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Abstract. Enforcing rich policies in open environments will increasingly require 
the ability to dynamically identify external sources of information necessary to 
enforce different policies (e.g. finding an appropriate source of location informa-
tion to enforce a location-sensitive access control policy). In this paper, we intro-
duce a semantic web framework and a meta-control model for dynamically inter-
leaving policy reasoning and external service discovery and access. Within this 
framework, external sources of information are wrapped as web services with 
rich semantic profiles allowing for the dynamic discovery and comparison of 
relevant sources of information. Each entity (e.g. user, sensor, application, or or-
ganization) relies on one or more Policy Enforcing Agents responsible for enforc-
ing relevant privacy and security policies in response to incoming requests. 
These agents implement meta-control strategies to dynamically interleave se-
mantic web reasoning and service discovery and access. The paper also presents 
preliminary empirical results. This research has been conducted in the context of 
myCampus, a pervasive computing environment aimed at enhancing everyday 
campus life at Carnegie Mellon University.  

1   Introduction  

The increasing reliance of individuals and organizations on the Web to help mediate a 
variety of activities is giving rise to a demand for richer security and privacy policies 
and more flexible mechanisms to enforce these policies. People may want to selec-
tively expose sensitive information to others based on the evolving nature of their 
relationships, or share information about their activities under some conditions. This 
trend requires context-sensitive security and privacy policies, namely policies whose 
conditions are not tied to static considerations but rather conditions whose satisfaction, 
given the very same actors (or principals), will likely fluctuate over time. Enforcing 
such policies in open environments is particularly challenging for several reasons: 

 
− Sources of information available to enforce these policies may vary from one prin-

cipal to another (e.g. different users may have different sources of location tracking 
information made available through different cell phone operators); 



− Available sources of information for the same principal may vary over time (e.g. 
when a user is on company premises her location may be obtained from the wireless 
LAN location tracking functionality operated by her company, but, when she is not, 
this information can possibly be obtained via her  cell phone operator); 

− Available sources of information may not be known ahead of time (e.g. new loca-
tion tracking functionality may be installed or the user may roam into a new area). 
 
Accordingly, enforcing context-sensitive policies in open domains requires the abil-

ity to opportunistically interleave policy reasoning with the dynamic identification, 
selection and access of relevant sources of contextual information. This requirement 
exceeds the capability of decentralized trust management infrastructures proposed so 
far and calls for privacy and security enforcing mechanisms capable of operating ac-
cording to significantly less scripted scenarios than is the case today. It also calls for 
much richer service profiles than those found in early web service standards. 

We introduce a semantic web framework and a meta-control model for dynamically 
interleaving policy reasoning and external service identification, selection and access. 
Within this framework, external sources of information are wrapped as web services 
with rich semantic profiles allowing for the dynamic discovery and comparison of 
relevant sources of information. While the framework is applicable to a number of 
domains where policy reasoning requires the automatic discovery and access of exter-
nal sources of information (e.g. virtual/collaborative enterprise scenarios, coalition 
force scenarios, inter-agency homeland security collaboration scenarios), we look more 
particularly at the issue of enforcing privacy and security policies in pervasive comput-
ing environments. In this context, the owner of information sources (e.g. user, sensor, 
application, or organization) relies on one or more Policy Enforcing Agents (PEA) 
responsible for enforcing relevant privacy and security policies in response to incom-
ing requests. These agents implement meta-control strategies to opportunistically 
interleave policy enforcement, semantic web reasoning and service discovery and 
access. The example used in this paper introduces one particular type of PEA we refer 
to as Information Disclosure Agents (IDA). These agents are responsible for enforcing 
two types of policies: access control policies and obfuscation policies. The latter are 
policies that manipulate the accuracy or inaccuracy with which information is released 
(e.g. disclosing whether someone is busy or not rather than disclosing what they are 
actually doing). The research reported herehas been conducted in the context of My-
Campus, a pervasive computing environment aimed at enhancing everyday campus 
life at Carnegie Mellon University [7, 8, 19, 20].  

