

Experiences and Results
from Initiating Field Defect Prediction

and Product Test Prioritization Efforts at ABB Inc.
Paul Luo Li, James Herbsleb, Mary Shaw

Institute for Software Research, International
Carnegie Mellon University

Pittsburgh, PA
{paul.li,jdh,mary.shaw}@cs.cmu.edu

Brian Robinson
ABB, Inc

Wickliffe, OH
brian.p.robinson@us.abb.com

ABSTRACT
Quantitatively-based risk management can reduce the risks
associated with field defects for both software producers and
software consumers. In this paper, we report experiences and
results from initiating risk-management activities at a large
systems development organization. The initiated activities aim to
improve product testing (system/integration testing), to improve
maintenance resource allocation, and to plan for future process
improvements. The experiences we report address practical issues
not commonly addressed in research studies: how to select an
appropriate modeling method for product testing prioritization
and process improvement planning, how to evaluate accuracy of
predictions across multiple releases in time, and how to conduct
analysis with incomplete information. In addition, we report
initial empirical results for two systems with 13 and 15 releases.
We present prioritization of configurations to guide product
testing, field defect predictions within the first year of deployment
to aid maintenance resource allocation, and important predictors
across both systems to guide process improvement planning. Our
results and experiences are steps towards quantitatively-based risk
management.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Complexity metrics,
Process metrics, Product metrics

D.2.9 [Software Engineering]: Management – Software quality
assurance, Cost estimation

General Terms
Management, Measurement, Economics, Reliability

Keywords
Deployment and usage metrics, Software and hardware
configuration metrics, Software reliability modeling, System test
prioritization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSE'06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

1. INTRODUCTION
The US Department of Commerce estimates that software field
defects cost the U.S. economy an estimated $59.6 billion annually
and that over half of the costs are borne by software consumers
and the rest by software producers [29].
ABB is interested in mitigating the risks associated with field
defects for itself and for its customers. Software reliability
modeling may enable risk mitigation by guiding testing to remove
problems before deployment [26], by enabling accurate
maintenance resource allocation [18], and by focusing
improvement efforts to maximize return on investments [3].
In this paper, we report experiences and initial empirical results
from initiating risk management activities at ABB. Both technical
results and insights on important practical issues associated with
modeling field defects in a real-world setting are reported.
Previous studies have reported results from modeling software
field defects for risk mitigation (e.g. [31], [30], [13]); however,
few studies have reported experiences on the process of arriving
at such results in an industrial setting.
Our experiences provide insights in the following areas:

• How can a systems development organization select an
appropriate modeling method for product testing
(systems/integration testing) prioritization and process
improvement planning?

• How can a systems development organization evaluate the
accuracy of predictions across multiple releases in time?

• How can a systems development organization conduct analysis
with incomplete information?

In addition, our technical results address the following empirical
research questions:

• How can a systems development organization prioritize
configurations (i.e. sub-systems and software platforms) for
product testing?

• What modeling method produces the most accurate predictions
of the number of field defects in the first year after deployment
for maintenance resource planning?

• What categories of predictors (product, development,
deployment and usage, or software and hardware
configurations) have predictors that may be related to field
defects and indicate possible areas for future improvement
efforts?

413

We examine data from two real-time commercial software
systems: a monitoring system and a controller management
system. We have data from 13 releases spanning ~5 years for the
first system and data from 15 releases spanning ~9 years for the
second system.
Selecting an appropriate modeling method is an important
practical issue because many modeling methods have been
proposed/used (e.g. neural networks [15], trees [16], linear
modeling [26]); however, research studies have provided little
guidance regarding how to select an appropriate method given the
goals/objectives of an organization. We find that accuracy, the
criterion that research studies use to compare modeling methods,
may not be the most important criterion in certain settings.
Explicability (the ability to attribute effects to a predictor) and
quantifiability (the ability to quantify effects of a predictor) of
modeling methods may be more important considerations.
Evaluating accuracy across multiple releases in time is an
important practical issue because evaluation techniques used in
prior studies are not well suited for today’s software systems,
which have multiple releases in time that implement additional
features. Cross-validation (i.e. leave-one-out cross-validation) and
data withholding (i.e. random sub-sampling) are traditional
statistical procedures for evaluating accuracy of predictions;
however, we find that these procedures may not be adequate.
Dealing with missing/incomplete information is important to
practitioners because information is often not available in real-
world settings and conducting analysis without important
categories of predictors (e.g. deployment and usage predictors for
field defect predictions) jeopardizes the validity and accuracy of
results; however, methods to deal with missing/incomplete
information are not discussed in research studies. We find that by
acknowledging incomplete information and collecting data that
capture similar ideas as the missing information, we are able to
produce more accurate and valid models and motivate better data
collection.
We produce empirical research results on product testing
prioritization (i.e. which sub-systems and software platforms to
focus testing) because few studies have examined product testing
(referred to as systems/integration testing in other organizations,
explained in section 2). Most studies have focused on lower-level
testing (e.g. changes [25], files [31], and modules [14]). However,
product testing is sometimes the only place where complex
interactions/interface problems can be detected. We prioritize the
fault-proneness of software sub-systems and software platforms to
guide product testing.
We compare modeling methods because many modeling methods
have been used to predict the number of field defects in previous
studies; however, few studies have compared the accuracy of
predictions (which is the correct criterion when the objective is to
predict the number of field defects, explained in section 5.2) in a
real-world setting. In this study, we compare methods used in
prior work (discussed in section 3.4).
Finally, we evaluate predictors because many different categories
of predictors (i.e. metrics available before release) have been
examined in the literature for the purposes of
predicting/modeling/explaining software defects. Various studies
(e.g. [9], [25], [4], [26]) have found each category of predictors
(product, development, deployment and usage, and software and
hardware configurations) to be important using various techniques

(discussed in section 5.1). However, few studies have compared
the importance of these categories of predictors simultaneously. In
this study, we find that development, deployment and usage, and
software and hardware configurations predictors to be important.
Our experiences may help practitioners successfully initiate risk-
management activities by providing insights and solutions
regarding important practical issues that are not well addressed in
prior research studies. The technical results in this experience
report provide a point of reference for other researchers.
Section 2 describes improvement initiatives at ABB and the two
systems we examined for this study. Section 3 provides context
for our technical results. Section 4 describes issues we
encountered in the data collection process. Section 5 discusses the
issues we encountered in the data analysis process. Section 6
discusses the technical results of our analysis and how the results
can help achieve the goals of the improvement initiatives at ABB.
Section 7 summarizes the insights gained. We conclude in section
8.

