experimental study
conducted to evaluate the benefits of these policies under different operational assumptions, different
loads, and different supply chain configurations. The study suggests that new finite capacity coordina-
tion protocols can significantly improve the accuracy of ATP/Capacity-To-Promise (CTP) decisions,
which in turn can translate into significant increases in profits and performance.

2 The Overall MASCOT Architecture

The MASCOT architecture aims at providing a framework for coordinated development and manip-
ulation of planning and scheduling solutions at multiple levels of abstraction across the supply chain.
Within this architecture, MASCOT agents serve as wrappers for planning and scheduling modules,
each responsible for supporting the development and revision of planning/scheduling solutions for
a particular facility or group of facilities at a particular level of abstraction. Lower-level agents are
typically wrappers for planning and scheduling modules that support single facilities over short to
medium-term horizons. Higher-level agents are coordination wrappers for tactical or strategic plan-
ning and scheduling modules that generally require looking over longer horizons and across multiple
facilities (whether within a single company or across multiple organizations). An overview of the archi-
tecture illustrating the interaction between various types of multilevel MASCOT agents is presented
in Figure 1.

MASCOT agents are shells that support the following key functionalities:

1. Coordination: MASCOT agents act as coordination wrappers for planning and scheduling mod-
ules distributed across the supply chain, supporting both lateral and vertical coordination proto-
cols. Lateral coordination protocols support interactions between peer-level agents, while verti-
cal coordination protocols support interactions between high-level agents and those lower-level
agents directly responsible for internal facilities. We further distinguish between (1) high-level
lateral coordination protocols that involve, for example, requests for bids on subcomponents and
exchange of ATP information, and (2) low-level lateral coordination protocols to dynamically
establish and revise delivery dates across feeder and consumer facilities for individual batches.

2



Alternate
Tier 2

Supplier

Alternate
Tier 2

Supplier

Tier 2
Supplier

Alternate
Tier 2

Supplier

Alternate
Tier 2

Supplier

Tier 2
Supplier

Alternate Tier 1 Supplier

MASCOT Agent

High Level
Planning/Scheduling

Supplier
Site(s)

Alternate Tier 1 Supplier

MASCOT Agent

High Level
Planning/Scheduling

Supplier
Site(s)

Tier 1 Supplier

MASCOT Agent

High Level
Planning/Scheduling

& ATP

Supplier
Site(s)

MASCOT Agent MASCOT Agent

Vertical
Coordination

Low-level
Lateral

Coordination

MASCOT Agent

High-level
Lateral

Coordination

Integrated Process
Planning/Production

Scheduling

Integrated Process
Planning/Production

Scheduling

High Level
Planning/Scheduling

& ATP

Low-level
Lateral

Coordination

Customer

Shop-Floor
Control

Shop-Floor
Control

Alternate
Tier 2

Supplier

Alternate
Tier 2

Supplier

Tier 2
Supplier

Figure 1: Overall MASCOT Architecture

Vertical coordination protocols, on the other hand, help maintain consistency across multilevel
capacity models and help selectively validate high-level planning decisions through more detailed
evaluation at the level of one or more bottleneck facilities. For example, an order-promising
decision for a product that needs to flow across several internal facilities can be validated by
carrying out a detailed analysis of the impact of the order on the load of a particular bottleneck
facility through interaction with the agent responsible for that facility.

2. Integration with Heterogeneous Planning and Scheduling Modules: Each MASCOT agent is con-
figured around a blackboard architecture [Erman et al., 1980, Lesser and Corkill, 1983, Sadeh
et al., 1998] that allows for the easy integration of multiple planning and scheduling mod-
ules (including possible legacy systems) along with analysis and coordination modules. Within
a given agent, these modules can be activated to develop and revise integrated planning and
scheduling solutions stored in a data structure accessible to all the agent’s modules and referred
to as the agent’s blackboard. Specific modules differ from one agent to another depending on
the facility(ies) for which the agent is responsible and the level at which it operates within the
architecture. Typically, low-level facility-based agents might include a process-planning/process-
selection module and a production scheduling module, as in the IP3S system [Sadeh et al.,
1998]. Higher level agents (e.g., MPS level or equivalent) will typically combine high-level
scheduling and capacity-allocation modules with high-level process-flow/bill-of-material devel-
opment modules to support alternative make-or-buy/outsourcing decisions.