The remainder of this paper is organized as follows. Section 2 provides a brief 
overview of relevant work in decentralized trust management and semantic web tech-
nologies. Section 3 introduces an Information Disclosure Agent architecture for en-
forcing privacy and security policies. It details its different modules and how their 
operations are opportunistically orchestrated by meta-control strategies in response to 
incoming requests. A motivating example is presented in Section 4. Section 5 details 
our meta-control model based on query status information. Operation of the architec-
ture is illustrated in Section 6. Section 7 discusses our service discovery model. Sec-
tion 8 presents our current implementation and discusses initial empirical results. 
Concluding remarks are provided in Section 9. 



2   Related Work  

The work presented in this paper builds on concepts of decentralized trust manage-
ment developed over the past decade (see [3] as well as more recent research such as 
[2,11,14]) . Most recently, a number of researchers have started to explore opportuni-
ties for leveraging the openness and expressive power associated with semantic web 
frameworks in support of decentralized trust management (e.g. [1, 4, 9, 12, 13, 23, 24] 
to name just a few). Our own work in this area has involved the development of se-
mantic web reasoning engines (or “Semantic e-Wallets”) that enforce context-sensitive 
privacy and security policies in response to requests from context-aware applications 
implemented as intelligent agents [7, 8]. Semantic e-Wallets play a dual role of gate-
keeper and clearinghouse for sources of information about a given entity (e.g. user, 
device, service or organization). In this paper, we introduce a more decentralized 
framework, where policies can be distributed among any number of agents and web 
services. The main contribution of the work discussed here is in the development and 
initial evaluation of a semantic web framework and a meta-control model for opportu-
nistically interleaving policy reasoning and web service discovery in enforcing con-
text-sensitive policies (e.g. privacy and security policies). This contrasts with the more 
scripted approaches to interleaving these two processes adopted in our earlier work on 
Semantic e-Wallets [7,8]. 

Our research builds on recent work on semantic web service languages, (e.g. OWL-
S [26] and WSMO [27]) and semantic web service discovery functionality. Early work 
in this area by Paolucci et al. [28] focused on matching semantic descriptions of ser-
vices being sought with semantic profiles of services being offered that include de-
scriptions of input, output, preconditions and effects (see also our own work in this 
area [30]). More recently discovery functionality has also been proposed that takes into 
account security annotations [29].  

Other relevant work includes languages for capturing user privacy preferences such 
as P3P’s APPEL language [25], and for capturing access control privileges such as the 
Security Assertion Markup Language (SAML) [17], the XML Access Control Markup 
Language (XACML) [16] and the Enterprise Privacy Authorization Language (EPAL) 
[5]. These languages do not take advantage of semantic web concepts. On the other 
hand [12] describes a semantic web policy framework for distributed policy manage-
ment. The framework allows policies to be described in terms of deontic concepts and 
speech acts. It has been used to encode security policies of web resources, agents and 
web services. Work by Uszok et al. has also resulted in the integration of KAoS policy 
services with semantic web services [24]. Our own work on Semantic e-Wallets as 
well as research described in this paper has relied on an extension of OWL Lite known 
as ROWL to represent security and privacy policies that refer to concepts defined with 
respect to OWL ontologies [7, 8]. While ROWL has been a convenient extension of 
OWL to represent and reason about rules, it is by no means the only available option. 
In fact, ROWL shares many traits with several other languages. One better known 
language in this area is RuleML [18], a proposed standard for a rule language, based 
on declarative logic programs. Another is SWRL [10], which uses OWL-DL to de-
scribe a subset of RuleML. The focus of the present paper is not on semantic web rule 
languages but rather on a semantic web framework and a meta-control model for en-



forcing context-sensitive policies. For the purpose of this paper, the reader can simply 
assume that the expressiveness of our own ROWL language is by and large similar to 
that of a language like SWRL with both languages supporting the combination of 
Horn-like rules with one or more OWL knowledge bases.  

