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ABSTRACT 
Quantitatively-based risk management can reduce the risks 
associated with field defects for both software producers and 
software consumers. In this paper, we report experiences and 
results from initiating risk-management activities at a large 
systems development organization. The initiated activities aim to 
improve product testing (system/integration testing), to improve 
maintenance resource allocation, and to plan for future process 
improvements. The experiences we report address practical issues 
not commonly addressed in research studies: how to select an 
appropriate modeling method for product testing prioritization 
and process improvement planning, how to evaluate accuracy of 
predictions across multiple releases in time, and how to conduct 
analysis with incomplete information. In addition, we report 
initial empirical results for two systems with 13 and 15 releases. 
We present prioritization of configurations to guide product 
testing, field defect predictions within the first year of deployment 
to aid maintenance resource allocation, and important predictors 
across both systems to guide process improvement planning. Our 
results and experiences are steps towards quantitatively-based risk 
management. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – Complexity metrics, 
Process metrics, Product metrics  

D.2.9 [Software Engineering]: Management – Software quality 
assurance, Cost estimation 

General Terms 
Management, Measurement, Economics, Reliability  

Keywords 
Deployment and usage metrics, Software and hardware 
configuration metrics, Software reliability modeling, System test 
prioritization 
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1. INTRODUCTION  
The US Department of Commerce estimates that software field 
defects cost the U.S. economy an estimated $59.6 billion annually 
and that over half of the costs are borne by software consumers 
and the rest by software producers [29]. 
ABB is interested in mitigating the risks associated with field 
defects for itself and for its customers. Software reliability 
modeling may enable risk mitigation by guiding testing to remove 
problems before deployment [26], by enabling accurate 
maintenance resource allocation [18], and by focusing 
improvement efforts to maximize return on investments [3]. 
In this paper, we report experiences and initial empirical results 
from initiating risk management activities at ABB. Both technical 
results and insights on important practical issues associated with 
modeling field defects in a real-world setting are reported. 
Previous studies have reported results from modeling software 
field defects for risk mitigation (e.g. [31], [30], [13]); however, 
few studies have reported experiences on the process of arriving 
at such results in an industrial setting.  
Our experiences provide insights in the following areas: 

• How can a systems development organization select an 
appropriate modeling method for product testing 
(systems/integration testing) prioritization and process 
improvement planning?  

• How can a systems development organization evaluate the 
accuracy of predictions across multiple releases in time? 

• How can a systems development organization conduct analysis 
with incomplete information? 

In addition, our technical results address the following empirical 
research questions: 

• How can a systems development organization prioritize 
configurations (i.e. sub-systems and software platforms) for 
product testing? 

• What modeling method produces the most accurate predictions 
of the number of field defects in the first year after deployment 
for maintenance resource planning? 

• What categories of predictors (product, development, 
deployment and usage, or software and hardware 
configurations) have predictors that may be related to field 
defects and indicate possible areas for future improvement 
efforts? 
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We examine data from two real-time commercial software 
systems: a monitoring system and a controller management 
system. We have data from 13 releases spanning ~5 years for the 
first system and data from 15 releases spanning ~9 years for the 
second system.  
Selecting an appropriate modeling method is an important 
practical issue because many modeling methods have been 
proposed/used (e.g. neural networks [15], trees [16], linear 
modeling [26]); however, research studies have provided little 
guidance regarding how to select an appropriate method given the 
goals/objectives of an organization. We find that accuracy, the 
criterion that research studies use to compare modeling methods, 
may not be the most important criterion in certain settings. 
Explicability (the ability to attribute effects to a predictor) and 
quantifiability (the ability to quantify effects of a predictor) of 
modeling methods may be more important considerations.  
Evaluating accuracy across multiple releases in time is an 
important practical issue because evaluation techniques used in 
prior studies are not well suited for today’s software systems, 
which have multiple releases in time that implement additional 
features. Cross-validation (i.e. leave-one-out cross-validation) and 
data withholding (i.e. random sub-sampling) are traditional 
statistical procedures for evaluating accuracy of predictions; 
however, we find that these procedures may not be adequate.  
Dealing with missing/incomplete information is important to 
practitioners because information is often not available in real-
world settings and conducting analysis without important 
categories of predictors (e.g. deployment and usage predictors for 
field defect predictions) jeopardizes the validity and accuracy of 
results; however, methods to deal with missing/incomplete 
information are not discussed in research studies. We find that by 
acknowledging incomplete information and collecting data that 
capture similar ideas as the missing information, we are able to 
produce more accurate and valid models and motivate better data 
collection.  
We produce empirical research results on product testing 
prioritization (i.e. which sub-systems and software platforms to 
focus testing) because few studies have examined product testing 
(referred to as systems/integration testing in other organizations, 
explained in section 2). Most studies have focused on lower-level 
testing (e.g. changes [25], files [31], and modules [14]). However, 
product testing is sometimes the only place where complex 
interactions/interface problems can be detected. We prioritize the 
fault-proneness of software sub-systems and software platforms to 
guide product testing.  
We compare modeling methods because many modeling methods 
have been used to predict the number of field defects in previous 
studies; however, few studies have compared the accuracy of 
predictions (which is the correct criterion when the objective is to 
predict the number of field defects, explained in section 5.2) in a 
real-world setting. In this study, we compare methods used in 
prior work (discussed in section 3.4).  
Finally, we evaluate predictors because many different categories 
of predictors (i.e. metrics available before release) have been 
examined in the literature for the purposes of 
predicting/modeling/explaining software defects. Various studies 
(e.g. [9], [25], [4], [26]) have found each category of predictors 
(product, development, deployment and usage, and software and 
hardware configurations) to be important using various techniques 

