A Semantic Web Framework for | nterleaving Policy
Reasoning and Exter nal Service Discovery

Jinghai Rao and Norman Sadeh

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue,
Pittsburgh, PA, 15213, USA
{sadeh; jinghai}@s.cmnmu.edu

Abstract. Enforcing rich policies in open environments will increasirrglguire
the ability to dynamically identify external sources of infation necessary to
enforce different policies (e.g. finding an appropriate soaf¢ecation informa-
tion to enforce a location-sensitive access control yolin this paper, we intro-
duce a semantic web framework and a meta-control model fiandgally inter-
leaving policy reasoning and external service discovery acgsacWithin this
framework, external sources of information are wrapped ds sgevices with
rich semantic profiles allowing for the dynamic discovengl a&omparison of
relevant sources of information. Each entity (e.g. usersar, application, or or-
ganization) relies on one or mdvelicy Enforcing Agents responsible for enforc-
ing relevant privacy and security policies in response toniimg requests.
These agents implement meta-control strategies to dyrni&micterleave se-
mantic web reasoning and service discovery and access. Theafmppresents
preliminary empirical results. This research has been condunctld context of
myCampus, a pervasive computing environment aimed at enhancinglayver
campus life at Carnegie Mellon University.

1 Introduction

The increasing reliance of individuals and organizatmmshe Web to help mediate a
variety of activities is giving rise to a demand fazher security and privacy policies
and more flexible mechanisms to enforce these pali€esple may want to selec-
tively expose sensitive information to others basedhm evolving nature of their
relationships, or share information about their &@btis under some conditions. This
trend requires context-sensitive security and privacy ipslimamely policies whose
conditions are not tied to static considerations hiltaraconditions whose satisfaction,
given the very same actors (or principals), will likéllyctuate over time. Enforcing
such policies in open environments is particularly @majing for several reasons:

— Sources of information available to enforce thesécigsl may vary from one prin-
cipal to another (e.g. different users may have diftesenrces of location tracking
information made available through different cell phoperators);

— Available sources of information for the same printipay vary over time (e.qg.
when a user is on company premises her location mapthened from the wireless
LAN location tracking functionality operated by her compabut, when she is not,
this information can possibly be obtained via hell gigone operator);

— Available sources of information may not be knownaahef time (e.g. new loca-
tion tracking functionality may be installed or the usery roam into a new area).

Accordingly, enforcing context-sensitive policies in oggimains requires the abil-
ity to opportunistically interleave policy reasoning withe dynamic identification,
selection and access of relevant sources of conteixtiomimation. This requirement
exceeds the capability of decentralized trust managem#asiructures proposed so
far and calls for privacy and security enforcing mecsasi capable of operating ac-
cording to significantly less scripted scenarios thathéscase today. It also calls for
much richer service profiles than those found in eadly service standards.

We introduce a semantic web framework and a meta-dantvdel for dynamically
interleaving policy reasoning and external service ifieation, selection and access.
Within this framework, external sources of informatimre wrapped as web services
with rich semantic profiles allowing for the dynamicsabvery and comparison of
relevant sources of information. While the framew®kapplicable to a number of
domains where policy reasoning requires the automatiowdisg and access of exter-
nal sources of information (e.g. virtual/collaboratieeterprise scenarios, coalition
force scenarios, inter-agency homeland security améglon scenarios), we look more
particularly at the issue of enforcing privacy and segpalicies in pervasive comput-
ing environments. In this context, the owner of infation sources (e.g. user, sensor,
application, or organization) relies on one or mBokicy Enforcing Agents (PEA)
responsible for enforcing relevant privacy and secyritycies in response to incom-
ing requests. These agents implement meta-control gigatéo opportunistically
interleave policy enforcement, semantic web reagprand service discovery and
access. The example used in this paper introduces onalfzartigpe of PEA we refer
to as Information Disclosure Agents (IDA). These ageame responsible for enforcing
two types of policies: access control policies and dafiisn policies. The latter are
policies that manipulate the accuracy or inaccuracy witlth information is released
(e.g. disclosing whether someone is busy or not rdtieer disclosing what they are
actually doing). The research reported herehas been d¢edducthe context dily-
Campus, a pervasive computing environment aimed at enhanciegyaay campus
life at Carnegie Mellon University [7, 8, 19, 20].

The remainder of this paper is organized as followsti@®e@ provides a brief
overview of relevant work in decentralized trust manag@#nand semantic web tech-
nologies. Section 3 introduces amformation Disclosure Agent architecture for en-
forcing privacy and security policies. It details its eliint modules and how their
operations are opportunistically orchestrated by meté-aglostrategies in response to
incoming requests. A motivating example is presented itidBed. Section 5 details
our meta-control model based on query status informa@meration of the architec-
ture is illustrated in Section 6. Section 7 discusses envice discovery model. Sec-
tion 8 presents our current implementation and discusséal iempirical results.
Concluding remarks are provided in Section 9.

