Semantic Web Framewor k and M eta-Control M odel to
Enfor ce Context-Sensitive Policies

Jinghai Rao and Norman Sadeh

School of Computer Science, Carnegie Mellon Unitsers
5000 Forbes Avenue,
Pittsburgh, PA, 15213, USA
{sadeh; jinghai}@s.cm. edu

Abstract. Enforcing rich policies in open environments wilcreasingly re-
quire the ability to dynamically identify externsdurces of information neces-
sary to enforce different policies. In this papsg introduce a semantic web
framework and a meta-control model for dynamicaiierleaving policy rea-
soning and external service discovery and acce#hinMhis framework, ex-
ternal sources of information are wrapped as weticss with rich semantic
profiles allowing for the dynamic discovery and garison of relevant sources
of information. Each entity relies on one or mooftvgare agents responsible
for enforcing relevant privacy and security pol&ia response to incoming re-
guests. These agents implement meta-control sieateg dynamically inter-
leave semantic web reasoning, service discoveryeaness. This research has
been conducted in the contextryCampus, a pervasive computing environ-
ment aimed at enhancing everyday campus life aheZge Mellon University
though the proposed framework extends to a numbether environments
(e.g. virtual enterprises, coalition forces, homélaecurity). Preliminary em-
pirical results appear rather promising.

1 Introduction

As Web applications aim for increasingly high levef sophistication and automa-
tion, there will be a growing need for enforcingmpex policies whose satisfaction
is not tied to predefined sources of informatiom @&xample is enforcing context-
sensitive security and privacy policies, whethepéarvasive computing applications
or in support of virtual enterprise scenarios, itimal force scenarios or interagency
collaboration in a homeland security context.. Ecifay such policies in open envi-
ronments is particularly challenging for severasens:

- Sources of information available to enforce thedecigs may vary from one prin-
cipal to another (e.g. different users may haveediht sources of location track-
ing information made available through differenit ppone operators);

— Available sources of information for the same pipat may vary over time (e.g.
when a user is on company premises her locationbwaayptained from the wire-
less LAN location tracking functionality operateg ber company, but, when she
is not, this information can possibly be obtainadher cell phone operator);

— Available sources of information may not be knovread of time (e.g. new loca-
tion tracking functionality may be installed or thger may roam into a new area).

Enforcing context-sensitive policies in open donsaiaquires the ability to oppor-
tunistically interleave policy reasoning with thgndmic identification, selection and
access of relevant sources of contextual informatichis requirement exceeds the
capability of decentralized trust management inftesures proposed so far and calls
for privacy and security enforcing mechanisms chgpaboperating external services.

We introduce a semantic web framework and a metéaomodel for dynami-
cally interleaving policy reasoning and externalviee identification, selection and
access. Within this framework, external sourcegfafrmation are wrapped as web
services with rich semantic profiles allowing foetdynamic discovery and compari-
son of relevant sources of information. In thisgrapve look more particularly at the
issue of enforcing privacy and security policiep@rvasive computing environments.
In this context, the owner of information sourcefies on one or more software
agents for enforcing relevant policies in respamsiacoming requests. These agents
implement meta-control strategies to interleaveicgoénforcement, semantic web
reasoning and service discovery and access. Thir patroduces one particular type
of agent we refer to as Information Disclosure AgefDA), who are responsible for
enforcing two types of policies: access controigies and obfuscation policies. The
latter are policies that manipulate the accuragpaccuracy with which information
is released (see section 2 for more detail). Teeareh reported here has been con-
ducted in the context dflyCampus, a pervasive computing environment aimed at
enhancing everyday campus life at Carnegie Mellpivéisity [6, 11].

The work presented in this paper builds on conceptéecentralized trust man-
agement developed over the past decade (see y@&llbas more recent research such
as [1, 2, 7]). Our own work in this area has ined\the development of Semantic e-
Wallets that enforce context-sensitive privacy aegdurity policies in response to
requests from context-aware applications implentemi intelligent agents [6, 10].
In this paper, we introduce a significantly morecetdralized framework, where
policies can be distributed among any number ofitsggnd web services. Within this
framework, our meta-control architecture interlsagemantic web reasoning and
web service discovery in enforcing context-sensifivivacy and security policies.