(discussed in section 5.1). However, few studies have compared 
the importance of these categories of predictors simultaneously. In 
this study, we find that development, deployment and usage, and 
software and hardware configurations predictors to be important. 
Our experiences may help practitioners successfully initiate risk-
management activities by providing insights and solutions 
regarding important practical issues that are not well addressed in 
prior research studies. The technical results in this experience 
report provide a point of reference for other researchers.  
Section 2 describes improvement initiatives at ABB and the two 
systems we examined for this study. Section 3 provides context 
for our technical results. Section 4 describes issues we 
encountered in the data collection process. Section 5 discusses the 
issues we encountered in the data analysis process. Section 6 
discusses the technical results of our analysis and how the results 
can help achieve the goals of the improvement initiatives at ABB. 
Section 7 summarizes the insights gained. We conclude in section 
8.  

1. SETTING  
In our study, we examine two software products, which we will 
refer to as Product A and Product B, from ABB, a large real-time 
systems development organization with customers and production 
facilities around the world. ABB has recently initiated 
quantitatively-based risk management initiatives for its software 
operations.  
The goals of the activities include: 

• Improving testing to remove defects that customers may 
encounter  

• Predicting field defects to enable more accurate maintenance 
planning 

• Planning for future process improvement efforts 
Product A is a real-time monitoring system. The core system has a 
growing code base of approximately 300 KLOC through 13 
releases. The project has had approximately 127 thousand changes 
committed by approximately forty different people. The system 
has three major add-on packages that provide additional 
functionality. Field defect data from the add-on packages are 
included in the data. Product A’s change history dates back to 
2000. 
Product B is a tool suite for managing real-time modules. The 
system has a stable code base of approximately 780 KLOC 
through 15 releases. Complete change information and author 
information are not available because of problems with the 
version control system (discussed in section 4.3). Based on expert 
information, approximately fifty people have worked on the 
project. The project dates back to 1996. 
At ABB, product testing is testing the integrated software product. 
This testing process is commonly referred to as system testing or 
integration testing in the literature. However, ABB has other 
testing processes that it refers to as systems testing and integration 
testing.  

2. PROJECT CONTEXT 
In this section, we present related work in the area of software 
reliability modeling. The related work provides context for our 
technical results.  
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2.1 Type of modeling 
In this paper, we establish relationships between characteristics of 
the two software systems and field defects as well as predict the 
number of field defects within a time interval.  
Field defect modeling in prior work generally belongs to one of 
four categories:  

• Relationships: These studies establish relationships between 
predictors and the field defects. For example, Harter et al. [3] 
establish a relationship between an organization’s CMM level 
and the number of field defects in projects completed by the 
organization.  

• Classifications: These studies predict whether the number of 
field defects is above a threshold for a given observation. For 
example, Khoshgoftaar et al. [9] classify modules as risky (will 
contain at least one field defect) or not risky (no field defects) 
for changed modules.  

• Quantities: These studies predict the number of field defects. 
For example, Khoshgoftaar et al. [14] predict the number of 
defects for modules of two software systems.  

• Rates of occurrences over time: These studies predict the field 
defect occurrence rate. For example, Kenny [6] predicts the 
defect occurrence pattern as captured by the Weibull model for 
two IBM systems.  