1. SETTING
In our study, we examine two software products, which we will
refer to as Product A and Product B, from ABB, a large real-time
systems development organization with customers and production
facilities around the world. ABB has recently initiated
quantitatively-based risk management initiatives for its software
operations.
The goals of the activities include:

• Improving testing to remove defects that customers may
encounter

• Predicting field defects to enable more accurate maintenance
planning

• Planning for future process improvement efforts
Product A is a real-time monitoring system. The core system has a
growing code base of approximately 300 KLOC through 13
releases. The project has had approximately 127 thousand changes
committed by approximately forty different people. The system
has three major add-on packages that provide additional
functionality. Field defect data from the add-on packages are
included in the data. Product A’s change history dates back to
2000.
Product B is a tool suite for managing real-time modules. The
system has a stable code base of approximately 780 KLOC
through 15 releases. Complete change information and author
information are not available because of problems with the
version control system (discussed in section 4.3). Based on expert
information, approximately fifty people have worked on the
project. The project dates back to 1996.
At ABB, product testing is testing the integrated software product.
This testing process is commonly referred to as system testing or
integration testing in the literature. However, ABB has other
testing processes that it refers to as systems testing and integration
testing.

2. PROJECT CONTEXT
In this section, we present related work in the area of software
reliability modeling. The related work provides context for our
technical results.

414

2.1 Type of modeling
In this paper, we establish relationships between characteristics of
the two software systems and field defects as well as predict the
number of field defects within a time interval.
Field defect modeling in prior work generally belongs to one of
four categories:

• Relationships: These studies establish relationships between
predictors and the field defects. For example, Harter et al. [3]
establish a relationship between an organization’s CMM level
and the number of field defects in projects completed by the
organization.

• Classifications: These studies predict whether the number of
field defects is above a threshold for a given observation. For
example, Khoshgoftaar et al. [9] classify modules as risky (will
contain at least one field defect) or not risky (no field defects)
for changed modules.

• Quantities: These studies predict the number of field defects.
For example, Khoshgoftaar et al. [14] predict the number of
defects for modules of two software systems.

• Rates of occurrences over time: These studies predict the field
defect occurrence rate. For example, Kenny [6] predicts the
defect occurrence pattern as captured by the Weibull model for
two IBM systems.

2.2 Purpose of modeling
We establish relationships (i.e. determine important predictors) in
order to prioritize product testing and to plan for future
improvements, and we predict quantities to improve maintenance
resource planning.
Many previous studies have focused on determining where in the
code to test. Few studies (e.g. Mockus et al. [26]) have focused on
which software and/or hardware configurations to test. In Mockus
et al. [26], the authors analyze customer configurations and
determine the defect proneness of different operating systems and
product lines (i.e. hardware configurations). The authors suggest
that the results can be used to improve product testing.
Predicting the number of field defects within the first year after
deployment can enable accurate initial maintenance resource
allocation. We predict for one year because budgeting at ABB is
performed annually. Furthermore, the first year after deployment
contains ~80% of all field defects for Product A and ~90% of all
field defects for Product B.
Forecasting field defect rates (which provide information on both
the total number of field defects and how the field defects will
distributed over time) is more useful than predicting the number
of field defects in the first year after deployment [21]. However,
field defect rate forecast require fitting/predicting software
reliability growth models (SRGMs) as explained in Li et al. [21].
We are not able to successfully fit/predict SRGMs for the systems
in this study.

2.3 Categories of predictors
We present results comparing the importance of different
categories of predictors of field defects.
Metrics available before release are predictors, which can be used
by metrics-based modeling methods to predict quantities and to
establish relationships. We categorize predictors used in prior

studies using an augmented version of the categorization schemes
used by Fenton and Pfleeger in [1] and Khoshgoftaar and Allen in
[8]:

• Product metrics: metrics that measure the attributes of any
intermediate or final product of the software development
process. Product metrics have been shown to be important
predictors by studies such as Khoshgoftaar et al. [9].

• Development metrics: metrics that measure attributes of the
development process. Development metrics have been shown to
be important predictors by studies such as Mockus et al. [25].

• Deployment and usage metrics (DU): metrics that measure
attributes of deployment of the software system and usage in
the field. DU metrics have been shown to be important
predictors by studies such as Jones et al. [4].

• Software and hardware configuration metrics (SH): metrics that
measure attributes of the software and hardware systems that
interact with the software system in the field. SH metrics have
been shown to be important predictors by Mockus et al. [26].

Most previous studies have not examined all the categories of
predictors simultaneously. An exception is Li et al. [21], which
compared the importance of predictors in all the categories
simultaneously for an open source operating system. In this paper,
we examine the importance of all categories of predictors
simultaneously for Product A, but are not able to perform the
same analysis for Product B (explained in section 4.2)

2.4 Modeling methods
We compare seven modeling methods from the literature for
predicting the number of field defects in the first year after
deployment:
1. Moving averages, used in Li et al. [18]
2. Exponential smoothing, used in Li et al. [18]
3. Linear regression with model selection, used in Khoshgoftaar et

al. [14] and Khoshgoftaar et al. [11]
4. Clustering, used in Khoshgoftaar et al. [13]
5. Trees, used in Khoshgoftaar and Seliya [16]
6. Neural networks, used in Khoshgoftaar et al. [15] and

Khoshgoftaar et al. [14]
7. Ratios, used in Li et al. [19]
These methods have been shown to be effective at predicting the
number of field defects in other settings. In this paper, we
compare the accuracy of predictions for two commercial software
systems.
We discuss selecting a modeling method to guide product testing
and to guide process improvement planning in section 5.1.