2 Reéated Work

The work presented in this paper builds on concepts of ttatiged trust manage-
ment developed over the past decade (see [3] as well rasrewent research such as
[2,11,14]) . Most recently, a number of researchers Btar¢ed to explore opportuni-
ties for leveraging the openness and expressive powetiassbwith semantic web
frameworks in support of decentralized trust management[(e.4, 9, 12, 13, 23, 24]
to name just a few). Our own work in this area haslired the development of se-
mantic web reasoning engines (or “Semantic e-Wa)létsit enforce context-sensitive
privacy and security policies in response to requests amext-aware applications
implemented as intelligent agents [7, 8]. Semantic e-&aplay a dual role of gate-
keeper and clearinghouse for sources of information abaiven entity (e.g. user,
device, service or organization). In this paper, weothice a more decentralized
framework, where policies can be distributed among anybeuraf agents and web
services. The main contribution of the work discussed Iein the development and
initial evaluation of a semantic web framework andetaxcontrol model for opportu-
nistically interleaving policy reasoning and web sexvitiscovery in enforcing con-
text-sensitive policies (e.g. privacy and security patici@ his contrasts with the more
scripted approaches to interleaving these two procedsesed in our earlier work on
Semantic e-Wallets [7,8].

Our research builds on recent work on semantic welicedanguages, (e.g. OWL-
S [26] and WSMO [27]) and semantic web service discovergtionality. Early work
in this area by Paolucci et al. [28] focused on matckemantic descriptions of ser-
vices being sought with semantic profiles of serviceimd offered that include de-
scriptions of input, output, preconditions and effects édse our own work in this
area [30]). More recently discovery functionality hésodeen proposed that takes into
account security annotations [29].

Other relevant work includes languages for capturing useaqyipreferences such
as P3P’s APPEL language [25], and for capturing access tpniriteges such as the
Security Assertion Markup Language (SAML) [17], the XML Agseontrol Markup
Language (XACML) [16] and the Enterprise Privacy Authoi@atanguage (EPAL)
[5]. These languages do not take advantage of semanticamelpts. On the other
hand [12] describes a semantic web policy framework fetriduted policy manage-
ment. The framework allows policies to be describeteims of deontic concepts and
speech acts. It has been used to encode security pafcieb resources, agents and
web services. Work by Uszok et al. has also resultéddrnntegration of KAoS policy
services with semantic web services [24]. Our own wamkSemantic e-Wallets as
well as research described in this paper has relieth @xtansion of OWL Lite known
as ROWL to represent security and privacy policies iitf@r to concepts defined with
respect to OWL ontologies [7, 8]. While ROWL has beeroavenient extension of
OWL to represent and reason about rules, it is by nrenséhe only available option.
In fact, ROWL shares many traits with several ottearguages. One better known
language in this area is RuleML [18], a proposed standara fate language, based
on declarative logic programs. Another is SWRL [10], Wwhises OWL-DL to de-
scribe a subset of RuleML. The focus of the present gapet on semantic web rule
languages but rather on a semantic web framework andaaamtrol model for en-

forcing context-sensitive policies. For the purpose isf flaper, the reader can simply
assume that the expressiveness of our own ROWL langubgeaisd large similar to
that of a language like SWRL with both languages supportiegctimbination of
Horn-like rules with one or more OWL knowledge bases.

3 Overall Approach and Architecture

User Interface Agent

Meta-Controller

Information

e ——
Status Updating,

Housekeeping
Iodule

Qu;
=)

Ieta-Control !
Rules Quely Caching & External
Status SlanUpllylcs Communication
S Response

External
Service

Directory

Cuery Arcess Local Service Service
Decompasition Control Obfuscation Information Discovery Invocation
Module Meodule Iodule Reasoner Meodule Module

Cbfuscation Local Service Service
Rules Knowledge Discovery Invocation
Base Eules ules

Local Service
Directory

Fig. 1. Information Disclosure Agent: Overall Architecture

We consider an environment where sources of infoonadre all modeled as services
that can be automatically discovered based on richlagydased service profiles
advertised in service directories. Each service hasnarer, whether an individual or
an organization, who is responsible for setting pdiéoe it, with policies represented
as rules. In this paper we focus on access controlig®land obfuscation policies
enforced byinformation Disclosure Agents, though the framework we present could
readily be used to enforce a variety of other policies.

An Information Disclosure Agent (IDA) receives requdstsnformation or service
access. In processing these requests, it is respofwmil@aforcing access control and
obfuscation polices specified by its owner and capturéderiorm of rules. As it proc-
esses incoming queries (or, more generally, requestsagént records status infor-
mation that helps it monitor its own progress in etifay its policies and in obtaining
the necessary information to satisfy the requeste®as this updateduery status

information, a meta-control module (“meta-controller”) dynamigadfchestrates the

operations of modules it has at its disposal to processegqué&ig. 1). As these mod-

ules report on the status of activities they have lvagked to perform, this informa-
tion is processed by a housekeeping module responsible fatlingpdaery status in-
formation (e.g. changing the status of a query from bpitngessed to having been
processed). Simply put, the agent continuously cycles throoghfollowing three
basic steps:

1. The meta-controller analyzes its latest query statfssrmation and invokes one or
more modules to perform particular tasks. As it invokeséhmodules the meta-
controller also updates relevant query status informgéan updates the status of a
query from “not yet processed” to “being processed”).