3. Mixed-Initiative Decision-Support Functionalities: A MASCOT agent’s blackboard is partitioned
into contexts, each corresponding to a possibly different set of assumptions (e.g., demand as-

3



sumptions, capacity assumptions, internal process-flow/bill-of-material assumptions, supplier
delivery date assumptions, make-or-buy assumptions,) that enable the end-user to compare dif-
ferent tradeoffs both locally and through coordination with other agents in the architecture.
Contexts can be created either (1) manually by the (agent’s) end-user (e.g., to evaluate a partic-
ular assumption), or (2) automatically by the agent (e.g., in response to a query from another
agent). Within each context, solutions are developed by the end-user or the agent (or a com-
bination thereof) through the activation of services supported by the agent’s various planning,
scheduling, analysis, and coordination modules.

4. Reconfigurability: MASCOT agents can be rapidly reconfigured to accommodate the introduc-
tion of new products, new product flows, new facilities, new suppliers, new make-or-buy ar-
rangements, and new transportation arrangements, etc. Lateral and vertical coordination proto-
cols rely on explicit (declarative) product, process, and facility models to determine the agents
with which to coordinate. Changes in these models, such as the identification of a new supplier
for a particular component or a new product flow, trigger the automatic recalculation of the
relationships between agents in the architecture.

3 The MASCOT Agent Architecture

The use of blackboard architectures [Erman et al., 1980, Corkill, 1991, Carver and Lesser, 1992]

as an effective vehicle for integrating multiple sources of knowledge to solve complex problems has
been demonstrated in a wide range of application domains. Blackboard architectures emphasize the
modular encapsulation of problem-solving knowledge within independent knowledge sources (KSs)
that work collectively to develop solutions to problems by communicating through a shared data
structure, namely, the blackboard. By explicitly separating domain knowledge (e.g., in the case of
MASCOT, planning, scheduling, analysis, coordination, and communication knowledge) and control
knowledge, blackboard architectures offer several key advantages:� Flexibility of the control mechanism, making it possible for the user to select from among a dy-

namic set of control regimes (e.g., highly interactive control regimes where most decisions are
made by the end-user versus more autonomous regimes where the end-user specifies high-level
tasks or “goals” and lets the system decide how to accomplish them).� Extensibility of the architecture, making it particularly easy to add and enhance knowledge sources.� Ease of integration with legacy systems through the encapsulation of existing problem-solving sys-
tems as knowledge sources.� Reusability of knowledge sources across multiple domains.

Figure 2 presents the MASCOT wrapper-agent architecture. Each MASCOT agent includes:� A set of planning, scheduling, analysis, coordination, and communication modules/KSs.� A blackboard, which serves as the repository of partial and complete integrated planning and
scheduling solutions organized in different contexts.

4



MASCOT Agent

Internet
Catalogs

MASCOT Agent

High Level
Planning/Scheduling

& ATP

Outgoing
MessagesIncoming

Events

Agent
End-User

Graphical User
Interface

Module-Activation
Controller

Knowledge Sources

Planning Module

Lateral Coordination
Module

Analysis Module

Scheduling Module

Communication
Module

Vertical Coordination
Module

Contexts

Current
Working
Context

Event Queue

Blackboard

Enterprise LAN

Internet

External Supplier Sites

MASCOT Agent

High Level
Planning/Scheduling

& ATP

MASCOT Agent

Integrated Process
Planning/Production

Scheduling

MASCOT Agent

Integrated Process
Planning/Production

Scheduling

MASCOT Agent

High Level
Planning/Scheduling

& ATP

MASCOT Agent

High Level
Planning/Scheduling

& ATP

Internet
Catalogs

Internet
Catalogs

MASCOT Agent

High Level
Planning/Scheduling

& ATP

MASCOT Agent

Integrated Process
Planning/Production

Scheduling

MASCOT Agent

High Level
Planning/Scheduling

& ATP

Figure 2: MASCOT Wrapper-Agent Architecture� A module-activation controller that orchestrates the construction and revision of solutions through
the activation of services supported by knowledge source modules, either based on direct input
from the end-user or the agent’s control heuristics (or a combination of the two).� A graphical user interface.