3. DATA COLLECTION PROCESS
In this section, we discuss our data collection process. We
describe the data sources and the metrics we collected from the
data sources. We also discuss several issues we encountered in the
data collection process.

3.1 Data sources
The data sources we used in our project were a request tracking
system, a version control system, and experts.
Serena Tracker is the request tracking system used by ABB. An
important feature of Tracker is data entry rules, which allows rules
to be constructed and enforced automatically (e.g. reported

415

release field must be filled out). This feature guarantees that key
data fields are available across products and releases. More
information on Tracker is at [36].
Microsoft Visual Source Safe (VSS) is a version control system
used by ABB. VSS has features commonly found in all version
control systems (e.g. check-in, check-out, history, etc.). More
information is at [24].
Experts are personnel who have extensive experience in a given
area. For example, the experts for Product A and Product B have
been team leads for the respective products. The expert for
Tracker is the lead for the problem tracking and reporting area.
Working with experts allowed us to select the correct information
to examine. Without the experts’ help, we would have needed a
significant amount of time to familiarize ourselves with the data
sources. By working with experts to select a subset of product
metrics, we ensured that the metrics used were relevant to the
organization (discussed in section 4.2.1). This reduction in the
number of predictors mitigated the effects of multi-co-linearity
and reduced the chances of random correlations. By working with
experts to group application areas, we ensured that the groupings
corresponded to actual sub-systems (discussed in section 4.2.4).

3.2 Metrics
A field defect at ABB is defined as a problem report in Tracker
that has been determined to be a valid problem and whose
submitted date is after the date of deployment (for a given
release). Non-valid problems include problems that are
determined to be: not a problem, works as designed, duplicates, or
forwarded (i.e. a problem with another product).

3.2.1 Product metrics
We downloaded labeled versions of the source code for Project A
from VSS and used the metrics tool Understand for C++ by STI
[37] to compute the product metrics. Metrics were calculated for
the entire release (e.g. summed across all files in the release).We
were not able to download the source code for several releases of
Project B due to problems with VSS (explained in section 4.3)
and therefore did not include product metrics in the analysis for
Project B.
Over 100 product metrics were available using Understand for
C++; however, we used 32 in our study. We arrived at the subset
of product metrics by working with experts familiar with systems
at ABB to select predictors that were relevant (i.e. that might be
related to field defects) and that captured each source of variation
found in product metrics identified by Munson and Khoshgoftaar
in [27].
The 32 product metrics collected are organized by the sources of
variation (described in Munson and Khoshgoftaar in [27]) they
capture in Table 1. (Some predictors capture multiple sources of
variance, but are not displayed in multiple categories) Complete
descriptions of the metrics are available from STI [37].

Table 1. Product metrics

Source of variance Predictor collected

Control: control
complexity

Possible normal paths
Essential complexity

Knots (overlapping jump statements)
Max Nesting

Strict Cyclomatic complexity
Halstead’s Vocabulary

Source of variance Predictor collected

Volume: size or
volume count

Classes
Files

Functions
Lines of code

Unique operands
Total operators
Total operands

Halstead’s Length
Halstead’s Volume

Action: distinct
operations and

statements

Global Deref Set
Global Deref Use
Unique operators

Global Use
Global Set

Global Return
Global Return

Effort: mental effort
required to generate

program

Halstead’s Difficulty
Halstead’s Effort

Modularity: Depth of
syntax tree

Base classes
Coupling

Inheriting classes
Depth of inheritance tree

Fanin (incoming calls + global vars read)
Fanout (calls to others + global vars set)

InFlow (incoming class)
OutFlow (calls to others)

3.2.2 Development metrics
We computed development metrics using change history logs in
VSS and problem report information in Tracker. We were not able
to collect development metrics from change history logs for
Product B due to problems with VSS (explained in section 4.3).
We created rough categories of development metrics based on the
descriptions of the development metrics in the literature. The
predictors we collected covered all but one of the categories.
The groupings of development metrics, examples of development
metrics from the literature, and predictors used in our study are in
Table 2.

Table 2. Development metrics
Group

description
Examples from

literature Predictor collected

Problems
discovered

prior to
release

number of field
problems in the prior

release, used in
Ostrand et al. [31]

Targeted issues: for a
release, problems whose fix
is going to be in the release
Open issues: for a release,
reported problems that have

not been examined at the
time of release

Changes to
the code

increase in lines of
code, used in

Khoshgotaar et al.
[17]

Deltas: changes in the code
repository

Added: lines added
Deleted: lines deleted

Changed: lines changed

People in
the process

number of updates by
designers who had 10
or less total updates in
entire company career,

both used in
Khoshgoftaar et al.

[17]

Authors: number of
different authors making

changes to the code
Bottom Half Authors:
changes by authors who

ranked in the bottom 50% in
terms of the total number of

changes to the project
Process

efficiency
CMM level, used in

Harter et al. [3] NONE COLLECTED

416

3.2.3 Deployment and usage metrics
ABB did not officially collect deployment and usage information
(e.g. the number of installations) for the two systems. Despite this
limitation, by talking to experts, we were able to collect data from
available data sources that we felt provided information on
possible deployment and usage of the systems. We used the data
with the specific aim of motivating better data collection: if the
deployment and usage predictors we collected were shown to be
statistically significant, then better deployment and usage
information might be justified. We considered the type of release
and the amounts of elapsed time between releases. Both kinds of
predictors might give an indication of the number of users
exercising a release (and thus the amount of usage). For example,
a major release might have more users than a minor release. A
release that was in the field for a longer period of time before the
next release might have more users than a release was in the field
for a shorter period of time before the next release.
The deployment and usage metrics we collected are in Table 3.