2. Modules complete their tasks (whether successfully or avad report back to the
housekeeping module — occasionally modules may also reptnrewmrongoing pro-
gress in handling a task

3. The housekeeping module updates detailed status informatied tasnformation
received from other modules and performs additional hougglgactivities (e.g.
caching the results of recent requests to mitigate ffieet® of possible denial of
service attacks, cleaning up status information thabbesme irrelevant, etc.)

For obvious efficiency reasons, while an IDA corssist a number of logical mod-
ules, each operating according to a particular set of, rilestypically implemented
as a single reasoning engine. In our current work we U&SS [6], a high-
performance Java-based rule engine that supports botartbiamd backward chain-
ing, the latter by reifying "needs for facts" as fattemselves, which in turn trigger
forward-chaining rules. The following provides a briefatggion of each of the mod-
ules orchestrated by an IDA’'s meta-controller:

— Query Decomposition Module takes as input a particular query and breaks it down
into elementary needs for information, which carhdae thought of as subgoals or
sub-queries. We refer to theseQagery Elements.

— Access Control Module is responsible for determining whether a particular qoery
sub-query is consistent with relevant access contriitig® — modeled as access
control rules. While some policies can be checked jased on facts contained in
the agent’s local knowledge base, many policies requiegrobg information from
a combination of both local and external sources. Whianis the case, rather than
immediately deciding whether or not to grant accessqoeay, theAccess Control
Module needs to request additional facts — also model€ley Elements.

— Obfuscation Module sanitizes information requested in a query accordingles r
vant obfuscation policies — also modeled as rules. Asgaluates relevant obfusca-
tion policies, this module too can post requests for amiditiQuery Elements.

— Local Information Reasoner corresponds to domain knowledge (facts and rules)
known locally to the IDA

— Service Discovery Module helps the IDA identify potential sources of informatio
to complement its local knowledge. External servicestmaidentified through ex-
ternal service directories (whether public or not)cbsnmunicating via the agent’'s
External Communication Gateway. Rather than relying solely on searching service
directories, the service discovery module also allawsttie specification of what

we refer to asservice identification rules. These rules directly map information
needs on pre-specified services. An example of such rgletroe: “when looking
for my current activity, first try my calendar sem/ic When available, such rules
can yield significant speedups, while allowing the modulestert to more general
service directory searches when they fail. We culyerssume that all service di-
rectories rely on OWL-S to advertise service prof{ie=e Section 7).

— Service Invocation Module allows the agent to invoke relevant services. iinisor-
tant to note that, in our architecture, each serga® have its own IDA. As re-
guests are sent to services, their IDAs may in tuspard with requests for addi-
tional information to enforce their own policies.

— User Interface Agent: The meta-controller treats its user as just anotheduhe
who is modeled both as a potential source of domain laugel (e.g. to acquire
relevant contextual information) as well as a poténsisurce of meta-control
knowledge (e.qg. if a particular query element proves todiffto locate, the user
may be asked whether to stop looking - she could eveffdredthe option of mak-
ing an assumption about the particular value of the quenyegit).

Modules support one or more services that can each Jo&eid by the meta-
controller along with relevant parameter values. Retance, the meta-controller may
invoke the query decomposition module and request it to decem@oparticular
query; it may invoke the access control module and tagk froceed in evaluating
access control policies relevant to a particular quety; In addition, meta-control
strategies do not have to be sequential. For instéinoegy be advantageous to im-
plement strategies that enable the IDA to concurramiyiest the same or different
facts from several services.

4 An Example

The following scenario will help illustrate how IDAperate. Consider Mary and Bob,
two colleagues who work for company X. They are bo#dftechnicians who con-
stantly visit other companies. Mary's team changesifone day to the next depend-
ing on her assignment. Mary relies on an IDA to ezddrer access control policies. In
particular, she has specified that she is only willmglisclose the room that she is in
to members of her team and only when they are isdin@e building.

Suppose that today Bob and Mary are on the same teamisBuerying Mary’s
IDA to find out about her location. For the purpose @ gcenario, we assume that
Mary and Bob are visiting Company Y and are both insime building at the time
the query is issued. Both Bob and Mary have cell phoneatipe who can provide
their locations at the level of the building they are- but not at a finer level. Upon
entering Company Y, Mary also registered with the corggdincation tracking ser-
vice, which can track her at the room level. For pepose of this scenario, we fur-
ther assume that Mary's IDA needs to identify a sertltat can help it determine
whether Bob is on her team. A discovery step helpstifgea service operated by
Company X (Bob and Mary's employer) that contains upéate information about