2.2 Purpose of modeling 
We establish relationships (i.e. determine important predictors) in 
order to prioritize product testing and to plan for future 
improvements, and we predict quantities to improve maintenance 
resource planning. 
Many previous studies have focused on determining where in the 
code to test. Few studies (e.g. Mockus et al. [26]) have focused on 
which software and/or hardware configurations to test. In Mockus 
et al. [26], the authors analyze customer configurations and 
determine the defect proneness of different operating systems and 
product lines (i.e. hardware configurations). The authors suggest 
that the results can be used to improve product testing. 
Predicting the number of field defects within the first year after 
deployment can enable accurate initial maintenance resource 
allocation. We predict for one year because budgeting at ABB is 
performed annually. Furthermore, the first year after deployment 
contains ~80% of all field defects for Product A and ~90% of all 
field defects for Product B. 
Forecasting field defect rates (which provide information on both 
the total number of field defects and how the field defects will 
distributed over time) is more useful than predicting the number 
of field defects in the first year after deployment [21]. However, 
field defect rate forecast require fitting/predicting software 
reliability growth models (SRGMs) as explained in Li et al. [21]. 
We are not able to successfully fit/predict SRGMs for the systems 
in this study.  

2.3 Categories of predictors 
We present results comparing the importance of different 
categories of predictors of field defects.  
Metrics available before release are predictors, which can be used 
by metrics-based modeling methods to predict quantities and to 
establish relationships. We categorize predictors used in prior 

studies using an augmented version of the categorization schemes 
used by Fenton and Pfleeger in [1] and Khoshgoftaar and Allen in 
[8]: 

• Product metrics: metrics that measure the attributes of any 
intermediate or final product of the software development 
process. Product metrics have been shown to be important 
predictors by studies such as Khoshgoftaar et al. [9]. 

• Development metrics: metrics that measure attributes of the 
development process. Development metrics have been shown to 
be important predictors by studies such as Mockus et al. [25]. 

• Deployment and usage metrics (DU): metrics that measure 
attributes of deployment of the software system and usage in 
the field. DU metrics have been shown to be important 
predictors by studies such as Jones et al. [4]. 

• Software and hardware configuration metrics (SH): metrics that 
measure attributes of the software and hardware systems that 
interact with the software system in the field. SH metrics have 
been shown to be important predictors by Mockus et al. [26].  

Most previous studies have not examined all the categories of 
predictors simultaneously. An exception is Li et al. [21], which 
compared the importance of predictors in all the categories 
simultaneously for an open source operating system. In this paper, 
we examine the importance of all categories of predictors 
simultaneously for Product A, but are not able to perform the 
same analysis for Product B (explained in section 4.2)  

2.4 Modeling methods 
We compare seven modeling methods from the literature for 
predicting the number of field defects in the first year after 
deployment: 
1. Moving averages, used in Li et al. [18] 
2. Exponential smoothing, used in Li et al. [18] 
3. Linear regression with model selection, used in Khoshgoftaar et 

al. [14] and Khoshgoftaar et al. [11] 
4. Clustering, used in Khoshgoftaar et al. [13] 
5. Trees, used in Khoshgoftaar and Seliya [16] 
6. Neural networks, used in Khoshgoftaar et al. [15] and 

Khoshgoftaar et al. [14] 
7. Ratios, used in Li et al. [19] 
These methods have been shown to be effective at predicting the 
number of field defects in other settings. In this paper, we 
compare the accuracy of predictions for two commercial software 
systems. 
We discuss selecting a modeling method to guide product testing 
and to guide process improvement planning in section 5.1. 

3. DATA COLLECTION PROCESS  
In this section, we discuss our data collection process. We 
describe the data sources and the metrics we collected from the 
data sources. We also discuss several issues we encountered in the 
data collection process.  

3.1 Data sources 
The data sources we used in our project were a request tracking 
system, a version control system, and experts. 
Serena Tracker is the request tracking system used by ABB. An 
important feature of Tracker is data entry rules, which allows rules 
to be constructed and enforced automatically (e.g.  reported 
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release field must be filled out). This feature guarantees that key 
data fields are available across products and releases. More 
information on Tracker is at [36].  
Microsoft Visual Source Safe (VSS) is a version control system 
used by ABB. VSS has features commonly found in all version 
control systems (e.g. check-in, check-out, history, etc.). More 
information is at [24]. 
Experts are personnel who have extensive experience in a given 
area. For example, the experts for Product A and Product B have 
been team leads for the respective products. The expert for 
Tracker is the lead for the problem tracking and reporting area.  
Working with experts allowed us to select the correct information 
to examine. Without the experts’ help, we would have needed a 
significant amount of time to familiarize ourselves with the data 
sources. By working with experts to select a subset of product 
metrics, we ensured that the metrics used were relevant to the 
organization (discussed in section 4.2.1). This reduction in the 
number of predictors mitigated the effects of multi-co-linearity 
and reduced the chances of random correlations. By working with 
experts to group application areas, we ensured that the groupings 
corresponded to actual sub-systems (discussed in section 4.2.4). 