3.1 Mixed-Initiative Asynchronous Problem Solving

The blackboard is a shared data structure on which KSs post solution components (e.g., new pro-
duction schedules, new capacity allocations, new ATP results), analysis results (e.g., resource/capacity-
utilization statistics), and coordination/communication-status information. It is partitioned into an
arbitrary number of contexts that correspond to different sets of working assumptions (e.g., sets of
orders that need to be planned/scheduled, available/allocated resource and facility capacities, supplier
arrangements) and different solutions. Within each context, a summary of the current state of the
solution is maintained in the form of a set of unresolved issues. An unresolved issue is an indication that
a particular aspect of the current context solution is incomplete, inconsistent, or unsatisfactory (e.g.,

5



an order lacks a process plan, a resource breakdown conflicts with a reservation, a promised delivery
date is violated).

Problem solving within a MASCOT agent, directed by either the agent’s end-user or the agent itself
(or a combination of the two), progresses in a mixed-initiative fashion through cycles during which:

1. One or more unresolved issue instances are selected to be resolved.

2. A particular method of resolution (e.g., a service supported by a KS module) is selected from
among the set of methods applicable to the instance(s).

3. The selected method is executed by invoking the appropriate KS.

Instances of unresolved issues are created and deleted as a result of KS invocations, the incorporation
of external events into a context, and the modification of assumptions within a context to perform
“what-if” analysis.

In the remainder of this section we describe the major features of the MASCOT agent architecture,
with an emphasis on the mixed-initiative problem-solving and integration capabilities it supports.

3.1.1 Alternate Problem Instances and Solutions

The mixed-initiative decision-support capabilities of MASCOT rely heavily on the use of blackboard
contexts to support the representation of multiple problem instances. Each context contains all relevant
problem data, including (for example), a collection of resources, tools, raw material supplies, finished-
goods and work-in-process inventory quantities, and a collection of demands, orders, and bid/ATP
requests and their corresponding process plans and production schedules. In addition, each context
also maintains a set of unresolved issues to represent inconsistencies in any partial solution that must be
removed to produce a complete and satisfactory solution. As assumptions are modified and a solution
is developed within the context, the set of unresolved issues is updated to help both the agent and
its end-user keep track of aspects of the current solution (within that context) that require further
problem-solving attention.

Contexts can be created either by the end-user or automatically by the agent. It is through the
creation of multiple contexts that “what-if” analysis is supported. By creating multiple copies of a
context, changing various assumptions within the copies and producing solutions for each, alternate
solution paths can be explored. Either the end-user or the agent can leave a particular context at any
point in time and explore other potentially more promising alternatives in other contexts. Changes
in the assumptions within one context remain local to that context and do not affect other contexts
that may share the same entities. When a KS is invoked, its results are visible only within the context
in which the end-user or the agent is currently working. This context is called the “current working
context.”

3.1.2 Selective Problem Definition

The mixed-initiative power of the context mechanism comes from the capability it provides the user to
define a problem progressively and to modify the underlying assumptions about a problem. This can
be done through either the modification of problem assumptions within a context (e.g., by changing
various order and resource attributes such as due dates, work shifts, and supply-availability dates),

6



or the incorporation of events into a context (e.g., from other agents or information sources like an
enterprise-level planning system, raw material suppliers, the shop floor).

Events received from other MASCOT agents and information sources (e.g., suppliers, manufac-
turing execution systems) are posted on the agent’s event queue in preparation for being incorporated
within one or more contexts by the end-user or the agent itself. These events include the notification
of incoming orders, requests for bids, resource breakdowns and various shop floor updates. When an
event is incorporated into a context, the blackboard translates the initial result (or implication) of the
action described by the event into one or more appropriate unresolved issues. The objective for the
end-user and/or the agent is to resolve each such issue through the activation and execution of one or
more KSs until all events have been incorporated into a context and all unresolved issues have been
resolved.