teams of field technicians. This requires a directoity wich semantic service pro-
files, describing what each service does (e.g. typafofrhation it can provide, level
of accuracy or recency, etc.). To be interpretablagsnts such as Mary's IDAs, these
profiles also need to refer to concepts specified imeshantologies (e.g. concepts such
as projects, teams, days of the week, etc.). Once’8/HDp has determined that Bob
is on her team today, it proceeds to determine whétlegrare in the same building by
asking Bob’s IDA about the building he is in. Here Bdib#\ goes through a service
discovery step of its own and determines that a laedtecking service offered by his
cell phone operator is adequate. Completion of the sceimwolves a few additional
steps of the same type. Note that in this scenaribave assumed that Mary's IDA
trusts the location information returned by Bob’s IDAis easy to imagine scenarios
where her IDA would be better off looking for a completedependent source of
information. It is also easy to see that these tgfexenarios can lead to deadlocks.
This is further discussed later in this paper.

Mary

Wlary's TTzer Agent

C———
Policy Enforcing
Personal Service Agents
Directory
Information
— Dizclosure Agent
C———
Perspnal Agent
Directory

Task-Specific
Agents

What raom o

is Maryin?

ich building is
| Bob in right now?

team foday?

Only peaple an my team
can see the room I am
in and anly when we
are in the same building

Public Agent
Directory

Public Service
Directory

White Pages

Directory

91’5 Bob on ﬂr}x_r;g__—__

What iz the sireet o
address for Bab s
current location?

Iz Mary
Bob aflowed to
| askthis?

gE Iz thare a

service to
=T

find Bob's
current
lacation?

Cell Phone
Operator

Fig. 2. lllustration of first few steps involved in processing éxample

5 Query Status Model

An IDA’s Meta Controller relies on meta-control rules to analyze query statfos-i

mation and determine which module(s) to activate nextahMontrol rules are mod-
eled as if-then clauses, with Left Hand Sides (LHSskiffieg their premises and
Right Hand Sides (RHSs) their conclusions. LHS elemesits to query status infor-

mation, while RHS elements contain facts that resulinodule activations. Query

status information helps keep track of how far alongli?e is in obtaining the in-

formation required by each query and in enforcing releyaticies. Query status
information in the LHS of meta-control rules is expgegs according to a taxonomy of
predicates that helps the agent keep track of queries andejeiegnts - e.g., whether

a query has been or is being processed, what individual gienents it has given

rise to, whether these elements have been cleareeldyant access control policies

and sanitized according to relevant obfuscation comobties, etc. All status infor-
mation is annotated with time stamps. Specifically, gstatus information includes:

— Status predicates to describe the status of a query or query element

— A query ID or query element 1D to which the predicate refers

— A parent query ID or parent query element ID to help keep track of dependen-
cies (e.g. a query element may be needed to help chetkentamother query ele-
ment is consistent with a context-sensitive acceasral policy). These dependen-
cies, if passed between IDA agents, can also help d#tectiocks (e.g. two IDA
agents each waiting for information from the otheendorce their policies)

— A time stamp that describes when the status information was gtstkeoa updated.
This information is critical when it comes to detéming how much time has
elapsed since a particular module or external servicerwaged. It can help the
agent look for alternative external services or decidenato prompt the user (e.qg.
to decide whether to wait any longer).

A sample of query status predicates is provided in Tablerhe®f the predicates
list in the Table will be used in Section 6, when weisit the example introduced in
Section 4. Clearly, different taxonomies of predicateslead to more or less sophisti-
cated meta-control strategies. For the sake of clagifitus predicates in Table 1 are
organized in six categories: 1) communication; 2) query; 3)yqlements; 4) access

control; 5) obfuscation and 6) information collection.
Sample Status Predicates Description

Query-Received A particular query has been received
Sending-Response Response to a query is being sent
1) | Response-Sent Response has been successfully sent
Response-Failed Response failed (e.g. messagedabback)
Processing Query Query is being processed
Query Decomposed Query has been decomposed (intitiye query elements)
All-Elements-Available All query elements assodibtéith a given query are available (i.e. all
the required information is available)
2) | All-Elements-Cleared All query elements have bdeared by relevant access control policigs
Clearance-Failed Failed to clear one or more agmegsol policies
All-Elements-Sanitized All query elements have bsenitized according to relevant obfuscation
policies
Sanitization-Failed Failed to pass one or moresizftion policies
Element-Needed A query element is needed. Quenyesles may result from the decom-

position of a query or may be needed to enforcéipsl The query|
element’s origin helps distinguish between theerdnt cases

Processing-Element A need for a query elemeneingtprocessed
Element-Available Query element is available
3) | Element-Cleared Query element has been clearegldsant access control policies
Clearance-Failed Failed to pass one or more acoas®l policies
Element-Sanitized Query element has been sanitigied relevant obfuscation policies

Sanitization-Failed Failed to pass one or moresizftion policies

4) | Clearance-Needed A query or query element rteebls cleared by relevant access confrol
rules

5) | Sanitization-Needed Query or query element basetsanitized subject to relevant obfusta-
tion policies

Check-Condition Check whether a condition is setisfSpecial type of query element.