3.2 Metrics 
A field defect at ABB is defined as a problem report in Tracker 
that has been determined to be a valid problem and whose 
submitted date is after the date of deployment (for a given 
release). Non-valid problems include problems that are 
determined to be: not a problem, works as designed, duplicates, or 
forwarded (i.e. a problem with another product).  

3.2.1 Product metrics 
We downloaded labeled versions of the source code for Project A 
from VSS and used the metrics tool Understand for C++ by STI 
[37] to compute the product metrics. Metrics were calculated for 
the entire release (e.g. summed across all files in the release).We 
were not able to download the source code for several releases of 
Project B due to problems with VSS (explained in section 4.3) 
and therefore did not include product metrics in the analysis for 
Project B.  
Over 100 product metrics were available using Understand for 
C++; however, we used 32 in our study. We arrived at the subset 
of product metrics by working with experts familiar with systems 
at ABB to select predictors that were relevant (i.e. that might be 
related to field defects) and that captured each source of variation 
found in product metrics identified by Munson and Khoshgoftaar 
in [27].  
The 32 product metrics collected are organized by the sources of 
variation (described in Munson and Khoshgoftaar in [27]) they 
capture in Table 1. (Some predictors capture multiple sources of 
variance, but are not displayed in multiple categories) Complete 
descriptions of the metrics are available from STI [37]. 

 
Table 1.  Product metrics 

Source of variance Predictor collected 

Control: control 
complexity 

Possible normal paths 
Essential complexity 

Knots (overlapping jump statements) 
Max Nesting 

Strict Cyclomatic complexity 
Halstead’s Vocabulary 

Source of variance Predictor collected 

Volume: size or 
volume count 

Classes 
Files 

Functions  
Lines of code 

Unique operands  
Total operators 
Total operands 

Halstead’s Length 
Halstead’s Volume 

Action: distinct 
operations and 

statements 

Global Deref Set 
Global Deref Use 
Unique operators 

Global Use 
Global Set 

Global Return 
Global Return 

Effort: mental effort 
required to generate 

program 

Halstead’s Difficulty 
Halstead’s Effort 

Modularity: Depth of 
syntax tree 

Base classes 
Coupling 

Inheriting classes 
Depth of inheritance tree 

Fanin (incoming calls + global vars read)  
Fanout  (calls to others + global vars set) 

InFlow (incoming class) 
OutFlow (calls to others) 

3.2.2 Development metrics 
We computed development metrics using change history logs in 
VSS and problem report information in Tracker. We were not able 
to collect development metrics from change history logs for 
Product B due to problems with VSS (explained in section 4.3). 
We created rough categories of development metrics based on the 
descriptions of the development metrics in the literature. The 
predictors we collected covered all but one of the categories.  
The groupings of development metrics, examples of development 
metrics from the literature, and predictors used in our study are in 
Table 2.  

Table 2.  Development metrics 
Group 

description 
Examples from 

literature Predictor collected 

Problems 
discovered 

prior to 
release  

number of field 
problems in the prior 

release, used in 
Ostrand et al. [31] 

Targeted issues: for a 
release, problems whose fix 
is going to be in the release 
Open issues: for a release, 
reported problems that have 

not been examined at the 
time of release 

Changes to 
the code 

increase in lines of 
code, used in 

Khoshgotaar et al. 
[17] 

Deltas: changes in the code 
repository  

Added: lines added 
Deleted: lines deleted 

Changed: lines changed 

People in 
the process 

number of updates by 
designers who had 10 
or less total updates in 
entire company career, 

both used in 
Khoshgoftaar et al. 