The remainder of this paper is organized as folld®ection 2 introduces a soft-
ware agent architecture for enforcing privacy aecusity policies. Section 3 details
the meta-control model based on query status irdtion. Section 4 discusses our
service discovery model. Section 5 presents ouentiimplementation and discusses
initial empirical results. Concluding remarks amovyided in Section 6. Additional
details on the work described in this short papesiuding a detailed description of
the operation of our meta-control architecture lpariound in [10].

2 Overall Approach and Architecture

We consider an environment where sources of infiomaare all modeled as ser-
vices that can be automatically discovered basedabnontology-based service pro-

files advertised in service directories. Each servs applied to policies, which are
represented as rules. In this paper we focus ossa@ontrol policies and obfuscation
policies enforced binformation Disclosure Agents (IDA), though the framework we
present could readily be used to enforce a vadltgher policies.

An IDA receives requests for information or servigzess. In processing the re-
quests, it is responsible for enforcing accessroband obfuscation polices specified
by its owner. As it processes requests, the agmords status information that helps
it monitor its own progress in enforcing its padisiand in obtaining the necessary
information to satisfy the request. Based on tlpidatedquery status information, a
meta-control module (“meta-controller”) dynamicalbiychestrates the operations of
modules at its disposal to process queries (Fig.A9 these modules report on the
status of activities they have been tasked to perfthis information is processed by
a housekeeping module responsible for updatingycgiatus information.

| User Interface Agent ‘

R ——
Meta-Control
Rules
Meta-Controller
Service
Directory

Query Access Local Service Service
Decomposmon Control Obfuscatwn Information Dlscovcry Invocatlon
Iod Module Iodule Reasoner Module Module

Access CObfuscation Local Service Service
Control Eules Encwledge Discovery Invocation
Eules Base Eules Eules

Query
e ——
Status Updating,

Caching &
Status Clean-Up Rules Commutication

Response
Information [§EEEEEEE Gy :
Module
External

Query

External

P ——
Local Service
Directory

Fig. 1. Information Disclosure Agent: Overall Architecture

For obvious efficiency reasons, while an IDA cotssif a number of logical mod-
ules, each operating according to a particulaofatles, it is typically implemented
as a single reasoning engine. The following praviadrief description of each of the
modules orchestrated by an IDA’'s meta-controller:

— Query Decomposition Module takes as input a particular query and breaksvilhdo
into elementary needs for information, which canhebe thought of as subgoals
or sub-queries. We refer to theseQagery Elements.

- Access Control Module is responsible for determining whether a querysuab-
query is consistent with relevant access contrtitigs — modeled as access con-
trol rules. While some policies can be checked fasted on facts contained in the

agent’s local knowledge base, many policies reqolitaining information from a
combination of both local and external sources. i\iés is the case, rather than
immediately deciding whether or not to grant actess query, théccess Control
Module needs to request additional facts — also modei€lery Elements.

— Obfuscation Module sanitizes information requested in a query acogrdo rele-
vant obfuscation policies — also modeled as rilest evaluates relevant obfusca-
tion policies, this module too can post requestaéitionalQuery Elements.

— Local Information Reasoner corresponds to domain knowledge (facts and rules)
known locally to the IDA.

— Service Discovery Module helps the IDA identify potential sources of infation
to complement its local knowledge. External servican be identified through ex-
ternal service directories (whether public or ndiy, communicating via the
agent'sExternal Communication Gateway. The service identification rules directly
map information needs on pre-specified servicescWeently assume that all ser-
vice directories rely on OWL-S to advertise seryicefiles (see Section 4).

— Service Invocation Module allows the agent to invoke relevant servicess lini-
portant to note that, in our architecture, eaclkisercan have its own IDA. As re-
guests are sent to services, their IDAs may in tespond with requests for addi-
tional information to enforce their own policies.

— User Interface Agent: The meta-controller treats its user as just anothedule
who is modeled both as a potential source of dorkaowledge (e.g. to acquire
relevant contextual information) and a potentialrse of meta-control knowledge
(e.g. if a particular query element proves tooiclift to locate, the user may be
asked whether to stop looking).