Element-not-locally- The value of a query element can not be obtaired fhe local knowl-

available edge base

Element-need-service A query element requirestiirtification of a relevant service

No-service-for-Element No service could be ideedifito help answer a query element. This
predicate can be refined to differentiate betwederdnt types of ser
vices (e.g. local versus external)

Service-identified One or more relevant servicegehbeen identified to help answer|a

6) query element

Waiting-for-service- A query element is waiting for a response to a ysent to a service

response (e.g. query sent to a location tracking servicénétp answer a quer
element corresponding to a user’s location)

Failed-service-response A service failed to provadeesponse. Again this predicate could|be
refined to distinguish between different types alflure (e.g. service
down, access denied, etc.)

service-response-available A response has beemedtby the service. This will typically result [n
the creation of an “Element-Available” status updat

Table 1. Sample list of status predicates.

Query status information is updated by asserting new {adts old information
being cleaned up by the IDA’s housekeeping module). As queryagdaine in, they
trigger one or more meta-control rules, which in tugsuft in additional query status
information updates and the eventual activation of smaae of the IDA’s modules.
As already mentioned earlier, this meta-control dechire can also be used to model
the user as a module that can be consulted by the wm=tlter, e.g. to ask for a
particular piece of domain knowledge or to decide whetherobrto abandon a par-
ticular course of action such as looking for an extesealice capable of providing a
particular query element.

6 Updating Query Status Information: Example Revisited

The following illustrates the processing of a query by@A, using the scenario in-
troduced in Fig. 2. Specifically, Fig. 3 depicts some oftiaén steps involved in proc-
essing a request from Bob about the room Mary is ighllghting some of the main
query status information updates. Bob's query about the Mary is in is first proc-
essed by the IDA’€ommunication Gateway, resulting in a query information status
update indicating that a new query has been receivedinfbisation is expressed as
a collection of(predicate subject object) triples of the form:

" St at us#predi cate" "statusl" "query-received")
"Query#queryld" "statusl" "queryl")
"Query#parentld" "statusl" nil)
"Query#tinestanp" "querystatusl" "324455")
"Query#sender" "queryl" "bob")

"Query#el ement" "queryl" "elenmentl")

"Ont ol ogy#office" "mary" "elementl1")

P e e
JENGERGENINGIN N
TTTTTTT
ODODDD®DD

Next, the meta-controller activates tQeery Decomposition Module, resulting in
the creation of two query elements — for the sakenoplitity we omit Mary's obfus-
cation policy: one query element to establish whether request is compatible with
Mary’s access control policies and the other to obtiaé room she is in:

e "Status#predicate" "status2" "clearance-needed")
e "Status#predicate" "status3" "el enent-needed")

Let us assume that the meta-controller decides to foicsts on the “clearance-
needed” query element and invokes #eeess Control Module. This module deter-
mines that two conditions need to be checked and acglydireates two new query
elements (“check-conditions™). One condition requiregcking whether Bob and
Mary are on the same team:

(triple "Status#predi cate" "status4" "el ement-needed")
(triple "Query#queryld" "status4" "el enent2")

(triple "Query#parentld" "status4" "queryl")

(triple "Query#condition" "el ement2" "Peopl e#sanme-teant')
(triple "Peopl e#tsane-teant’ "mary" "bob")

The meta controller initiates an external
service identification process by creating

Bob zends a query asking for Mary's room na. £n "element-need-serice” update

Information Collection Status

Query El t Status
{query-received {sender bob) {ask {room-no
Mary TR

The guery is decomposed and two new status
updates are generated

telement-need-service (team Bob 7))

An external service is identified

Query El it Status
{clearance-needed {User hob) {element {room-no
Mary 700 (element-needed {room-na Mary 0

Information Collection Status
(service-identified (rank 100} (endpaint
hitpafx.com: 8080 personnel) {query (deam Bob 71

The Access Control Module is activated to work
on the needed clearance. This results in the
Creation of two new status updates.

The external service iz invoked and provides
information on Bob's team: Bob is on team1

Information Collection Status
(serice-response-available (service-id service1)
team Boh team1))

Access Control Status

Through a sjimilar process, Bab and Ma_lr_\f] are
n

determined to be inthe same bullding. The
d 1y 4ren

The Local Information Reasaner is invoked
and reports it does not know Boh's team

Access Control Status
(element-cleared {user Bob) {element {room-no
Mary #x00

Eventually, the system finds the room Mary isi
and returns it to Bob.

Query Element Status
(response-sent {receiver Bob) {room-no Mary
room 1)

Fig. 3. Query status updates for a fragment of the scenario intrddudgg 2.