The MASCOT event-processing mechanism supports two important mixed-initiative capabilities:

1. It allows both the end-user and the agent to ignore events that are unlikely to affect the part of
the solution upon which work is currently being done. For example, when revising a plan for a
part that needs to be processed within the week, incoming-order events for new orders due three
months downstream can often be ignored.

2. It allows both the end-user and the agent to process conditional events, such as requests for
bids. For example, upon receipt of a request for bid on a possible order, a copy of the current
context can be created, within which the order can be planned and scheduled. The resulting
solution showing the impact of the possible order can then be evaluated to determine a realistic
completion date and decide whether or not to submit a bid.

3.1.3 Unresolved Issues

As the assumptions within a particular context are modified or as new events are incorporated into a
context, the set of unresolved issues within the context is updated automatically (according to declar-
ative domain and control information). The set of unresolved issues within a context defines areas
in the current partial solution where further problem-solving effort needs to be directed to produce a
complete, consistent, and satisfactory solution. Unresolved issues provide a powerful workflow man-
agement mechanism that helps identify, plan, and control the work that remains to be done in any
given context. This is similar to the sources of uncertainty (SOUs) of Carver and Lesser’s RESUN control
planner [Carver and Lesser, 1993].

The MASCOT architecture distinguishes between three types of unresolved issues, relating to:� The completeness of the solution, such as an order lacking a process plan or an order that still
needs to be incorporated in the production schedule.� Inconsistencies within the solution, such as supplies being delivered past their required date.� Potential areas for solution improvement, such as an order with an excessively late completion
date or long leadtime.

3.2 Module-Activation Control

Each MASCOT agent is responsible for directing solution construction, revision, and analysis, either
through close interaction with the end-user, or on its own with the help of a knowledge base of control

7



heuristics. The MASCOT agent architecture control mechanism supports two key mixed-initiative
capabilities:

1. Support for multiple control regimes, ranging from a highly interactive mode where the user spec-
ifies each problem-solving action to an autonomous mode where the controller takes full re-
sponsibility for (1) the selection of which events to incorporate into the current context, (2) the
determination of which unresolved issues to resolve, and (3) the selection of the specific methods
for their resolution.

2. Support for multilevel customizable problem-solving tasks to provide a range of low to high-level
modes of user interaction (e.g., the activation of a specific low-level KS service such as incorpo-
rating an order in an existing schedule, or the posting of high-level objectives (or “goals”) such
as trying to improve the completion date of an order, or the activation of a sequence of services
and goals).

The MASCOT agent architecture allows an end-user to select from among different control regimes
and different levels of interaction at any time. In addition, the set of high-level problem-solving tasks
provided by the agent can be easily augmented to accommodate changing user-interaction patterns.
Specifically, a hierarchy of high-level goals and scripts can be defined in terms of the basic set of services
provided by the particular problem-solving systems encapsulated as KSs and incorporated within each
MASCOT agent.

To support these mixed-initiative capabilities, the control mechanism in the MASCOT agent ar-
chitecture follows an execution profile that records the assignment of various problem-solving tasks (e.g.,
the incorporation of events, the selection of unresolved issues to resolve and the methods for their res-
olution) to either the agent or its end-user. The assignment of tasks can be changed at any point by
modifying the execution profile. To provide multiple levels of interaction with the system through
the definition and activation of aggregate and goal-oriented problem-solving tasks, each MASCOT
agent maintains its own declarative control knowledge base that links each unresolved issue to the set of
appropriate problem-solving options for its resolution. The control knowledge base also contains the
collection of generic and domain-specific control heuristics that are used by the agent to perform the
tasks assigned to it, as recorded in the execution profile.