3 Query Status M ode

An IDA’s Meta Controller relies on meta-control rules to analyze queryustaifor-
mation and determine which module(s) to activate.ndeta-control rules are mod-
eled as if-then clauses, with Left Hand Sides (DHSecifying their premises and
Right Hand Sides (RHSs) their conclusions. LHS elet® refer to query status in-
formation, while RHS elements contain facts thatiliein module activations. Query
status information helps keep track of how far gltime IDA is in obtaining the in-
formation required by each query and in enforcietgvant policies. Query status
information in the LHS of meta-control rules is esgsed according to a taxonomy of
predicates that helps the agent keep track of esieand query elements - e.g.,
whether a query has been or is being processed,imdigidual query elements it has
given rise to, whether these elements have bearedeby relevant access control
policies and sanitized according to relevant okdtisa control policies, etc. All
status information is annotated with time stampsother words, query status infor-
mation includes:
— Status predicatesto describe the status of a query or query element
— A query ID or query element ID to which the predicate refers
— A parent query ID or parent query element ID to help keep track of dependen-
cies (e.g. a query element may be needed to he&pkclwhether another query

element is consistent with a context-sensitive sxcantrol policy). These de-
pendencies, if passed between IDA agents, carhalpadetect deadlocks (e.g. two
IDA agents each waiting for information from théet to enforce their policies)

— A time stamp that describes when the status information waemged or up-
dated. This information is critical when it comesdetermining how much time
has elapsed since a particular module or exteeraice was invoked. It can help
the agent look for alternative external servicesleride when to prompt the user
(e.g. to decide whether to wait any longer).

A list of query status predicates currently implaeneel can be found in [10]. In
general, query status information is updated bgréisg) new facts (with old informa-
tion being cleaned up by the IDA’s housekeeping ne)d As query updates come in,
they trigger one or more meta-control rules, whithurn result in additional query
status information updates and the eventual aativaif one or more of the IDA’s
modules. As already mentioned earlier, this metarod architecture can also be
used to model the user as a module that can beltehdy the meta-controller, e.g.
to ask for a particular piece of domain knowledgetm decide whether or not to
abandon a particular course of action such astgofar an external service capable
of providing a particular query element.

The following example illustrates a meta-controleruThis rule indicates the
status change after a service is invoked succésstutell the value of the required
query element. Once the service response is reletlie old status “waiting-for-
service-response” is cleaned, and the new stafes&nmt-available” is generated.
The rule, expressed in CLIPS [4], is of the form:

?x <- (triple "Status#predicate" ?sl "waiting-for-service-response")

?y <- (triple "Query#queryld" ?sl ?service)

(triple "Status#predicate" ?s2 "service-response-avail able")

(triple "Query#queryld" ?s2 ?result)

(_r>et ract ?x)

(retract ?y)

(assert (tripl
(assert (tripl

" St at us#predi cate" ?newstatus "el ement-avail able))
"Query#queryl d" ?newstatus ?result))

o ®

4 The Service Discovery M odel

A central element of our method is the ability DA agents to dynamically identify
sources of information needed by query elementstcgs of information are modeled
as semantic web services and may operate subjebetoown access control and
obfuscation policies enforced by their own IDA agerAccordingly service invoca-
tion is itself implemented in the form of queriemsto a service’s IDA agent. .

Each service (or source of information) is desdribg aServiceProfile in OWL-S
[9]. In general, aServiceProfile consists of three parts: (1) information about the
provider of the service, (2) information about s$evice’s functionality and (3) in-
formation about non-functional attributes [12]. Etianal attributes include the ser-
vice's inputs, outputs, preconditions and effelisn-functional attributes are other
properties such as accuracy, quality of servicigeptocation, etc. An example of a

location tracking service operated on the premié€dompany Y can be described as
follows:

<profileH erarchy: InfornationService rdf:|D="PositioningServ">
<I-- reference to the service specification -->
<servi ce: present edBy rdf:resource="&Serv; #Posi ti oni ngServ"/>
<profile:has_process rdf:resource="&Process; #PositionProc"/>
<profile:serviceNane Positioning_Service_in_Y />