3   Overall Approach and Architecture  

 

Fig. 1. Information Disclosure Agent: Overall Architecture 

We consider an environment where sources of information are all modeled as services 
that can be automatically discovered based on rich ontology-based service profiles 
advertised in service directories. Each service has an owner, whether an individual or 
an organization, who is responsible for setting policies for it, with policies represented 
as rules. In this paper we focus on access control policies and obfuscation policies 
enforced by Information Disclosure Agents, though the framework we present could 
readily be used to enforce a variety of other policies.   

An Information Disclosure Agent (IDA) receives requests for information or service 
access. In processing these requests, it is responsible for enforcing access control and 
obfuscation polices specified by its owner and captured in the form of rules. As it proc-
esses incoming queries (or, more generally, requests), the agent records status infor-
mation that helps it monitor its own progress in enforcing its policies and in obtaining 
the necessary information to satisfy the request. Based on this updated query status 



information, a meta-control module (“meta-controller”) dynamically orchestrates the 
operations of modules it has at its disposal to process queries (Fig. 1).  As these mod-
ules report on the status of activities they have been tasked to perform, this informa-
tion is processed by a housekeeping module responsible for updating query status in-
formation (e.g. changing the status of a query from being processed to having been 
processed). Simply put, the agent continuously cycles through the following three 
basic steps: 
1. The meta-controller analyzes its latest query status information and invokes one or 

more modules to perform particular tasks. As it invokes these modules the meta-
controller also updates relevant query status information (e.g. updates the status of a 
query from “not yet processed” to “being processed”).  

2. Modules complete their tasks (whether successfully or not) and report back to the 
housekeeping module – occasionally modules may also report on their ongoing pro-
gress in handling a task 

3. The housekeeping module updates detailed status information based on information 
received from other modules and performs additional housekeeping activities (e.g. 
caching the results of recent requests to mitigate the effects of possible denial of 
service attacks, cleaning up status information that has become irrelevant, etc.) 
 
For obvious efficiency reasons, while an IDA consists of a number of logical mod-

ules, each operating according to a particular set of rules, it is typically implemented 
as a single reasoning engine. In our current work we use  JESS [6], a high-
performance Java-based rule engine that supports both forward and backward chain-
ing, the latter by reifying "needs for facts" as facts themselves, which in turn trigger 
forward-chaining rules. The following provides a brief description of each of the mod-
ules orchestrated by an IDA’s meta-controller: 
− Query Decomposition Module takes as input a particular query and breaks it down 

into elementary needs for information, which can each be thought of as subgoals or 
sub-queries. We refer to these as Query Elements. 

− Access Control Module is responsible for determining whether a particular query or 
sub-query is consistent with relevant access control policies – modeled as access 
control rules. While some policies can be checked just based on facts contained in 
the agent’s local knowledge base, many policies require obtaining information from 
a combination of both local and external sources. When this is the case, rather than 
immediately deciding whether or not to grant access to a query, the Access Control 
Module needs to request additional facts – also modeled as Query Elements. 

− Obfuscation Module sanitizes information requested in a query according to rele-
vant obfuscation policies – also modeled as rules. As it evaluates relevant obfusca-
tion policies, this module too can post requests for additional Query Elements. 

− Local Information Reasoner corresponds to domain knowledge (facts and rules) 
known locally to the IDA  

− Service Discovery Module helps the IDA identify potential sources of information 
to complement its local knowledge. External services can be identified through ex-
ternal service directories (whether public or not), by communicating via the agent’s 
External Communication Gateway. Rather than relying solely on searching service 
directories, the service discovery module also allows for the specification of what 



we refer to as service identification rules. These rules directly map information 
needs on pre-specified services. An example of such rule might be: “when looking 
for my current activity, first try my calendar service”. When available, such rules 
can yield significant speedups, while allowing the module to revert to more general 
service directory searches when they fail.  We currently assume that all service di-
rectories rely on OWL-S to advertise service profiles (see Section 7). 