An agenda mechanism is employed by each MASCOT agent to keep track of the problem-solving
tasks remaining to be executed. When a particular course of action is selected, either manually by
the end-user or automatically by the agent, one or more problem-solving task items are placed on the
agenda, describing an action or sequence of actions to be performed by the agent. The MASCOT
control mechanism supports three types of agenda items:

1. Service activations, which correspond directly to the specific problem-solving services provided
by the MASCOT KSs.

2. Goal activations, which specify high-level, objective-oriented problem-solving tasks that can be
satisfied by the execution of either a service or (more likely) a sequence (or “script”) of services
and subgoals.

3. Script activations, which specify a predefined sequence of KS services and goals generally known
to accomplish a particular problem-solving task.

8



3.3 Problem-Solving Flow

All problem-solving activity within the MASCOT agent architecture is triggered by either the incor-
poration of a new event (such as a request for bid, a request to validate a high-level schedule, or simply
a shop floor status update) into the current working context, or the modification of an assumption
within the current working context (e.g., “what-if” analysis to evaluate the benefits of using a different
supplier, subcontracting production of a particular subcomponent, or adding work shifts, etc.), both of
which can be performed by either the end-user or the agent (as specified by the execution profile). The
flow of problem solving is summarized in Figure 3. It proceeds from the modification of the current
working context in a clockwise direction through the following steps:

1. Updating the set of unresolved issues within the current working context to reflect the initial
problem-solving action.

2. Selecting one or more unresolved issues to resolve.

3. Selecting a resolution method for the selected unresolved issue(s).

4. Activating the selected resolution method.

5. Executing the problem-solving service corresponding to the activated resolution method.

The MASCOT module-activation controller is invoked whenever there are problem-solving tasks
on the agenda remaining to be executed, or, when running automatically (and depending on the
execution profile), there are events to incorporate or unresolved issues to resolve.

3.4 Problem-Solving Modules

Knowledge sources serve as the primary problem solvers in MASCOT. They communicate their results
by posting new information to the blackboard (e.g., new process plans and production schedules) and
modifying existing information (e.g., updated process plans and reoptimized production schedules).
Each domain-level KS acts primarily as a server that supports a variety of problem-solving services.

The typical MASCOT agent relies on a number of KSs, which tend to vary from one agent to
another depending on, for example, the level at which the agent operates (e.g., facility-based schedul-
ing agent versus enterprise-wide scheduling agent), and differences in legacy systems and operational
policies. Examples of typical KSs are briefly discussed below:� Lateral Coordination KSs manage the interaction between peer-level agents (both internal and

external to the MASCOT agent hierarchy) to support lateral coordination at multiple levels.
At the high level, the KS is responsible for implementing protocols to guide, for example, the
exchange of requests for bids, bid submissions, and ATP information. At the low level, its
protocols guide the process of dynamically establishing and revising tight yet robust delivery
dates for materials and subcomponents produced by upstream facilities/agents and consumed
by downstream facilities/agents.� Vertical Coordination KSs implement the necessary protocols to (1) guide the maintenance of
consistency across finite capacity models at different levels of abstraction within an enterprise,
and (2) selectively validate high-level planning decisions across these levels through evaluation

9



Selected
Resolution
Method

Activated
Agenda
Item

Modified
Context

Unresolved
Issues

Modified Context

Selected
Unresolved

Issue

BLACKBOARD:
Update

Unresolved Issues

CONTROLLER:
Execute

Agenda Item

CONTROLLER:
Activate

Agenda Item

CONTROLLER:
Select Unresolved
Issue to Resolve

USER:
Select Unresolved
Issue to Resolve

USER:
Select

Resolution Method

CONTROLLER:
Select

Resolution Method

USER:
Incorporate Event

into Context

CONTROLLER:
Incorporate Event

into Context

USER:
Modify Assumption

within Context
("What-If")

CONTROLLER:
Modify Assumption

within Context
("What-If")