Table 3. Deployment and usage metrics
Predictor collected Description

Service pack If the release is a major release, a minor
release, or a service pack

Months since 1st
released

Months since the system was first released

Moths since previous
release

Months since the last release (service
pack, minor release, or major release)

Months until next
release

Months before the next release (service
pack, minor release, or major release)

3.2.4 Software and hardware configuration metrics
Information on software and hardware configurations in use was
not available at the systems level (e.g. the number of systems with
a specific configuration or the number of systems using an
operating system). Information was available at the individual
defect level. Problem reports had data fields describing the
application, the operating system, and the Internet Explorer
version (for Product A only) associated with the defect.
We worked with experts to group applications into application
groups (i.e. sub-systems) and to group operating systems into
operating systems groups (i.e. software platforms) for product
testing prioritization. Both Product A and Product B ran under
versions of the Windows operating system. Product A also used
versions of Internet Explorer.
The software and hardware configurations metrics we collected
are in Table 4.

Table 4. Software and hardware configuration metrics
Predictor collected Description

Sub-system Groups of applications (functionality)

Operating system Groups of versions of the Windows
operating system

Internet Explorer version
(Product A only)

Groups of versions of the Internet
Explorer

3.3 Issues during data collection
In this section we briefly discuss some of the issues we
encountered during data collection. The issues are divided into
two categories: tools and process.

3.3.1 Tools
There was one technical problem with VSS. At least one file in
VSS was corrupted for Product B. VSS reported an error getting

the history of the file. This error prevented us from collecting
some development predictors and all product predictors for
Product B.
Problems with retrieving historical information from version
control systems were not isolated to Microsoft VSS. Problems
retrieving information from open source version control systems
had been reported in Li et al. [20].
After talking to experts, we decided to manually by-pass the
corrupt file (i.e. creating batch scripts to enumerate the files to
examine). This process had been planned but had not been
implemented.

3.3.2 Process
There were three problems with how Tracker and VSS were used.
Neither Product A nor Product B recorded the phase of
development in which a defect was discovered. Labels (in VSS)
were not used correctly in Product A. Also, labels were not used
at all in Product B.
First, the problem reporting form did not include a field for the
phase found (e.g. unit testing, product testing, or field); therefore,
the number of development defects metric was not available. We
were able to use the time of release and build number to determine
if a defect is a field defect. However, we could not determine the
number of development defects because we were not able to
attribute a non-field defect to a particular release. The
development periods of service packs and major releases often
coincided and no other information was available to distinguish
between releases.
We used a combination of targeted changes and open issues
instead. Targeted changes counted problems found prior to release
that were earmarked to be fixed in the current release; however,
targeted changes did not count problems found during
development that were deferred to later releases. Open issues
counted reported problems that had not been reviewed at the time
of release; however, open issues included problems that were not
found during development (e.g. problems from previous releases).
Secondly, neither project used labels correctly. We double
counted some development information for Product A (e.g.
attributed changes to both releases when computing development
metrics) because Product A did not have separate development
branches for major releases, minor releases, and service packs.
The labels increased incrementally. Sub-labels (e.g. x.x for major
releases, x.x.x for service packs) were not used. Some service
packs were released very close in time to major releases and their
developments overlapped. After talking to experts we concluded
that all development information since the previous major release
should be counted as development information for both the next
major release and service packs in the interim.
Finally, Product B did not use labels. The development team
decided that the labeling system in VSS was not flexible enough.
The team often wanted to update only one file; however VSS did
not allow single file updates in a label (i.e. all files in the
repository must be relabeled even if only one file had been
changed since the last label). The development team decided that
the re-labeling process was too time consuming and elected not to
use labels. Only deployment and usage metrics, development
metrics from Tracker, and software and hardware configurations
metrics from Tracker were available for Product B.

417

4. DATA ANALYSIS PROCESS
In this section we describe our analysis process. We discuss the
methods we used to identify important predictors of field defects
and procedures we used to evaluate predicted numbers of field
defects within the first year after deployment.
All analysis was performed using the open source analysis
package R [32].

4.1 Important predictor identification for
product testing prioritization and
improvement planning
In order to identify fault-prone configurations for product testing
prioritization and important characteristics of the software system
for improvement planning, we need to identify important
predictors. Three methods are commonly used to establish a
predictor as important in the literature:
1. Show high correlation between the predictor and field defects.

This method is recommended by IEEE [6].
2. Show that the predictor is selected using a modeling method

with selection. This method is used by Mockus et al. [26].
3. Show that the accuracy of predictions improves with the

predictor included in the prediction model. This method is used
by Jones et al. [4].

We used methods 1 and 2 to determine important predictors in our
study. Due to data constraints, we did not use method 3.
We used rank correlation in our analysis to identify important
predictors to guide process improvement planning. If there was a
strong statistical relationship between a characteristic of the
software system (i.e. a predictor) and the number of field defects,
then it might be possible to use the information to improve
quality.
We use rank correlation because our data are not normally
distributed and because we want to minimize the effects of
observations that are far away from the mean [4]. Rank correlation
is ideal for establishing the importance of a single predictor.
However, some predictors capture the same source of variation
and are highly correlated with each other (e.g. lines of code and
Cyclomatic complexity [2]). In addition, multiple sources of
variation may need to be considered and accounted for.
We used general linear modeling methods with model selection,
which identified predictors that complemented each other (i.e.
capture different source of variation) for identifying fault prone
configurations to guide product testing and for identifying
important predictors to guide process improvement.
We used BIC (Bayesian Information Criterion) model selection to
determine important areas for product testing (using Poisson
regression) and to determine important predictors (using Linear
regression). BIC is better suited to select predictors to explain
causation [38] (where as Akaike Information Criterion (AIC) is
better suited for selecting predictors for prediction).
Many modeling methods were available to analyze the data;
however, not all modeling methods were appropriate given our
objectives. In order to prioritize product testing we needed a
modeling method to have explicability (i.e. being able to identify
the faulty configuration) and quantifiability (i.e. being able to
quantify the fault-proneness of one configuration relative to