− Service Invocation Module allows the agent to invoke relevant services. It is impor-
tant to note that, in our architecture, each service can have its own IDA. As re-
quests are sent to services, their IDAs may in turn respond with requests for addi-
tional information to enforce their own policies. 

− User Interface Agent: The meta-controller treats its user as just another module 
who is modeled both as a potential source of domain knowledge (e.g. to acquire 
relevant contextual information) as well as a potential source of meta-control 
knowledge (e.g. if a particular query element proves too difficult to locate, the user 
may be asked whether to stop looking - she could even be offered the option of mak-
ing an assumption about the particular value of the query element).  
 
Modules support one or more services that can each be invoked by the meta-

controller along with relevant parameter values. For instance, the meta-controller may 
invoke the query decomposition module and request it to decompose a particular 
query; it may invoke the access control module and task it to proceed in evaluating 
access control policies relevant to a particular query; etc. In addition, meta-control 
strategies do not have to be sequential. For instance, it may be advantageous to im-
plement strategies that enable the IDA to concurrently request the same or different 
facts from several services.  

4   An Example  

The following scenario will help illustrate how IDAs operate. Consider Mary and Bob, 
two colleagues who work for company X. They are both field technicians who con-
stantly visit other companies. Mary’s team changes from one day to the next depend-
ing on her assignment. Mary relies on an IDA to enforce her access control policies. In 
particular, she has specified that she is only willing to disclose the room that she is in 
to members of her team and only when they are in the same building. 

Suppose that today Bob and Mary are on the same team. Bob is querying Mary’s 
IDA to find out about her location. For the purpose of this scenario, we assume that 
Mary and Bob are visiting Company Y and are both in the same building at the time 
the query is issued. Both Bob and Mary have cell phone operators who can provide 
their locations at the level of the building they are in – but not at a finer level. Upon 
entering Company Y, Mary also registered with the company’s location tracking ser-
vice, which can track her at the room level. For the purpose of this scenario, we fur-
ther assume that Mary’s IDA needs to identify a service that can help it determine 
whether Bob is on her team. A discovery step helps identify a service operated by 
Company X (Bob and Mary’s employer) that contains up-to-date information about 



teams of field technicians. This requires a directory with rich semantic service pro-
files, describing what each service does (e.g. type of information it can provide, level 
of accuracy or recency, etc.). To be interpretable by agents such as Mary’s IDAs, these 
profiles also need to refer to concepts specified in shared ontologies (e.g. concepts such 
as projects, teams, days of the week, etc.). Once Mary’s IDA has determined that Bob 
is on her team today, it proceeds to determine whether they are in the same building by 
asking Bob’s IDA about the building he is in. Here Bob’s IDA goes through a service 
discovery step of its own and determines that a location tracking service offered by his 
cell phone operator is adequate. Completion of the scenario involves a few additional 
steps of the same type. Note that in this scenario we have assumed that Mary’s IDA 
trusts the location information returned by Bob’s IDA. It is easy to imagine scenarios 
where her IDA would be better off looking for a completely independent source of 
information. It is also easy to see that these types of scenarios can lead to deadlocks. 
This is further discussed later in this paper.  

 

Fig. 2. Illustration of first few steps involved in processing the example 

5   Query Status Model  

An IDA’s Meta Controller relies on meta-control rules to analyze query status infor-
mation and determine which module(s) to activate next. Meta-control rules are mod-
eled as if-then clauses, with Left Hand Sides (LHSs) specifying their premises and 
Right Hand Sides (RHSs) their conclusions. LHS elements refer to query status infor-