Figure 3: Problem-Solving Flow in MASCOT Agents

10



of the more detailed capacity models of lower-level, and often bottlenecked, facilities (via inter-
action with their corresponding agents).� Production Scheduling KSs: in experiments reported later in this paper, we used MICRO-
BOSS [Sadeh, 1994, Sadeh, 1995], a dynamic finite capacity scheduling system that has been
shown to support the rapid generation and dynamic revision of high quality solutions to com-
plex, large-scale scheduling problems at various levels within the enterprise. In other situations,
this module may simply be a legacy scheduling system.� Planning KSs: typically a process-flow/bill-of-material definition module or a process planning
module, as in the case of the IP3S agent [Sadeh et al., 1998].� Analysis KSs: a typical analysis KS is a resource-utilization KS that estimates resource con-
tention, taking into account both current reservations and projected demand from unscheduled
orders. An example of such a KS has been used in the IP3S agent [Sadeh et al., 1998].� A Communication KS that facilitates coordination between MASCOT agents as well as with
other information sources (e.g., shop floor control).

4 Empirical Evaluation of Finite Capacity Lateral Coordination

Protocols

While the MASCOT architecture aims at supporting more flexible and efficient coordination across
the supply chain, it does not assume any particular set of coordination protocols or policies. Instead,
it is capable of supporting traditional leadtime-based coordination as well as policies aimed at taking
advantage of finite capacity scheduling functionalities. This section highlights a few results of an
empirical study conducted using MASCOT to compare several lateral coordination policies under
different sets of business assumptions [Kjenstad, 1998].

Lateral coordination is particularly critical when it comes to generating robust yet competitive
and cost-effective promise dates in response to new customer demands. Once a delivery date has
been quoted to a customer, lateral coordination can help dynamically resynchronize production across
the supply chain to best meet prior commitments in the face of contingencies such as delays in raw
material/subcomponent deliveries, production delays, quality problems, arrival of new orders, etc. Tra-
ditionally, supply chain coordination has relied on standard leadtimes to determine synchronization
dates across the supply chain. These leadtimes are insensitive to actual load conditions. As a result,
depending on the situation, they will be either (1) overly conservative, yielding uncompetitive promise
dates, long leadtimes, and excessive inventory, or (2) overly optimistic, resulting in low levels of cus-
tomer satisfaction and late-delivery penalties. While finite capacity considerations offer the promise of
more competitive and more realistic estimates, they can also be expected to yield more brittle solutions,
which are easily invalidated by contingencies. A key question in this regard is whether, through dy-
namic coordination, it is possible to reap the benefits of finite capacity computations without suffering
from the brittleness of their underlying solutions.

To answer this and related questions, our study, which is detailed in [Kjenstad, 1998], looked at a
number of different supply chain configurations (e.g., different numbers of tiers, tiers with one or more
suppliers, etc.) as well as different ATP/CTP scenarios (e.g., incoming orders with non-negotiable due

11



Agent 31

Agent 32

Agent 33

Agent 34

Agent 35

Agent 21

Agent 22

Agent 23

Agent 11

Agent 12

Customer

Supply Chain

Tier 3

Tier 2

Tier 1

Figure 4: A Three-Tier Supply Chain Configuration

dates, incoming orders that can be turned down, incoming orders with negotiable due dates and
competition with other possible suppliers). A supply chain simulation testbed was used within which
MASCOT agents were responsible for coordinating their operations in response to stochastic requests
for bids and stochastic production contingencies.

The testbed consisted of a problem generator and a supply chain simulator:� The problem generator took as input a supply chain configuration (number of products, number
of tiers, number of entities in each tier, and number of resources in each entity) and generated
stochastic variations of supply chain models based on this data. Variations among model in-
stances included differences in product types, process routings, and bills of materials.� The simulator simulated operation at each of the entities across the supply chain while generat-
ing random events such as:

– Requests for bids (including product types, quantities, requested delivery dates and prices).

– Execution contingencies such as resource breakdowns and variations in processing times.

While a number of different scenarios were considered, the results reported below were obtained by
simulating the supply chain depicted in Figure 4. This is a supply chain where multiple entities/agents
are in competition at different tiers. At any point in time, each supply chain entity can have both
multiple suppliers and multiple customers. In addition, process routings include assembly operations
that require synchronization of subcomponent deliveries from multiple customers. This provides for
situations where finite capacity lateral coordination can help alert the supplier of a subcomponent that
delivery of another subcomponent from a second supplier has been delayed, allowing the first supplier
to reprioritize its schedule accordingly.