<!-- specification of quality rating for profile -->
<profile:qualityRating>
<profile:QualityRating rdf:|D="SERVQUAL" >
<profile:ratingName SERVQUAL />
<profile:rating rdf:resource="&servqual ; #Good"/ >
</profile:QualityRating>
</profile:qualityRating>

<profile:hasPrecondition rdf:resource="&Process; #Locat el nConpanyY"/ >

<profile:hasQutput rdf:resource="&Process;#RoomNoCQut put"/>
</ profileHierarchy:|nfornmationService>

When invoking a service it has identified, an IDAyropt to provide upfront all
the input parameters required by that service oray withhold one or more of these
parameters. The latter option forces the servigedqoest the missing input parame-
ters from the IDA, thereby enabling the IDA to mdudly determine whether the
invoked service meets its policies. This optionh@vever more computation and
communication intensive.

Service outputs are represented as OWL classeshwgtay the role of a typing
mechanism for concepts and resources. Using OWd_alsws for some measure of
semantic inference as part of the service discopeogess. If an agent requires a
service that produces as output a contextual ateibf a specific type, then all ser-
vices that output the value of that attribute aslatype are potential matches.

Service preconditions and effects are also usedeirice matching. For instance,
the positioning service above has a preconditi@tifpng that it is only available on
company Y'’s premises.

5 Current Implementation: Evaluation and Discussion

Our policy enforcing agents are currently impleneentin JESS, a high-
performance rule-based engine in Java [5]. Domaiawkedge, including service
profiles, queries, access control policies and sizftion policies are expressed in
OWL [6]. As already indicated earlier, we use ROVYdLdefine rules. XSLT trans-
formations are used to translate OWL facts and ROWIEs into CLIPS, the rule
language supported by JESS. Currently all inforamgxchange between agents is
done in the clear and without digital signaturestHe future, we plan to use SSL or
some equivalent protocol for information exchangd without digital signatures. In
the future, we plan to use SSL or some equivaleatopol for all information ex-
change. This will include signing all queries aedponses.

We have evaluated our solution on an IBM laptophvét 1.80GHz Pentium M
CPU and 1.50GB of RAM. The laptop was running WinsloXP Professional OS,
Java SDK 1.4.1 and Jess 7.0. As part of the evatyate implemented the example

introduced in Section 4 and 6, using a light-weighie/fact set. The set included 22
rules and 178 facts and features a single sems@tiice directory with 50 services,
each represented by 5 to 10 Jess rules. A breakdbwme CPU times required to
process Bob's query is provided in the table belBar. each module the table pro-
vides a cumulative CPU time, namely the sum ofGR&) times of all invocations of
that module in processing the query.

Module CPU time in millisecond
Meta-Controller 28

Access-Controller 32

Local-KB 49

Service discovery / invocation 72

Total 181

While these results provide just one data point amlg evaluate a subset of our
functionality, they seem to suggest that our sotuttan be viewed as practical in at
least some simple settings. It should be notetldhasolution is not JESS-specific
and could be implemented in other rule languages.

6 Concluding Remarks

In this paper, we presented a semantic web frantefeordynamically interleaving
policy reasoning and external service discovery access. Within this framework,
external sources of information are wrapped as seehices with rich semantic pro-
files allowing for the dynamic discovery and comipan of relevant sources of in-
formation. Each entity (e.g. user, sensor, applinator organization) relies on one
or more software agents responsible for enforcelgvant privacy and security poli-
cies in response to incoming requests. These ageptsment meta-control strate-
gies to dynamically interleave semantic web reasprand service discovery and
access. These meta-control strategies can alsextbaded to treat the user as an-
other source of information, e.g. to confirm whethegiven fact holds or to provide
meta-control guidance such as deciding when toddratrying to determine whether
a policy is satisfied.