mation, while RHS elements contain facts that result in module activations. Query 
status information helps keep track of how far along the IDA is in obtaining the in-
formation required by each query and in enforcing relevant policies. Query status 
information in the LHS of meta-control rules is expressed according to a taxonomy of 
predicates that helps the agent keep track of queries and query elements - e.g., whether 
a query has been or is being processed, what individual query elements it has given 
rise to, whether these elements have been cleared by relevant access control policies 
and sanitized according to relevant obfuscation control policies, etc. All status infor-
mation is annotated with time stamps. Specifically, query status information includes: 
− Status predicates to describe the status of a query or query element 
− A query ID or query element ID to which the predicate refers 
− A parent query ID or parent query element ID to help keep track of dependen-

cies (e.g. a query element may be needed to help check whether another query ele-
ment is consistent with a context-sensitive access control policy). These dependen-
cies, if passed between IDA agents, can also help detect deadlocks (e.g. two IDA 
agents each waiting for information from the other to enforce their policies) 

− A time stamp that describes when the status information was generated or updated. 
This information is critical when it comes to determining how much time has 
elapsed since a particular module or external service was invoked. It can help the 
agent look for alternative external services or decide when to prompt the user (e.g. 
to decide whether to wait any longer). 
 
A sample of query status predicates is provided in Table 1. Some of the predicates 

list in the Table will be used in Section 6, when we revisit the example introduced in 
Section 4. Clearly, different taxonomies of predicates can lead to more or less sophisti-
cated meta-control strategies. For the sake of clarity, status predicates in Table 1 are 
organized in six categories: 1) communication; 2) query; 3) query elements; 4) access 
control; 5) obfuscation and 6) information collection. ����Sample Status Predicates Description 

Query-Received A particular query has been received.  
Sending-Response Response to a query is being sent 
Response-Sent Response has been successfully sent 

 
 
1) 

Response-Failed Response failed (e.g. message bounced back) 
Processing Query Query is being processed 
Query Decomposed Query has been decomposed (into primitive query elements) 
All-Elements-Available All query elements associated with a given query are available (i.e. all 

the required information is available) 
All-Elements-Cleared All query elements have been cleared by relevant access control policies 
Clearance-Failed Failed to clear one or more access control policies 
All-Elements-Sanitized All query elements have been sanitized according to relevant obfuscation 

policies 

 
 
 
 
2) 

Sanitization-Failed Failed to pass one or more obfuscation policies 
Element-Needed A query element is needed. Query elements may result from the decom-

position of a query or may be needed to enforce policies. The query 
element’s origin helps distinguish between these different cases 

Processing-Element A need for a query element is  being processed 
Element-Available Query element is available 
Element-Cleared Query element has been cleared by relevant access control policies 
Clearance-Failed Failed to pass one or more access control policies 
Element-Sanitized Query element has been sanitized using relevant obfuscation policies 

�
 
 
 
 
3) 

Sanitization-Failed Failed to pass one or more obfuscation policies 



4) Clearance-Needed A query or query element needs to be cleared by relevant access control 
rules 

5) Sanitization-Needed Query or query element has to be sanitized subject to relevant obfusca-
tion policies 

Check-Condition Check whether a condition is satisfied. Special type of query element. 
Element-not-locally-
available 

The value of a query element can not be obtained from the local knowl-
edge base 

Element-need-service A query element requires the identification of a relevant service 
No-service-for-Element No service could be identified to help answer a query element. This 

predicate can be refined to differentiate between different types of ser-
vices (e.g. local versus external) 

Service-identified One or more relevant services have been identified to help answer a 
query element 

Waiting-for-service-
response 

A query element is waiting for a response to a query sent to a service 
(e.g. query sent to a location tracking service to help answer a query 
element corresponding to a user’s location) 

Failed-service-response A service failed to provide a response. Again this predicate could be 
refined to distinguish between different types of failure (e.g. service 
down, access denied, etc.) 

 
 
 
 
 
 
 
 
6) 

service-response-available A response has been returned by the service. This will typically result in 
the creation of an “Element-Available” status update. 

Table 1. Sample list of status predicates. 