another). In order to plan for process improvement we also needed
to have explicability (i.e. being able to identify the predictors that
may be related field defects) and quantifiability (i.e. being able to
quantify the relative importance of the predictors). Previous
studies focused on using accuracy to select a modeling method;
however, accuracy was not the main consideration for identifying
important predictors for product testing prioritization and
improvement planning.
We elected to use general linear modeling methods (Poisson
regression and Linear regression) because they clearly identified
the important predictors and quantified the relative importance of
the predictors. Moving averages and exponential smoothing used
in Li et al. [18] did not use predictors. Neural networks used by
Khoshgoftaar et al. in [14], discriminant analysis with principal
component analysis used by Khoshgoftaar et al. in [14], and
clustering used by Khoshgoftaar et al. in [13] obfuscated the
effects of an individual predictor by combining predictors. The
ratios method used by Li et al. in [19] required choosing a
predictor a-priori and did not allow comparison of the importance
of the predictors. The trees method used in Khoshgoftaar and
Seliya [16] could not be used to compare the relative importance
of different predictors.
We used a four step process to prioritize product testing. First we
elicited application groupings (i.e. sub-systems) and operating
systems groupings from the experts. Then, as validation, we asked
the experts to name the most defect-prone sub-systems based on
their experience. This set of sub-systems served as a possible
target for our analysis (i.e. the quality of our analysis depends on
our ability to identify these defect-prone sub-systems). We
included predictors that captured differences between releases (i.e.
confounds). In our analysis, all the predictors in section 4.2 were
included in the analysis as confounds. Finally, after we had
determined the fault proneness of different areas, we validated the
results by asking experts if the results matched their experiences.

4.2 Field defect prediction for maintenance
resource allocation
Since ABB allocates maintenance resources based on the number
of expected field defects, in order to enable accurate initial
maintenance resource allocation, we need to accurately predict the
number of field defects within the first year after release. Given
this objective, accuracy is the most important consideration.
We used a forward prediction evaluation procedure to analyze the
accuracy of predictions of the metrics-based modeling methods.
Previous studies used either cross-validation [33] or random data
with-holding [5]; however, neither procedure is realistic. In a
realistic setting, only a non-random subset of data is actually
available before release (i.e. only data from historical releases).
Secondly, both techniques assumed that predicting for a past
observation was the same as predicting for a future observation;
however, the software systems and software development
organizations were constantly evolving. We used a selective data
withholding procedure: forward prediction evaluation. For each
software release in time, we withheld all information not available
at the time of release. We then used only information available at
the time of release to predict for the next release. We evaluated
the prediction for that release only. We repeated this process for
each release in time. This technique better accounted for changes

418

in time and gave a more realistic assessment of the accuracy of the
modeling methods.

For confidentiality reasons, we evaluate each individual
prediction using absolute relative error. Absolute relative error is
defined as the sum over all observations, of the absolute value of
the difference between the predicted value and the actual value
divided by the actual value.

ỹi = predicted number of field problems for observation i

yi = actual number of field problems for observation i

n = total number of observations

ARE = ∑
=

−n

i i

ii

y
yy

n 1

1

5. TECHNICAL RESULTS
In this section, we present the results of our analysis and how the
results can help achieve the goals of ABB’s initiatives. First, we
present the relative fault-proneness of different sub-systems and
software platforms to guide product testing. Then, we present the
accuracy of predictions of the number of field defects within the
first year after deployment to aid maintenance planning. Finally,
we present the important predictors of field defects to guide future
improvements.

5.1 Product testing prioritization
We present the results of our Poisson regression, where we
regressed predictors described in section 4.2 on the number of
field defects. Due to confidentiality restrictions, we do not
identify the sub-systems or give exact quantities.

We present the four most defect-prone sub-systems (labeled 1-4)
and their field defect tendency relative to the least defect-prone
sub-system for Product A and Product B (e.g. sub-system 1 will
experience ~9.85x more field defects than the least defect-prone
sub-system). There are 38 sub-systems for Product A and 19 sub-
systems for Product B. We present the faultiest Windows
configuration relative to the safest Windows configuration. There
are only two Windows configurations for both Product A and
Product B. Internet Explorer version is not selected as a
significant predictor. Other predictors selected (i.e. confounds)
and their effects are indicated. Each effect is defect-proneness
relative to a single unit increase in the predictor’s value (e.g. for
Product A an additional author making changes for a release will
decrease the number of field defects observed by ~7%).

The results in table 5 and 6 present the effect of each predictor
after accounting for the effects of the other predictors in the
regression. Our results are more accurate than the results of
simpler methods (e.g. comparing counts) that do not account for
differences between releases (i.e. confounds. The first column lists
the sub-systems, software platforms, and confounds. The second
column indicates their relative fault-proneness.

Table 5. System test prioritization for Product A
Product A Predictors Estimated Effect
Sub-system:
 Sub-system 1 9.85x
 Sub-system 2 8.39x
 Sub-system 3 8.13x
 Sub-system 4 7.22x
Software platforms:
 Not Windows Server Versions 1.91x
Confounds:
 Service Pack .18x
 Open Issues .999x
 Num Authors .93x
 Months Before Next Release 1.16x
 Months Since 1st Release .97x

Table 6. System test prioritization for Product B
Product B Predictors Estimated Effect
Sub-system:
 Sub-system 1 8.21x
 Sub-system 2 5.56x
 Sub-system 3 4.52x
 Sub-system 4 3.68x
Software platforms:
 Win95/98 3.00x
Confounds
 Open Issues .995x
 Months Before Next Release 1.07x
 Months Since 1st Release 1.02x

The sub-systems identified by experts as the most defect-prone are
among the top 4 identified in our analysis. The experts also
corroborate our results by concluding that each of the most defect-
prone sub-systems identified is trouble-some based on past
experiences.
Our analysis is not intended to replace expert knowledge. Our
results complement expert intuition by providing quantitative
evidence. This evidence will allow test engineers to back their
decisions and recommendation with quantitative evidence. Our
results also preserve knowledge. Experts may leave the company
or may be promoted to other positions. Our process can transfer
expert knowledge to other test engineers.
Using the results, ABB can better allocate testing resources. The
product test team for Product A has used the product test
prioritization results to uncover additional defects in a sub-system
previously thought to be low-defect.