This condition in turn requires a series of informataatiection steps that are or-
chestrated by the meta-control rules in Mary's IDA.this example, we assume that
the IDA’s local knowledge base knows which team Maryrisout not Bob. According
the following query status information update is eventugdiyerated:

" St at us#predi cate" "status5" "el ement-not-1locally-avail able")
"Query#queryld' "status5" "el enent3")

"Query#parent|d" "status5" "el ement2")
"Peopl e#t eant’ "bob" "el ement 3")

Mary's IDA has a meta-control rule to initiate sesvidiscovery when a query ele-
ment can not be found locally. The rule, expressed iPSLB1], is of the form:

l e "Status#predi cate" ?sl "el enent-not-1locally-avail able")
(triple "Status#predi cate" ?s2 "el ement-needed ")

I e "Query#queryld" ?sl ?el)
le "Query#queryld" ?s2 ?el)

(assert (triple "predicate" ?newstatus "el enent-need-service"))
(assert (triple "Query#queryld" ?newstatus ?el)

Using this rule, the meta-controller now activates3#rvice Discovery Module. A
service to find Bob's team is identified (e.g. a serviperated by company X). This
results in a query status update of the type “service-fobaiti

l e "Status#predi cate" ?sl "el enent-need-service")

| e "Status#predi cate" ?s2 "service-identified")
(triple "Query#queryld" ?sl ?el)

I e "Query#queryld" ?s2 ?service)

I e "Query#parentld" ?s2 ?el)

(assert (triple "Status#predicate" ?newstatus "waiting-for-service-
response"))
(assert (triple "Status#queryld" ?newstatus ?service))

Note that, if there are multiple matching serviceg $ervice discovery module
needs rules to help select among them.

Let us assume that the service identified by the sedigcovery module is now in-
voked and that it returns the team that Bob is on. Htiessekeeping module updates
the necessary Query Status Information, indicating amaher things that informa-
tion about Bob’s team has been found (“element-availpland cleaning old status
information. This is done using a rule of the type:

?x <- (triple "Status#predicate" ?sl "waiting-for-service-response")

?y <- (triple "Query#queryld" ?sl ?service)

(triple "Status#predi cate" ?s2 "service-response-avail able")

(triple "Query#queryld" ?s2 ?result)

=>

(retract ?x)

(retract ?y)

(assert (tripl
(assert (tripl

" St at us#predi cate" ?newstatus "el enent-avail able"))
"Query#queryl d" ?newstatus ?result))

o @

The scenario continues through several similar stegsKg. 3)

7 The Service Discovery Model

A central element of our architecture is the abibityDA agents to dynamically iden-
tify sources of information needed by query elementar@&s of information are mod-
eled as semantic web services and may operate subjbetit own access control and
obfuscation policies enforced by their own IDA ageAcordingly service invocation
is itself implemented in the form of queries sent sg@vice’'s IDA agent.

Each service (or source of information) is describgd ServiceProfile in OWL-S
[26]. In general, &erviceProfile consists of three parts: (1) information about the
provider of the service, (2) information about the mer's functionality and (3) infor-

mation about non-functional attributes [21]. Functiort#iitautes include the service's
inputs, outputs, preconditions and effects. Non-functiottaibates are other proper-
ties such as accuracy, quality of service, price, lonattc. An example of a location
tracking service operated on the premises of Company Ybealescribed as follows:
<profileH erarchy: | nformationService rdf:|D="PositioningServ">

<l-- reference to the service specification -->

<servi ce: presentedBy rdf:resource="&Serv; #Posi ti oni ngServ"/>

<profile:has_process rdf:resource="&Process; #PositionProc"/>
<profile:serviceNane Positioning_Service_in_Y />

<l-- specification of quality rating for profile -->
<profile:qualityRating>
<profile:QualityRating rdf:|D="SERVQUAL" >
<profile:rati ngName SERVQUAL />
<profile:rating rdf:resource="&servqual ; #Good"/ >
</profile:QualityRating>
</profile:qualityRating>

<profile:hasPrecondition rdf:resource="&Process; #Locat el nConpanyY"/ >

<profile:hasQutput rdf:resource="&Process; #RoomNoCQut put"/ >
</ profileH erarchy:|nformationService>

When invoking a service it has identified, an IDA may to provide upfront all
the input parameters required by that service or it nithheld one or more of these
parameters. The latter option forces the serviceqoest the missing input parame-
ters from the IDA, thereby enabling the IDA to mdudly determine whether the
invoked service meets its policies. This option is h@wvemore computation and
communication intensive.

Service outputs are represented as OWL classes, whighth@arole of a typing
mechanism for concepts and resources. Using OWL dlsesafor some measure of
semantic inference as part of the service discovergess. If an agent requires a ser-
vice that produces as output a contextual attribute of afispigpe, then all services
that output the value of that attribute as a subtype deatpm matches.

Service preconditions and effects are also used foiceematching. For instance.,
the positioning service above has a precondition spegityat it is only available on
company Y’s premises.

8 Current Implementation: Evaluation and Discussion

Our policy enforcing agents are currently implemented BESSl a high-
performance rule-based engine in Java [6]. Domain knowledgkiding service
profiles, queries, access control policies and obfustagbalicies are expressed in
OWL [8]. As already indicated earlier ROWL the languagecurrently use to define
rules that relate to ontologies could easily be repladgddlanguages such as RuleML,
SWRL or some similar language. XSLT transformatiors wsed to translate OWL
facts and extensions of OWL (e.g. to model rules and cg)einéo CLIPS. Agent
modules are organized as JESS modules. Currently alliafan exchange between
agents is done in the clear and without digital signatimethe future, we plan to use
SSL or some equivalent protocol for all informationteaege. This will include sign-
ing all queries and responses.