The Information Disclosure Agent presented in fFaper is just one instantiation
of our more general concept of Policy Enforcing Age(PEAS)[10]. Other policies
(e.g. information collection policies, notificatiqoreference policies) will typically
rely on slightly different sets of modules and eliint meta-control strategies, yet
they could all be implemented using the same matdral architecture and many of
the same principles presented in this paper. IreiggnPEAS rely on a taxonomy of
query information status predicates to monitor rtloin progress in processing in-
coming queries and enforcing relevant security gnidacy policies. Preliminary
evaluation of an early implementation of our frarodwseems encouraging. At the
same time, it is easy to see that the generalibuofframework also gives rise to a
number of challenging issues. Future work will fean further evaluating and refin-
ing the scalability of our framework, evaluatingdeoffs between the expressiveness
of privacy and security policies we allow and agsed computational and commu-
nication requirements. Other issues of particutéeriest include studying opportuni-

ties for concurrency (e.g. simultaneously accessmdtiple web services), dealing
with real-time meta-control issues (e.g. decidirfgew to give up or when to look for
additional sources of information/web servicesgaliing deadlockgs], and integrat-
ing the user as a source of information.

References

[1] L. Bauer, M.A. Schneider and E.W. Felten. "Ar@eal and Flexible Access Control Sys-
tem for the Web", In Proceedings of the 11th USESECurity Symposium, August 2002.
[2] L.Bauer, S. Garriss, J. McCune, M.K. ReiterRduse, and P Rutenbar, “Device-Enabled
Authorization in the Grey System”, Submitted to W8 Security 2005. Also available as

Technical Report CMU-CS-05-111, Carnegie Mellonuégnsity, February 2005.

[3]M. Blaze, J. Feigenbaum, an J. Lacy. “Deceiteal Trust Management”. Proc. |[EEE
Conference on Security and Privacy. Oakland, CAy V206.

[4] CLIPS. http://www.ghg.net/clips/CLIPS.html

[5]E. Friedman-Hill. Jess in Action: Java Rule@sSystems, Manning Publications Com-
pany, June 2003, ISBN 1930110898, http://herzbarsandia.gov/jess/

[6] F. Gandon, and N. Sadeh. Semantic web techiedom reconcile privacy and context
awareness. Web Semantics Journal, 1(3), 2004.

[7] T. van der Horst, T. Sundelin, K. E. Seamonsg] &. D. Knutson. Mobile Trust Negotia-
tion: Authentication and Authorization in Dynamicobfle Networks. Eighth IFIP Confer-
ence on Communications and Multimedia Security,elkndermere, England, 2004

[8] T. Leithead, W. Nejdl, D. Olmedilla, K. Seamomd. Winslett, T. Yu, and C. Zhang, How
to Exploit Ontologies in Trust Negotiation. Workghon Trust, Security, and Reputation
on the Semantic Web, part of ISWCO04, Hiroshimaadapovember 2004.

[9] OWL-S: Semantic Markup for Web Services, W3Cb®ission Member Submission,
November 2004. http://www.w3.org/Submission/OWL-S

[10] J. Rao and N.M. Sadeh. Interleaving Semantab\Reasoning and Service Discovery to
Enforce Context-Sensitive Security and Privacyddi. Carnegie Mellon University Tech-
nical Report (CMU-ISRI-05-113), July 2005. http://www-
2.cs.cmu.edu/~sadeh/Publications/More%20Complet&fs2@chreport%20%20july%20
27%202005.pdf

[11] N.M. Sadeh, F. Gandon, and Oh Byung Kwon. Agnbilntelligence: The MyCampus
Experience. Carnegie Mellon University Technicap®# (CMU-ISRI-05-123). June 2005.

[12] J. O'Sullivan, D. Edmond, and A.T. Hofstedeh&¥s in a service? Towards accurate
description of non-functional service propertiesistBbutedand Parallel Databases,
12:117.133, 2002.

Acknowledgements

The work reported herein has been supported inymater DARPA contract F30602-
02-2-0035 (“DAML initiative”) and in part under AR@search grant D20D19-02-1-
0389 ("Perpetually Available and Secure InformatBystems") to Carnegie Mellon
University’'s CyLab. Additional support has been yided by IBM, HP, Symbol,
Boeing, Amazon, Fujitsu, the EU IST Program (SWA®&jext), and the ROC’s Insti-
tute for Information Industry.