Additional assumptions used in the experiments reported in this section included the following:� The supply chain operates in a pure make-to-order lot-for-lot fashion. Facilities that are the
farthest upstream are assumed to have instantaneous access to raw materials (e.g., from ample
stock).

12



� Within each supply chain entity/agent, finite capacity schedules are regenerated on a daily basis,
and jobs queuing in front of machines are executed starting with the job that is scheduled to run
first on that machine. In other words, the schedule is interpreted as a priority mechanism rather
than being fully enforced. All schedules were generated using the MICRO-BOSS finite capacity
scheduling system [Sadeh, 1994, Sadeh, 1995].� A request for bid can be accepted by an agent with its requested delivery date (i.e., unconditional
ATP/CTP bid), it can be accepted subject to a relaxed delivery date (i.e., conditional ATP/CTP
bid) or simply rejected (i.e., no bid). The chance that a bid is accepted depends on how close it
is to the requested delivery date. Agents only send bids on orders that are expected to increase
their profit. Profit from an order is measured as the difference between the sales revenue and
costs associated with that order. Costs include fixed costs such as fixed production costs and sub-
component/raw material procurement costs as well as inventory costs and late delivery penalties
(see [Kjenstad, 1998] for further details).

Before regenerating a new schedule, each supply chain agent incorporates new incoming requests
for bids into a copy of its working context (where unresolved issues are created accordingly). Requested
delivery dates are interpreted as internal due dates. Similarly, promised delivery dates from suppliers,
if available, are interpreted as earliest possible release date constraints. Each time a supply chain agent
generates a new solution it communicates the resulting start time requirements to its suppliers and the
expected completion dates to its customers. To avoid creating unrealistic synchronization dates, some
padding is selectively added in the process, as further detailed in [Kjenstad, 1998].

Below, we report performance of each of the following three sets of lateral coordination policies:� Lead-Neg/C: A reference policy relying on historical leadtime data to estimate delivery dates for
prospective orders.� FCS-Neg/C: This policy is similar to Lead-Neg/C, except that it relies on finite capacity sched-
ules in its top-tier estimates (i.e., the agent that directly receives a request for bid generates a local
finite capacity schedule but relies on leadtime assumptions as far as its suppliers are concerned).� Sync-Neg/C: This policy relies on finite capacity calculations at each tier across the supply chain
to respond to requests for bids.

The results shown in Figure 5 were obtained by averaging performance over twenty simulation runs
(each simulating 150 days of execution for a particular model instance) for each policy. The vertical
lines in Figure 5 show the estimated mean profits and their corresponding 95% confidence intervals.
The vertical bars represent average leadtimes across the entire supply chain. Profits obtained with the
finite capacity lateral coordination policy (Sync-Neg/C) are clearly higher than those obtained with
the other two policies. The confidence interval is also considerably smaller, indicating that this policy
is also more consistent/reliable. Leadtimes obtained with this policy are also considerably shorter.
Additional results reported in [Kjenstad, 1998] show that these performance improvements can be
attributed to a higher accuracy in the ATP/CTP process combined with a better ability to dynamically
adjust for contingencies and satisfy prior delivery commitments.

The results in Figure 5 were obtained for an average nominal load of 80%. This is the average
load of the most significant bottleneck area (across the entire supply chain) if all requests for bids were

13



Lead-Neg/C FCS-Neg/C Sync-Neg/C

0

3

6

9

12

15

18

-2000000

-1000000

0

1000000

2000000

3000000

4000000

A
ve

ra
ge

 L
ea

dt
im

e 
(d

ay
s)

 [
in

 b
ar

s]

P
ro

fi
t 

[i
n 

hi
gh

-l
ow

 l
in

es
]

Figure 5: Sensitivity to Variations in Number of Bid Requests

to result in actual orders. Figure 6 shows similar results for nominal loads varying between 40% and
120%.