[17] 

Authors: number of 
different authors making 

changes to the code 
Bottom Half Authors: 
changes by authors who 

ranked in the bottom 50% in 
terms of the total number of 

changes to the project 
Process 

efficiency 
CMM level, used in 

Harter et al. [3] NONE COLLECTED 
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3.2.3 Deployment and usage metrics 
ABB did not officially collect deployment and usage information 
(e.g. the number of installations) for the two systems. Despite this 
limitation, by talking to experts, we were able to collect data from 
available data sources that we felt provided information on 
possible deployment and usage of the systems.  We used the data 
with the specific aim of motivating better data collection: if the 
deployment and usage predictors we collected were shown to be 
statistically significant, then better deployment and usage 
information might be justified. We considered the type of release 
and the amounts of elapsed time between releases. Both kinds of 
predictors might give an indication of the number of users 
exercising a release (and thus the amount of usage). For example, 
a major release might have more users than a minor release. A 
release that was in the field for a longer period of time before the 
next release might have more users than a release was in the field 
for a shorter period of time before the next release.  
The deployment and usage metrics we collected are in Table 3.  

Table 3.  Deployment and usage metrics 
Predictor collected Description 

Service pack If the release is a major release, a minor 
release, or a service pack 

Months since 1st 
released 

Months since the system was first released 

Moths since previous 
release 

Months since the last release (service 
pack, minor release, or major release) 

Months until next 
release 

Months before the next release (service 
pack, minor release, or major release) 

3.2.4 Software and hardware configuration metrics 
Information on software and hardware configurations in use was 
not available at the systems level (e.g. the number of systems with 
a specific configuration or the number of systems using an 
operating system). Information was available at the individual 
defect level. Problem reports had data fields describing the 
application, the operating system, and the Internet Explorer 
version (for Product A only) associated with the defect.  
We worked with experts to group applications into application 
groups (i.e. sub-systems) and to group operating systems into 
operating systems groups (i.e. software platforms) for product 
testing prioritization. Both Product A and Product B ran under 
versions of the Windows operating system. Product A also used 
versions of Internet Explorer.  
The software and hardware configurations metrics we collected 
are in Table 4.  

Table 4. Software and hardware configuration metrics 
Predictor collected Description 

Sub-system Groups of applications (functionality)  

Operating system Groups of versions of the Windows 
operating system 

Internet Explorer version 
(Product A only) 

Groups of versions of the Internet 
Explorer  

3.3 Issues during data collection 
In this section we briefly discuss some of the issues we 
encountered during data collection. The issues are divided into 
two categories: tools and process.  

3.3.1 Tools 
There was one technical problem with VSS. At least one file in 
VSS was corrupted for Product B. VSS reported an error getting 

the history of the file. This error prevented us from collecting 
some development predictors and all product predictors for 
Product B.  
Problems with retrieving historical information from version 
control systems were not isolated to Microsoft VSS. Problems 
retrieving information from open source version control systems 
had been reported in Li et al. [20].  
After talking to experts, we decided to manually by-pass the 
corrupt file (i.e. creating batch scripts to enumerate the files to 
examine). This process had been planned but had not been 
implemented.  

3.3.2 Process 
There were three problems with how Tracker and VSS were used. 
Neither Product A nor Product B recorded the phase of 
development in which a defect was discovered. Labels (in VSS) 
were not used correctly in Product A.  Also, labels were not used 
at all in Product B.  
First, the problem reporting form did not include a field for the 
phase found (e.g. unit testing, product testing, or field); therefore, 
the number of development defects metric was not available. We 
were able to use the time of release and build number to determine 
if a defect is a field defect. However, we could not determine the 
number of development defects because we were not able to 
attribute a non-field defect to a particular release. The 
development periods of service packs and major releases often 
coincided and no other information was available to distinguish 
between releases.  
We used a combination of targeted changes and open issues 
instead. Targeted changes counted problems found prior to release 
that were earmarked to be fixed in the current release; however, 
targeted changes did not count problems found during 
development that were deferred to later releases. Open issues 
counted reported problems that had not been reviewed at the time 
of release; however, open issues included problems that were not 
found during development (e.g. problems from previous releases). 
Secondly, neither project used labels correctly. We double 
counted some development information for Product A (e.g. 
attributed changes to both releases when computing development 
metrics) because Product A did not have separate development 
branches for major releases, minor releases, and service packs. 
The labels increased incrementally. Sub-labels (e.g. x.x for major 
releases, x.x.x for service packs) were not used. Some service 
packs were released very close in time to major releases and their 
developments overlapped. After talking to experts we concluded 
that all development information since the previous major release 
should be counted as development information for both the next 
major release and service packs in the interim.  
Finally, Product B did not use labels. The development team 
decided that the labeling system in VSS was not flexible enough. 
The team often wanted to update only one file; however VSS did 
not allow single file updates in a label (i.e. all files in the 
repository must be relabeled even if only one file had been 
changed since the last label). The development team decided that 
the re-labeling process was too time consuming and elected not to 
use labels. Only deployment and usage metrics, development 
metrics from Tracker, and software and hardware configurations 
metrics from Tracker were available for Product B. 
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4. DATA ANALYSIS PROCESS  
In this section we describe our analysis process. We discuss the 
methods we used to identify important predictors of field defects 
and procedures we used to evaluate predicted numbers of field 
defects within the first year after deployment. 
All analysis was performed using the open source analysis 
package R [32].  