Query status information is updated by asserting new facts (with old information 
being cleaned up by the IDA’s housekeeping module). As query updates come in, they 
trigger one or more meta-control rules, which in turn result in additional query status 
information updates and the eventual activation of one or more of the IDA’s modules. 
As already mentioned earlier, this meta-control architecture can also be used to model 
the user as a module that can be consulted by the meta-controller, e.g. to ask for a 
particular piece of domain knowledge or to decide whether or not to abandon a par-
ticular course of action such as looking for an external service capable of providing a 
particular query element. 

6   Updating Query Status Information: Example Revisited 

The following illustrates the processing of a query by an IDA, using the scenario in-
troduced in Fig. 2. Specifically, Fig. 3 depicts some of the main steps involved in proc-
essing a request from Bob about the room Mary is in, highlighting some of the main 
query status information updates. Bob’s query about the room Mary is in is first proc-
essed by the IDA’s Communication Gateway, resulting in a query information status 
update indicating that a new query has been received. This information is expressed as 
a collection of (predicate subject object) triples of the form: 

 
(triple "Status#predicate" "status1" "query-received") 
(triple "Query#queryId" "status1" "query1") 
(triple "Query#parentId" "status1" nil) 
(triple "Query#timestamp" "querystatus1" "324455") 
(triple "Query#sender" "query1" "bob") 
(triple "Query#element" "query1" "element1") 
(triple "Ontology#office" "mary" "element1") 
 



Next, the meta-controller activates the Query Decomposition Module, resulting in 
the creation of two query elements – for the sake of simplicity we omit Mary’s obfus-
cation policy: one query element to establish whether this request is compatible with 
Mary’s access control policies and the other to obtain the room she is in: 
 
(triple "Status#predicate" "status2" "clearance-needed") 
(triple "Status#predicate" "status3" "element-needed") 
 

Let us assume that the meta-controller decides to first focus on the “clearance-
needed” query element and invokes the Access Control Module. This module deter-
mines that two conditions need to be checked and accordingly creates two new query 
elements (“check-conditions”). One condition requires checking whether Bob and 
Mary are on the same team: 
 
(triple "Status#predicate" "status4" "element-needed") 
(triple "Query#queryId" "status4" "element2") 
(triple "Query#parentId" "status4" "query1") 
(triple "Query#condition" "element2" "People#same-team") 
(triple "People#same-team" "mary" "bob") 

 Fig. 3. Query status updates for a fragment of the scenario introduced in Fig 2. 

This condition in turn requires a series of information collection steps that are or-
chestrated by the meta-control rules in Mary’s IDA. In this example, we assume that 
the IDA’s local knowledge base knows which team Mary is on but not Bob. According 
the following query status information update is eventually generated:  

 
(triple "Status#predicate" "status5" "element-not-locally-available") 
(triple "Query#queryId" "status5" "element3") 
(triple "Query#parentId" "status5" "element2") 
(triple "People#team" "bob" "element3") 



Mary’s IDA has a meta-control rule to initiate service discovery when a query ele-
ment can not be found locally. The rule, expressed in CLIPS [31], is of the form: 

 
(triple "Status#predicate" ?s1 "element-not-locally-available") 
(triple "Status#predicate" ?s2 "element-needed ") 
(triple "Query#queryId" ?s1 ?e1) 
(triple "Query#queryId" ?s2 ?e1) 
=> 
(assert (triple "predicate" ?newstatus "element-need-service")) 
(assert (triple "Query#queryId" ?newstatus ?e1) 

 
Using this rule, the meta-controller now activates the Service Discovery Module. A 

service to find Bob’s team is identified (e.g. a service operated by company X). This 
results in a query status update of the type “service-identified”.  

(triple "Status#predicate" ?s1 "element-need-service") 
(triple "Status#predicate" ?s2 "service-identified") 
(triple "Query#queryId" ?s1 ?e1) 
(triple "Query#queryId" ?s2 ?service) 
(triple "Query#parentId" ?s2 ?e1) 
=> 
(assert (triple "Status#predicate" ?newstatus "waiting-for-service-
response")) 
(assert (triple "Status#queryId" ?newstatus ?service)) 

Note that, if there are multiple matching services, the service discovery module 
needs rules to help select among them. 