5.2 Field defect predictions
We present the results of our predictions using 16 modeling
methods and our forward prediction evaluation procedure. We are
able to predict within ~24.6% ARE over three releases of Product
A and within ~77.1% ARE over six releases of Product B for only
major/minor releases (i.e. no service packs). The results for
Product A are in Table 7, and the results for Product B are in
Table 8. The three most accurate methods for each release are
bolded.
We find that we are not able to predict accurately for service
packs (SP), minor releases, and major releases together. The most
accurate method for Product A (the clustering method) produces
predictions with ~64.3% relative error for 4 releases. Of the
methods that predicted for the most number of releases, the best
method (Moving Averages of 1 Release) produces predictions

419

with ~469.8% relative error. The most accurate method for
Product B (Moving Average of 3 Releases) produces predictions
with ~179.4% relative error for 10 releases. Of the method that
predicted for the most number of releases, the best method
(Neural Networks) produces predictions with ~213.8% relative
error.

Table 7. ARE of predicted field defects for Product A
ARE Product A R1.0 R1.1 R1.2 Avg
Moving Average 1 Release 3.0% 51.7% 19.2% 24.6%
Moving Average 2 Releases 54.0% 50.0% 52.0%
Moving Average 3 Releases 37.8% 37.8%
Exponential Smoothing 2 Releases 53.6% 44.6% 49.1%
Exponential Smoothing 3 Releases 53.9% 53.9%
Linear Regression with Model
Selection 17.6% 17.6%

Clustering 50.0% 50.0%
Tree Split with 2 Releases 3.0% 51.7% 19.2% 24.6%
Tree Split with 3 Releases 3.0% 54.0% 19.2% 25.4%
Tree Split with 4 Releases 3.0% 54.0% 62.1% 39.7%
Neural Network 2.3% 52.3% 53.9% 36.2%
Ratios 51.4% 48.4% 22.0% 40.6%

Table 8. ARE of predicted field defects for Product B
ARE Product B R2.0 R3.0 R3.1 R3.2 R4.0 R4.1 Avg

Moving Average
1 Release 61.9% 17.6% 65.3% 1628.6% 332.1% 27.3% 662.7%

Moving Average
2 Releases 31.4% 71.1% 1128.6% 207.1% 20.5% 452.1%

Moving Average
3 Releases 9.8% 62.0% 919.0% 154.8% 136.4% 403.4%

Exponential
Smoothing 2
Releases

 29.0% 70.1% 1216.8% 229.2% 12.0% 486.0%

Exponential
Smoothing 3
Releases

 410.7% 410.7%

Linear
Regression with
Model Selection

 46.2% 70.6% 785.7% 121.4% 118.8% 342.0%

Clustering 31.4% 71.1% 564.3% 66.1% 45.5% 225.3%
Tree Split with 2
Releases 61.9% 17.6% 65.3% 1628.6% 332.1% 27.3% 662.7%

Tree Split with 3
Releases 61.9% 31.4% 71.1% 1628.6% 332.1% 27.3% 662.7%

Tree Split with 4
Releases 61.9% 9.8% 62.0% 1628.6% 332.1% 4.5% 655.1%

Neural Network 61.0% 32.4% 70.4% 1628.6% 332.1% 45.7% 668.8%
Ratios 36.9% 136.7% 70.9% 160.2% 62.6% 8.4% 77.1%

The poor accuracy of predictions for Product B is mostly caused
by one release (Release 3.2). Release 3.2 has ~85% fewer field
defects than the average release. An average release has ~6.4x
more field defects. None of the modeling methods we examined is
able to predict accurately for this release.
We conjecture that data limitations may have contributed to the
poor results. There are only 4 major and minor releases of Product
A and 8 releases of Product B. Other research studies examine
modules or individual installations and have significantly more
observations. For example, the study by Khoshgoftaar et al. [16]
uses over 500 observations and the study by Mockus et al. [26]
uses over 1000 observations. Limited information may have
reduced effectiveness of complex metrics based methods and the
benefits of metrics in many categories as described by Li et al.
[21].

Using the results, ABB can allocate initial maintenance resources.
If the estimate costs of resolving a field defect are available, then
the predicted number of field defects can be combined with the
estimated costs to project the amount of maintenance resources
needed for the first year after deployment. ABB will need to
evaluate if the error in predictions (the ~25% ARE for Product A
and the ~77% ARE for Product B) are tolerable.

5.3 Plans for improvement
We present results of our analysis using rank-correlation and
linear modeling with model selection.
The top three predictors of field defects selected using Spearman
rank correlation for Product A and Product B are in Table 9.
These predictors are more statistically important than the other
predictors.

Table 9. Spearman rank correlated predictors
Product A Predictors Correlation P-Value
 Open Issues 0.770 0.021
 Target Changes 0.803 0.015
 Service Pack -0.520 0.162
Product B Predictors Correlation P-Value
 Months Since 1st Release -0.683 0.009
 Open Issues -0.643 0.015
 Target Changes 0.424 0.130

The top two selected predictors using BIC model selection for
each product are in Table 10. These predictors are statistically
significant and capture different sources of variance.