4.1 Important predictor identification for 
product testing prioritization and 
improvement planning 
In order to identify fault-prone configurations for product testing 
prioritization and important characteristics of the software system 
for improvement planning, we need to identify important 
predictors. Three methods are commonly used to establish a 
predictor as important in the literature: 
1. Show high correlation between the predictor and field defects. 

This method is recommended by IEEE [6].  
2. Show that the predictor is selected using a modeling method 

with selection. This method is used by Mockus et al. [26]. 
3. Show that the accuracy of predictions improves with the 

predictor included in the prediction model. This method is used 
by Jones et al. [4]. 

We used methods 1 and 2 to determine important predictors in our 
study. Due to data constraints, we did not use method 3.  
We used rank correlation in our analysis to identify important 
predictors to guide process improvement planning. If there was a 
strong statistical relationship between a characteristic of the 
software system (i.e. a predictor) and the number of field defects, 
then it might be possible to use the information to improve 
quality.  
We use rank correlation because our data are not normally 
distributed and because we want to minimize the effects of 
observations that are far away from the mean [4]. Rank correlation 
is ideal for establishing the importance of a single predictor. 
However, some predictors capture the same source of variation 
and are highly correlated with each other (e.g. lines of code and 
Cyclomatic complexity [2]). In addition, multiple sources of 
variation may need to be considered and accounted for.  
We used general linear modeling methods with model selection, 
which identified predictors that complemented each other (i.e. 
capture different source of variation) for identifying fault prone 
configurations to guide product testing and for identifying 
important predictors to guide process improvement.  
We used BIC (Bayesian Information Criterion) model selection to 
determine important areas for product testing (using Poisson 
regression) and to determine important predictors (using Linear 
regression). BIC is better suited to select predictors to explain 
causation [38] (where as Akaike Information Criterion (AIC) is 
better suited for selecting predictors for prediction).  
Many modeling methods were available to analyze the data; 
however, not all modeling methods were appropriate given our 
objectives. In order to prioritize product testing we needed a 
modeling method to have explicability (i.e. being able to identify 
the faulty configuration) and quantifiability (i.e. being able to 
quantify the fault-proneness of one configuration relative to 

another). In order to plan for process improvement we also needed 
to have explicability (i.e. being able to identify the predictors that 
may be related field defects) and quantifiability (i.e. being able to 
quantify the relative importance of the predictors). Previous 
studies focused on using accuracy to select a modeling method; 
however, accuracy was not the main consideration for identifying 
important predictors for product testing prioritization and 
improvement planning.  
We elected to use general linear modeling methods (Poisson 
regression and Linear regression) because they clearly identified 
the important predictors and quantified the relative importance of 
the predictors. Moving averages and exponential smoothing used 
in Li et al. [18] did not use predictors. Neural networks used by 
Khoshgoftaar et al. in [14], discriminant analysis with principal 
component analysis used by Khoshgoftaar et al. in [14], and 
clustering used by Khoshgoftaar et al. in  [13] obfuscated the 
effects of an individual predictor by combining predictors. The 
ratios method used by Li et al. in [19] required choosing a 
predictor a-priori and did not allow comparison of the importance 
of the predictors. The trees method used in Khoshgoftaar and 
Seliya [16] could not be used to compare the relative importance 
of different predictors.  
We used a four step process to prioritize product testing. First we 
elicited application groupings (i.e. sub-systems) and operating 
systems groupings from the experts. Then, as validation, we asked 
the experts to name the most defect-prone sub-systems based on 
their experience. This set of sub-systems served as a possible 
target for our analysis (i.e. the quality of our analysis depends on 
our ability to identify these defect-prone sub-systems). We 
included predictors that captured differences between releases (i.e. 
confounds). In our analysis, all the predictors in section 4.2 were 
included in the analysis as confounds. Finally, after we had 
determined the fault proneness of different areas, we validated the 
results by asking experts if the results matched their experiences.  