Let us assume that the service identified by the service discovery module is now in-
voked and that it returns the team that Bob is on. The Housekeeping module updates 
the necessary Query Status Information, indicating among other things that informa-
tion about Bob’s team has been found (“element-available”) and cleaning old status 
information. This is done using a rule of the type:  

?x <- (triple "Status#predicate" ?s1 "waiting-for-service-response") 
?y <- (triple "Query#queryId" ?s1 ?service) 
(triple "Status#predicate" ?s2 "service-response-available") 
(triple "Query#queryId" ?s2 ?result) 
=> 
(retract ?x) 
(retract ?y) 
(assert (triple "Status#predicate" ?newstatus "element-available")) 
(assert (triple "Query#queryId" ?newstatus ?result)) 

The scenario continues through several similar steps (see Fig. 3) 

7   The Service Discovery Model  

A central element of our architecture is the ability of IDA agents to dynamically iden-
tify sources of information needed by query elements. Sources of information are mod-
eled as semantic web services and may operate subject to their own access control and 
obfuscation policies enforced by their own IDA agents. Accordingly service invocation 
is itself implemented in the form of queries sent to a service’s IDA agent.    

Each service (or source of information) is described by a ServiceProfile in OWL-S 
[26]. In general, a ServiceProfile consists of three parts: (1) information about the 
provider of the service, (2) information about the service’s functionality and (3) infor-



mation about non-functional attributes [21]. Functional attributes include the service's 
inputs, outputs, preconditions and effects. Non-functional attributes are other proper-
ties such as accuracy, quality of service, price, location, etc. An example of a location 
tracking service operated on the premises of Company Y can be described as follows: 

<profileHierarchy:InformationService rdf:ID="PositioningServ"> 
  <!-- reference to the service specification -->   
  <service:presentedBy rdf:resource="&Serv;#PositioningServ"/> 
  <profile:has_process rdf:resource="&Process;#PositionProc"/> 
  <profile:serviceName Positioning_Service_in_Y />     

  <!-- specification of quality rating for profile --> 
  <profile:qualityRating> 
    <profile:QualityRating rdf:ID="SERVQUAL"> 
      <profile:ratingName SERVQUAL /> 
      <profile:rating rdf:resource="&servqual;#Good"/> 
    </profile:QualityRating> 
  </profile:qualityRating> 

  <profile:hasPrecondition rdf:resource="&Process;#LocateInCompanyY"/> 
  <profile:hasOutput rdf:resource="&Process;#RoomNoOutput"/> 
</profileHierarchy:InformationService> 

When invoking a service it has identified, an IDA may opt to provide upfront all 
the input parameters required by that service or it may withhold one or more of these 
parameters. The latter option forces the service to request the missing input parame-
ters from the IDA, thereby enabling the IDA to more fully determine whether the 
invoked service meets its policies. This option is however more computation and 
communication intensive.  

Service outputs are represented as OWL classes, which play the role of a typing 
mechanism for concepts and resources. Using OWL also allows for some measure of 
semantic inference as part of the service discovery process. If an agent requires a ser-
vice that produces as output a contextual attribute of a specific type, then all services 
that output the value of that attribute as a subtype are potential matches. 

Service preconditions and effects are also used for service matching. For instance., 
the positioning service above has a precondition specifying that it is only available on 
company Y’s premises.  

8   Current Implementation: Evaluation and Discussion 

Our policy enforcing agents are currently implemented in JESS, a high-
performance rule-based engine in Java [6]. Domain knowledge, including service 
profiles, queries, access control policies and obfuscation policies are expressed in 
OWL [8]. As already indicated earlier ROWL the language we currently use to define 
rules that relate to ontologies could easily be replaced with languages such as RuleML, 
SWRL or some similar language. XSLT transformations are used to translate OWL 
facts and extensions of OWL (e.g. to model rules and queries) into CLIPS. Agent 
modules are organized as JESS modules. Currently all information exchange between 
agents is done in the clear and without digital signatures. In the future, we plan to use 
SSL or some equivalent protocol for all information exchange. This will include sign-
ing all queries and responses. 