We have evaluated our solution on an IBM laptop with a 1H8ORentium M CPU
and 1.50GB of RAM. The laptop was running Windows XP Praaas OS, Java
SDK 1.4.1 and Jess 6.1. As part of the evaluation, we ingpited the example intro-
duced in Section 4 and 6, using a light-weight rule/factTdet. set included 22 rules
and 178 facts and features a single semantic serviceadyredth 50 services, each
represented by 5 to 10 Jess rules. A breakdown of the i@Gfd tequired to process
Bob’s query is provided in the table below. For each nmethe table provides a cu-
mulative CPU time, namely the sum of the CPU timealloinvocations of that mod-
ule in processing the query.

Module CPU timein millisecond
Meta-Controller 28

Access-Controller 32

Local-KB 49

Service discovery / invocation 72

Total 181

While these results provide just one data point, they 4eesuggest that our solu-
tion can be viewed as practical in at least some sisgitings. It should be noted that
our solution is not JESS-specific. At the same timsjgaificant number of experi-
ments still need to be conducted to gain a more compseleennderstanding of the
scalability of our approach. Other complex issues sudeakng with deadlocks or
reasoning about provenance (i.e. possible confliciatefest of information sources
used to build a proof) and inconsistent policies also regsignificant additional
work. Differentiating between situations where a poli@s been shown not to be
satisfied and situations where the agent has not get éble to determine whether a
policy is satisfied will likely call for differentiatip between classical negation and
“negation as failure”. One possible solution here woeldduse a framework such as
SweetRules as an add-on to our semantic web reasoner [22]

9 Concluding Remarks

In this paper, we presented a semantic web frameworlyieamically interleaving
policy reasoning and external service discovery and ac®¥gghin this framework,
external sources of information are wrapped as webcgsrwiith rich semantic pro-
files allowing for the dynamic discovery and comparisbmelevant sources of infor-
mation. Each entity (e.g. user, sensor, applicatiorgrganization) relies on one or
more Policy Enforcing Agents responsible for enforcing relevant privacy and security
policies in response to incoming requests. These agemikernent meta-control
strategies to dynamically interleave semantic welsamiag, service discovery and
access. These meta-control strategies can alsadieded to treat the user as another
source of information, e.g. to confirm whether a gitect holds or to provide meta-
control guidance such as deciding when to abandon tryirdetermine whether a
policy is satisfied.

The Information Disclosure Agent presented in this pép@rst one instantiation
of our more general concept of Policy Enforcing AgeiBAs). Other policies (e.g.
information collection policies, notification prefaee policies) will typically rely on
slightly different sets of modules and different metatarstrategies, yet they could
all be implemented using the same meta-control ar¢hite@nd many of the same
principles presented in this paper. In general, PEAsamrlg taxonomy of query in-
formation status predicates to monitor their own praiesprocessing incoming
queries and enforcing relevant security and privacy pslicidney use meta-control
rules to decide which action to take next (e.g. decompagirges, seeking local or
external information, etc.). Preliminary evaluatidnaa early implementation of our
framework seems encouraging. At the same time, it teasee that the generality of
the framework also gives rise to a number of challemgasues. Future work will
focus on exploring scalability issues, evaluating traddudtsveen the expressiveness
of privacy and security policies we allow and associatedputational and communi-
cation requirements. Other issues of particular inténettide studying opportunities
for concurrency (e.g. simultaneously accessing multiple sexvices), dealing with
real-time meta-control issues (e.g. deciding when to gpver when to look for addi-
tional sources of information/web services), breakdegdlockg15], and integrating
the user as a source of information.

Acknowledgements

The work reported herein has been supported in part undePBRABntract F30602-
02-2-0035 (“DAML initiative™) and in part under ARO researclagr D20D19-02-1-
0389 ("Perpetually Available and Secure Information SystetesCarnegie Mellon
University's CyLab.

This research has also benefited from interactidtts bujo Bauer, Lorrie Cranor,
Fabien Gandon, Jason Hong, Bruce McLaren, Mike Reitér Beter Steenkiste.

References

[1] R. Ashri, T. Payne, D. Marvin, M. Surridge and S. Tayllowards a Semantic Web Secu-
rity Infrastructure. IrProceedings of Semantic Web Services Symposium, 2004.

[2] L. Bauer, M.A. Schneider and E.W. Felten. "A General dediBle Access Control System
for the Web", In Proceedings of the 11th USENIX Security Swiumo, August 2002.

[3]M. Blaze, J. Feigenbaum, an J. Lacy. “DecentralizacgsfTManagement”. In Proceedings of
IEEE Conference on Security and Privacy. Oakland, CA. May 1996.