4.2 Field defect prediction for maintenance 
resource allocation 
Since ABB allocates maintenance resources based on the number 
of expected field defects, in order to enable accurate initial 
maintenance resource allocation, we need to accurately predict the 
number of field defects within the first year after release. Given 
this objective, accuracy is the most important consideration. 
We used a forward prediction evaluation procedure to analyze the 
accuracy of predictions of the metrics-based modeling methods. 
Previous studies used either cross-validation [33] or random data 
with-holding [5]; however, neither procedure is realistic. In a 
realistic setting, only a non-random subset of data is actually 
available before release (i.e. only data from historical releases). 
Secondly, both techniques assumed that predicting for a past 
observation was the same as predicting for a future observation; 
however, the software systems and software development 
organizations were constantly evolving. We used a selective data 
withholding procedure: forward prediction evaluation. For each 
software release in time, we withheld all information not available 
at the time of release. We then used only information available at 
the time of release to predict for the next release. We evaluated 
the prediction for that release only. We repeated this process for 
each release in time. This technique better accounted for changes 
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in time and gave a more realistic assessment of the accuracy of the 
modeling methods. 

For confidentiality reasons, we evaluate each individual 
prediction using absolute relative error. Absolute relative error is 
defined as the sum over all observations, of the absolute value of 
the difference between the predicted value and the actual value 
divided by the actual value.  

ỹi = predicted number of field problems for observation i 

yi = actual number of field problems for observation i 

n = total number of observations 

ARE = ∑
=

−n

i i

ii

y
yy

n 1

1
 

5. TECHNICAL RESULTS  
In this section, we present the results of our analysis and how the 
results can help achieve the goals of ABB’s initiatives. First, we 
present the relative fault-proneness of different sub-systems and 
software platforms to guide product testing. Then, we present the 
accuracy of predictions of the number of field defects within the 
first year after deployment to aid maintenance planning. Finally, 
we present the important predictors of field defects to guide future 
improvements.  

5.1 Product testing prioritization 
We present the results of our Poisson regression, where we 
regressed predictors described in section 4.2 on the number of 
field defects. Due to confidentiality restrictions, we do not 
identify the sub-systems or give exact quantities.  

We present the four most defect-prone sub-systems (labeled 1-4) 
and their field defect tendency relative to the least defect-prone 
sub-system for Product A and Product B (e.g. sub-system 1 will 
experience ~9.85x more field defects than the least defect-prone 
sub-system). There are 38 sub-systems for Product A and 19 sub-
systems for Product B. We present the faultiest Windows 
configuration relative to the safest Windows configuration. There 
are only two Windows configurations for both Product A and 
Product B. Internet Explorer version is not selected as a 
significant predictor. Other predictors selected (i.e. confounds) 
and their effects are indicated. Each effect is defect-proneness 
relative to a single unit increase in the predictor’s value (e.g. for 
Product A an additional author making changes for a release will 
decrease the number of field defects observed by ~7%).  

The results in table 5 and 6 present the effect of each predictor 
after accounting for the effects of the other predictors in the 
regression. Our results are more accurate than the results of 
simpler methods (e.g. comparing counts) that do not account for 
differences between releases (i.e. confounds. The first column lists 
the sub-systems, software platforms, and confounds. The second 
column indicates their relative fault-proneness.  

 
 
 
 

Table 5.  System test prioritization for Product A 
Product A Predictors Estimated Effect 
Sub-system:  
    Sub-system 1 9.85x 
    Sub-system 2 8.39x 
    Sub-system 3  8.13x 
    Sub-system 4  7.22x 
Software platforms:  
    Not Windows Server Versions 1.91x 
Confounds:  
    Service Pack .18x 
    Open Issues .999x 
    Num Authors .93x 
    Months Before Next Release 1.16x 
    Months Since 1st Release .97x 

Table 6.  System test prioritization for Product B 
Product B Predictors Estimated Effect 
Sub-system:  
    Sub-system 1   8.21x 
    Sub-system 2   5.56x 
    Sub-system 3   4.52x 
    Sub-system 4   3.68x 
Software platforms:  
    Win95/98   3.00x 
Confounds  
    Open Issues     .995x 
    Months Before Next Release   1.07x 
    Months Since 1st Release  1.02x 

The sub-systems identified by experts as the most defect-prone are 
among the top 4 identified in our analysis. The experts also 
corroborate our results by concluding that each of the most defect-
prone sub-systems identified is trouble-some based on past 
experiences.  
Our analysis is not intended to replace expert knowledge. Our 
results complement expert intuition by providing quantitative 
evidence. This evidence will allow test engineers to back their 
decisions and recommendation with quantitative evidence. Our 
results also preserve knowledge. Experts may leave the company 
or may be promoted to other positions. Our process can transfer 
expert knowledge to other test engineers.  
Using the results, ABB can better allocate testing resources. The 
product test team for Product A has used the product test 
prioritization results to uncover additional defects in a sub-system 
previously thought to be low-defect.  