We have evaluated our solution on an IBM laptop with a 1.80GHz Pentium M CPU 
and 1.50GB of RAM. The laptop was running Windows XP Professional OS, Java 
SDK 1.4.1 and Jess 6.1. As part of the evaluation, we implemented the example intro-
duced in Section 4 and 6, using a light-weight rule/fact set. The set included 22 rules 
and 178 facts and features a single semantic service directory with 50 services, each 
represented by 5 to 10 Jess rules. A breakdown of the CPU times required to process 
Bob’s query is provided in the table below. For each module the table provides a cu-
mulative CPU time, namely the sum of the CPU times of all invocations of that mod-
ule in processing the query. 

 
Module CPU time in millisecond 
Meta-Controller 28 
Access-Controller 32 
Local-KB 49 
Service discovery / invocation 72 
Total 181 

 
While these results provide just one data point, they seem to suggest that our solu-

tion can be viewed as practical in at least some simple settings.  It should be noted that 
our solution is not JESS-specific. At the same time, a significant number of experi-
ments still need to be conducted to gain a more comprehensive understanding of the 
scalability of our approach.  Other complex issues such as dealing with deadlocks or 
reasoning about provenance (i.e. possible conflicts of interest of information sources 
used to build a proof) and inconsistent policies also require significant additional 
work. Differentiating between situations where a policy has been shown not to be 
satisfied and situations where the agent has not yet been able to determine whether a 
policy is satisfied will likely call for differentiating between classical negation and 
“negation as failure”. One possible solution here would be to use a framework such as 
SweetRules as an add-on to our semantic web reasoner [22].  

9   Concluding Remarks  

In this paper, we presented a semantic web framework for dynamically interleaving 
policy reasoning and external service discovery and access. Within this framework, 
external sources of information are wrapped as web services with rich semantic pro-
files allowing for the dynamic discovery and comparison of relevant sources of infor-
mation. Each entity (e.g. user, sensor, application, or organization) relies on one or 
more Policy Enforcing Agents responsible for enforcing relevant privacy and security 
policies in response to incoming requests. These agents implement meta-control 
strategies to dynamically interleave semantic web reasoning, service discovery and 
access.  These meta-control strategies can also be extended to treat the user as another 
source of information, e.g. to confirm whether a given fact holds or to provide meta-
control guidance such as deciding when to abandon trying to determine whether a 
policy is satisfied. 



The Information Disclosure Agent presented in this paper is just one instantiation 
of our more general concept of Policy Enforcing Agents (PEAs). Other policies (e.g. 
information collection policies, notification preference policies) will typically rely on 
slightly different sets of modules and different meta-control strategies, yet they could 
all be implemented using the same meta-control architecture and many of the same 
principles presented in this paper. In general, PEAs rely on a taxonomy of query in-
formation status predicates to monitor their own progress in processing incoming 
queries and enforcing relevant security and privacy policies. They use meta-control 
rules to decide which action to take next (e.g. decomposing queries, seeking local or 
external information, etc.). Preliminary evaluation of an early implementation of our 
framework seems encouraging. At the same time, it is easy to see that the generality of 
the framework also gives rise to a number of challenging issues. Future work will 
focus on exploring scalability issues, evaluating tradeoffs between the expressiveness 
of privacy and security policies we allow and associated computational and communi-
cation requirements. Other issues of particular interest include studying opportunities 
for concurrency (e.g. simultaneously accessing multiple web services), dealing with 
real-time meta-control issues (e.g. deciding when to give up or when to look for addi-
tional sources of information/web services), breaking deadlocks [15], and integrating 
the user as a source of information. 
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