[4] L. Ding, P. Kolari , T. Finin , A. Joshi, Y. Peng and Yesha. On Homeland Security and
the Semantic Web: A Provenance and Trust Aware Inferenceelara In Proceedings of
the AAAI Spring Symposium on Al Technologies for HomelanduBég 2005.

[5] IBM, EPAL 1.1. http://www.zurich.ibm.com/security/enteigeiprivacy/epal/.

[6]E. Friedman-Hill. Jess in Action: Java Rule-based &ysteManning Publications Com-
pany, June 2003, ISBN 1930110898, http://herzberg.ca.sandia.gov/jess/

[7] F. Gandon, and N. Sadeh. A semantic e-wallet to recopailacy and context awareness.
In Proceedings of the Second International Semantic Web Cooge(lsWC03)2003.

[8] F. Gandon, and N. Sadeh. Semantic web technologies to ilecpniwacy and context
awareness. Web Semantics Journal, 1(3), 2004.

[9] R. Hull, B. Kumar, D. Lieuwen, P. Patel-Schneider, Ah&guet, S. Varadarajan, and A.
Vyas. Enabling context-aware and privacy-conscious user datmghi Proceedings of
2004 IEEE International Conference on Mobile Data Managementada2004.

[10] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. TaBetGrosof and M. Dean, SWRL:
Semantic Web Rule Language Combining OWL and RuleML. Version 0.6.

[11] T. van der Horst, T. Sundelin, K. E. Seamons, and C.ribtdon. Mobile Trust Negotia-
tion: Authentication and Authorization in Dynamic Mobile NetworEsghth IFIP Confer-
ence on Communications and Multimedia Security, Lake Winderrgagiand, 2004

[12] L. Kagal, T. Finin, and A. Joshi. A policy language dgpervasive computing environment.
IEEE 4th International Workshop on Policies for Distributed@&ys and Networks, 2003

[13] L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, Tifr and K. Sycara, Authorization
and Privacy for Semantic Web Services, In Proceedinggmfastic Web Services Sympo-
sium, AAAI 2004 Spring Symposium Series, Stanford Universigif@nia, March 2004.

[14] L.Bauer, S. Garriss, J. McCune, M.K. Reiter, J. Roasd P Rutenbar, “Device-Enabled
Authorization in the Grey System”, Submitted to USENIX Sig@005.

[15] T. Leithead, W. Nejdl, D. Olmedilla, K. Seamons, Minglett, T. Yu, and C. Zhang, How
to Exploit Ontologies in Trust Negotiation. Workshop on Tr&&gurity, and Reputation on
the Semantic Web, part of ISWC04, Hiroshima, Japan, NoveRilfk}.

[16] OASIS, eXtensible Access Control Markup Language (XACML)

[17] OASIS, Security Assertion Markup Language (SAML)

[18] The Rule Markup Initiative. (http://www.ruleml.org)

[19] N. M. Sadeh, T.C. Chan, L. Van, O. Kwon, and K. Takiza@eeating an open agent
environment for context-aware m-commerce. In Agentciti€hallenges in Open Agent En-
vironments, 2003.

[20] N.M. Sadeh, F. Gandon, and Oh Byung Kwon. Ambient Intelligembe: MyCampus
Experience. Carnegie Mellon University Technical Report. GI8RI-05-123. June 2005.
[21] J. O'Sullivan, D. Edmond, and A.T. Hofstede. What's ieraiee? Towards accurate de-
scription of non-functional service properties. Distributedandralld Databases,

12:117.133, 2002.

[22] SweetRules. http://sweetrules.projects.semwebcentyéal.or

[23] J. Undercoffer, F. Perich, A .Cedilnik, L. Kagal, andJAashi. A secure infrastructure for
service discovery and access in pervasive computing. ACheM®&pecial Issue on Security
in Mobile Computing Environments, October 2003

[24] A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson,aeTJ. Dalton and S. Aitken, Policy
and Contract Management for Semantic Web Services. Indliogs of Semantic Web Ser-
vices Symposium, AAAI 2004 Spring Symposium Series, Stanfolitb@éa.

[25]A P3P Preference Exchange Language(APPEL1.0) http://www giBRIP3P-preferences/

[26] OWL-S: Semantic Markup for Web Services. http://www.wg 8ubmission/OWL-S

[27] Web Service Modeling Ontology, WSMO. http://www.wsng/o

[28] M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycmmantic Matching of Web Ser-
vices Capabilities, In Proceedings of the First Intl Seifndieb Conference, 2002.

[29] G. Denker, L. Kagal, T. Finin, M. Paolucci and K. Sgca®ecurity For DAML Web Ser-
vices: Annotation and Matchmaking, In Proceedings of the Seath8dmantic Web Con-
ference, 2003.

[30] J. Rao. Semantic Web Service Composition via Logic-bBsegram Synthesis. PhD The-
sis. Norwegian University of Science and Technology. Déeeri0, 2004.

[31] CLIPS. http://www.ghg.net/clips/CLIPS.html