Table 10. BIC selected predictors
Product A Predictors
 Open Issues
 Service Pack
Product B Predictors
 Open Issues
 Months Before Next Release

We have identified development, deployment and usage, and
software and hardware configurations metrics as common factors
that are related to field defects across two products in the same
organization for process improvement planning.
We find that deployment and usages factors (Service Packs for
Product A and Months Before Next Release for Product B) and
software and hardware configuration metrics are important
predictors. Identifying these two predictors to be important
motivates collecting better deployment and usage information.
We find that two development factors (Targeted Changes and
Open Issues) are highly correlated to field defects across both
products at ABB using rank correlation. Identifying these two
predictors to be important motivates collecting better development
defect information (discussed in 4.2.3).
These two predictors also identify areas where the development
process can be improved. For example, the Open Issues metric,
which measures the number of reported problems that have not
been examined at the time of release (see section 4.2.3), can be
used to better manage releases. ABB can use the results in two
ways. First, it can change the development/deployment process to
delay deployment of Product A when there are large numbers of
unexamined problems at the time of release. Second, if there are
large numbers of Open Issues, then ABB can reduce the scope of

420

the next release of Product A and allocating enough time and
resources to resolve field defects.

6. LESSONS LEARNED
In this section, we summarize the insights we gained regarding the
practical issues of selecting an appropriate modeling method for
product testing prioritization and process improvement planning,
evaluating accuracy of predictions across multiple releases in
time, and conducting analysis with incomplete information.

6.1 Selecting an appropriate modeling method
We have found that identifying areas for improvement and
prioritizing product testing both required attributing effects to
specific predictors (explicability) and being able to weigh the
relative importance of different predictors (quanitifiability). Given
our objectives, explicability and quanitifiability are more
appropriate criterions than accuracy for selecting a modeling
method. Given the criterions, we elect to use linear modeling with
model selection in our study.
Other researchers have noted problems with using accuracy as the
criterion for selecting a modeling method (e.g. Shepperd in [35]);
however, we are among the few to identify specific situations in
which accuracy is not the most appropriate criterion and the
modeling method to use given the situations.

6.2 Evaluating accuracy of predictions across
multiple releases in time
We have found that the forward prediction evaluation procedure
gives a more realistic assessment of the accuracy of prediction of
modeling methods for multiple releases in time.
From talking with experts and examining change logs we
concluded that the software systems and the software development
organizations for both Product A and Product B changed during
the observational periods (13 releases between 2000 and 2005 for
Product A and 15 releases between 1996 and 2005 for Product B).
The evaluation procedures used in previous studies assumed that
time did not matter and did not consider change in the software
system and the development organization. Our forward prediction
evaluation procedure accounted for this evolution process.
Our forward prediction evaluation procedure is taken from time-
series analysis; however, our application to software field defect
prediction evaluation is novel.

6.3 Conducting analysis with incomplete and
missing information
We have found that by acknowledging data deficiencies and using
available information, we are able to find rationale for better data
collection and produce useful analysis results.
For example, we were not able to collect exact deployment and
usage; however, we used available information to derive rough
measures. Although not perfect, the rough measures enabled more
accurate predictions (since the measures were selected as
important predictors). By showing that the rough measures were
important, we might be able to make an effective case for better
data collection.

7. CONCLUSION
In this paper, we have reported experiences and empirical results
from initiating quantitatively-based risk management activities.

We have presented technical results prioritizing product testing,
comparing modeling methods for field defect predictions, and
planning for process improvement efforts. In addition, we have
reported experiences on selecting a modeling method when
explicability and quantifiability are important, selecting an
evaluation technique when time is a factor, and conducting
analysis with incomplete data.
Our study contains preliminary findings. We have not fully
gauged the adequacy of our results. For example, we do not know
if predictions with ~25% ARE for product A and ~77% ARE for
product B are accurate enough to aid maintenance resource
allocation. However, initial feedback from experts has been
positive, initial usage of the results (discussed in section 6.1) has
been promising, and the results have contributed to buy-in for
process improvement activities.
More work is necessary to derive benefits for ABB. We need to
investigate how current product testing is conducted. We need to
complete data collection and analysis for Product B. We need to
expand our analysis to more projects within ABB. Finally, we
need to investigate the results in more detail. For example, we
need to determine why the open issues metric has a positive
relationship to field defects for Product A but a negative
relationship to field defects for Product B.
Improved testing, better maintenance resource allocation, and
better process improvement planning can lower the risk of field
defects for software consumers and software producers. The
results in this paper are steps towards achieving that goal using
quantitatively-based methods.

8. ACKNOWLEDGEMENT
This research was supported by the National Science Foundation
under grants ITR-0086003 and CCF-0438929, and by the
Carnegie Mellon Sloan Software Center. We would like to thank
Anne Poorman, Janet Kaufman, Patrick Weckerly, and Rob
Davenport for their input and expert knowledge.

9. REFERENCES
[1] Norman Fenton and Shari Lawrence Pfleeger. Software

metrics (2nd ed.): a rigorous and practical approach.
Boston, MA: PWS Publishing Co., 1997.

[2] Norman Fenton and Martin Neil. Software metrics: road
map. Proc. ICSE, May 2000, pp. 357-370.

[3] Donald E. Harter and Mayuram S. Krishnan and Sandra A.
Slaughter. Effects of Process Maturity on Quality, Cycle
Time, and Effort in Software Product Development.
Management Science, vol. 46 no. 4, Apr 2000, pp. 451-466.

[4] Myles Hollander and Douglas A. Wolfe. Nonparametric
statistical inference. New York, NY: Wiley & Sons, 1973.

[5] Wendell Jones, John Hudepohl, Taghi Khoshgoftaar, and
Edward Allen. Applications of a Usage Profile in Software
Quality Models. Proc. 3rd European Conference on Software
Maintenance and Reengineering, Mar 1999, pp. 148-157.

[6] IEEE standard for a software quality metrics methodology.
IEEE Std 1061-1998, Dec 1998.

[7] Garrison Kenny. Estimating Defects in Commercial Software
during Operational Use. IEEE Tr. on Reliability, vol. 42 no.
1, Mar 1993, pp. 107-115.