These results show that:� All three policies result in similar performance when the nominal load is low (i.e., less than 60%).
Most jobs can then be scheduled just-in-time without much resource contention. The benefits
of finite capacity lateral coordination become more obvious as the nominal load increases.� In fact the finite capacity lateral coordination policy is able to consistently maintain a high
profit as the nominal load increases above 0.6, while performance of the other two policies
deteriorates. This is not really a surprise: as the nominal load gets close to or greater than 100%,
finite capacity coordination makes it possible to selectively turn down orders and relax requested
delivery dates, which the other two policies cannot really do.

5 Concluding Remarks

A key to agility in today’s global economy is the ability to dynamically coordinate planning and
scheduling decisions across the supply chain. In this paper, we introduced MASCOT, an architec-
ture that aims at providing a framework for coordinated development and manipulation of planning
and scheduling solutions at multiple levels of abstraction across the supply chain. MASCOT places
a particular emphasis on mixed-initiative problem solving, enabling users to flexibly select among a
broad range of interaction regimes. It also supports powerful workflow management capabilities that
allow users to assess complex tradeoffs while manipulating assumptions that often span multiple tiers
across the supply chain.

An initial version of the MASCOT architecture was developed and validated in the context of an
environment requiring coordination between a machine shop and a tool shop at Raytheon. Recently,
the architecture has been further validated through experimentation with more complex supply chain

14



n

n

n

n

l

l

l

l

ssss

s

-6000000

-5000000

-4000000

-3000000

-2000000

-1000000

0

1000000

2000000

3000000

4000000

0.4 0.6 0.8 1 1.2

A
ve

ra
ge

 P
ro

fi
t

Nominal Load

n Lead-Neg/C

l FCS-Neg/C

s Sync-Neg/C

Figure 6: Sensitivity to Variations in Nominal Load

configurations and through development of coordination policies that attempt to dynamically take
advantage of finite capacity considerations. Future work is expected to involve refinement of existing
mixed-initiative functionalities as well as experimentation with combinations of new lateral and vertical
coordination policies.

References

[Carver and Lesser, 1992] N. Carver and V.R. Lesser. The evolution of blackboard control architec-
tures. CMPSCI Technical Report 92–71, Department of Computer Science, University of Mas-
sachusetts, Amherst, October 1992.

[Carver and Lesser, 1993] N. Carver and V.R. Lesser. A planner for the control of problem-solving
systems. IEEE Transactions on Systems, Man, and Cybernetics, Special Issue on Planning, Scheduling
and Control, 23(6), November 1993.

[Corkill, 1991] D.D. Corkill. Blackboard systems. AI Expert, 6:40–47, September 1991.

[Erman et al., 1980] L.D. Erman, F. Hayes-Roth, V.R. Lesser, and D.R. Reddy. The Hearsay-II
speech understanding system: Integrating knowledge to resolve uncertainty. Computing Surveys,
12(2):213–253, June 1980.

[Kjenstad, 1998] D. Kjenstad. Coordinated supply chain scheduling. PhD thesis and NTNU Report
1998:24, Department of Production and Quality Engineering, Norwegian University of Science
and Technology (NTNU), Trondheim, November 1998.

[Lesser and Corkill, 1983] V.R. Lesser and D.D. Corkill. The distributed vehicle monitoring testbed:
A tool for investigating distributed problem solving networks. AI Magazine, 4(3):15–33, Fall 1983.

15



[Sadeh et al., 1998] N. M. Sadeh, D. W. Hildum, T. J. Laliberty, J. McA’Nulty, D. Kjenstad, and
A. Tseng. A blackboard architecture for integrating process planning and production scheduling.
Concurrent Engineering: Research & Applications (CERA), 6(2):88–100, June 1998.

[Sadeh, 1994] N.M. Sadeh. Micro-opportunistic scheduling: The Micro-Boss factory scheduler. In
M. Zweben and M.S. Fox, editors, Intelligent Scheduling, chapter 4, pages 99–135. Morgan Kauf-
mann, San Francisco CA, 1994.

[Sadeh, 1995] N.M. Sadeh. Micro-Boss: Dual-use ARPI scheduling technology helps improve man-
ufacturing performance. IEEE Expert, February 1995.

16