421

[8] Taghi M. Khoshgoftaar and Edward B. Allen. Predicting
fault-prone software modules in embedded systems with
classification trees. Proc. HASE, Nov 1999, pp. 105-112.

[9] Taghi Khoshgoftaar, Edward Allen, and Jianyu Deng.
Controlling Over-fitting in Software Quality Models:
Experiments with Regression Trees and Classification. Proc.
METRICS, Apr 2001, pp. 190-198.

[10] Taghi M. Khoshgoftaar and Edward B. Allen and John P.
Hudepohl and Stephen J. Aud. Application of Neural
Networks to Software Quality Modeling of a Very Large
Telecommunications System. IEEE Tr. on Neural Networks,
vol. 8 no. 4, Jul 1997, pp. 902-909.

[11] Taghi Khoshgoftaar, Bibhuti Bhattacharyya, and Gary
Richardson. Predicting Software Errors, During
Development, Using Nonlinear Regression Models: A
Comparative Study. IEEE Tr. On Reliability, vol. 41 no. 3,
Sep 1992, pp. 390-395.

[12] Taghi Khoshgoftaar and John Munson. Predicting Software
Development Errors using Software Complexity Metrics.
IEEE J. Selected Areas in Communications, vol. 8 no. 2, Feb
1990, pp. 253-261.

[13] Taghi Khoshgoftaar, John Munson, and David Lanning. A
Comparative Study of Predictive Models for Program
Changes during System Testing and Maintenance. Proc.
ICSM, Sep 1993, pp. 72-79.

[14] Taghi Khoshgoftaar, Abhijit Pandya, and David Lanning.
Application of Neural Networks for Predicting Program
Fault. Annals of Software Engineering, vol. 1, 1995, pp. 141-
154.

[15] Taghi Khoshgoftaar, Abhijit Pandya, and Hamant More. A
Neural Networks Approach for Predicting Software
Development Faults. Proc. ISSRE, Oct 1992, pp. 83-89.

[16] Taghi Khoshgoftaar and Naeem Seliya. Tree-based Software
Quality Estimation Models for Fault Prediction. Proc.
METRICS, Jun 2002, pp. 203-214.

[17] Taghi Khoshgoftaar, Vishal Thaker, and Edward Allen.
Modeling Fault-prone Modules of Subsystems. Proc. ISSRE,
Oct 2000, pp. 259-267.

[18] Paul Luo Li, Mary Shaw, Jim Herbsleb, Bonnie Ray, and P.
Santhanam. Empirical Evaluation of Defect Projection
Models for Widely-deployed Production Software Systems.
Proc. FSE, vol. 29 no. 6, Oct 2004, pp.263-272.

[19] Paul Luo Li, Mary Shaw, Jim Herbsleb, Bonnie Ray, and P.
Santhanam. An Empirical Comparison of Field Defect
Modeling Methods, CMU Tech Report CMU-ISRI-06-102,
2006

[20] Paul Luo Li, Jim Herbsleb, and Mary Shaw. Finding
Predictors of Field Defects for Open Source Software

Systems in Commonly Available Data Sources: a Case Study
of OpenBSD. Proc. METRICS, Sep 2005, (to appear).

[21] Paul Luo Li, Jim Herbsleb, and Mary Shaw. ForecastingField
Defects Using a Combined Time-based and Metrics-based
Approach: a Case Study of OpenBSD. CMUTechReport,
CMU-ISRI-05-125, 2005.

[22] Zhaohui Liu, Nalini Ravishanker, and Bonnie Ray. Modeling
Dynamic Reliability Growth Using Bayesian Methods.
Reliability Review, vol. 23 no. 1, Mar 2003, pp. 5-9.

[23] Michael Lyu. Handbook of Software Reliability Engineering.
McGraw-Hill, 1996.

[24] Microsoft Visual SourceSafe. msdn.microsoft.com/ssafe/
[25] Audris Mockus, David Weiss, and Ping Zhang.

Understanding and Predicting Effort in Software Projects.
Proc. ICSE, May 2003, pp. 274-284.

[26] Audris Mockus, Ping Zhang, and Paul Luo Li. Predictors of
Customer Perceived Quality. Proc. ICSE, May 2005, pp.
225-233.

[27] John Munson and Taghi Khoshgoftaar. The Dimensionality
of Program Complexity. Proc. ICSE, May 1989, pp. 245-
253.

[28] John Musa and Anthony Iannino and Kazuhira Okumoto.
Software Reliability. McGraw-Hill, 1990.

[29] National Institute of Standards and Technology. The
economic impacts of inadequate infrastructure for software
testing. Planning Report 02-3, Jun 2002

[30] Magnus Ohlsson and Per Runeson. Experience from
Replicating Empirical Studies on Prediction Models. Proc.
METRICS, Jun 2002, pp. 217-226.

[31] Thomas Ostrand, Elaine Weyuker, and Thomas Bell. Where
the Bugs are. Proc. ISSTA, vol. 29 no. 4, Jul 2004, pp. 86-96.

[32] The R project for statistical computing. www.r-project.org
[33] Richard Selby and Adam Porter. Learning from examples:

generation and evaluation of decision trees for software
resource analysis. IEEE Tr. On Software Engineering, vol
14. no. 12, Dec 1988, pp. 1743-1757.

[34] Norman F. Schneidewind. Body of Knowledge for Software
Quality Measurement. IEEE Computer, vol. 35 no. 2, Feb
2002, pp. 77-83.

[35] Martin Sheppard. Evaluating Software Project Prediction
Systems. METRICS, Keynote speech, 2005.

[36] Tracker. www.serena.com/Products/professional/tracker/
[37] Understand for C++. www.scitools.com/metrics.txt
[38] Sanford Weisberg. Applied Linear Regression, 2nd Edition.

New York, NY: Wiley and Son, 1985.

422