5.2 Field defect predictions 
We present the results of our predictions using 16 modeling 
methods and our forward prediction evaluation procedure. We are 
able to predict within ~24.6% ARE over three releases of Product 
A and within ~77.1% ARE over six releases of Product B for only 
major/minor releases (i.e. no service packs). The results for 
Product A are in Table 7, and the results for Product B are in 
Table 8. The three most accurate methods for each release are 
bolded.  
We find that we are not able to predict accurately for service 
packs (SP), minor releases, and major releases together. The most 
accurate method for Product A (the clustering method) produces 
predictions with ~64.3% relative error for 4 releases. Of the 
methods that predicted for the most number of releases, the best 
method (Moving Averages of 1 Release) produces predictions 
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with ~469.8% relative error. The most accurate method for 
Product B (Moving Average of 3 Releases) produces predictions 
with ~179.4% relative error for 10 releases. Of the method that 
predicted for the most number of releases, the best method 
(Neural Networks) produces predictions with ~213.8% relative 
error.  

Table 7.  ARE of predicted field defects for Product A 
ARE Product A R1.0 R1.1 R1.2 Avg 
Moving Average 1 Release 3.0% 51.7% 19.2% 24.6% 
Moving Average 2 Releases  54.0% 50.0% 52.0% 
Moving Average 3 Releases   37.8% 37.8% 
Exponential Smoothing 2 Releases  53.6% 44.6% 49.1% 
Exponential Smoothing 3 Releases   53.9% 53.9% 
Linear Regression with Model 
Selection   17.6% 17.6% 

Clustering   50.0% 50.0% 
Tree Split with 2 Releases 3.0% 51.7% 19.2% 24.6% 
Tree Split with 3 Releases 3.0% 54.0% 19.2% 25.4% 
Tree Split with 4 Releases 3.0% 54.0% 62.1% 39.7% 
Neural Network 2.3% 52.3% 53.9% 36.2% 
Ratios 51.4% 48.4% 22.0% 40.6% 

Table 8.  ARE of predicted field defects for Product B 
ARE Product B R2.0 R3.0 R3.1 R3.2 R4.0 R4.1 Avg 

Moving Average 
1 Release 61.9% 17.6% 65.3% 1628.6% 332.1% 27.3% 662.7%

Moving Average 
2 Releases  31.4% 71.1% 1128.6% 207.1% 20.5% 452.1%

Moving Average 
3 Releases  9.8% 62.0% 919.0% 154.8% 136.4% 403.4%

Exponential 
Smoothing 2 
Releases 

 29.0% 70.1% 1216.8% 229.2% 12.0% 486.0%

Exponential 
Smoothing 3 
Releases 

     410.7% 410.7%

Linear 
Regression with 
Model Selection 

 46.2% 70.6% 785.7% 121.4% 118.8% 342.0%

Clustering  31.4% 71.1% 564.3% 66.1% 45.5% 225.3%
Tree Split with 2 
Releases 61.9% 17.6% 65.3% 1628.6% 332.1% 27.3% 662.7%

Tree Split with 3 
Releases 61.9% 31.4% 71.1% 1628.6% 332.1% 27.3% 662.7%

Tree Split with 4 
Releases 61.9% 9.8% 62.0% 1628.6% 332.1% 4.5% 655.1%

Neural Network 61.0% 32.4% 70.4% 1628.6% 332.1% 45.7% 668.8%
Ratios 36.9% 136.7% 70.9% 160.2% 62.6% 8.4% 77.1% 

The poor accuracy of predictions for Product B is mostly caused 
by one release (Release 3.2). Release 3.2 has ~85% fewer field 
defects than the average release. An average release has ~6.4x 
more field defects. None of the modeling methods we examined is 
able to predict accurately for this release.   
We conjecture that data limitations may have contributed to the 
poor results. There are only 4 major and minor releases of Product 
A and 8 releases of Product B.  Other research studies examine 
modules or individual installations and have significantly more 
observations. For example, the study by Khoshgoftaar et al. [16] 
uses over 500 observations and the study by Mockus et al. [26] 
uses over 1000 observations. Limited information may have 
reduced effectiveness of complex metrics based methods and the 
benefits of metrics in many categories as described by Li et al. 
[21].  

Using the results, ABB can allocate initial maintenance resources. 
If the estimate costs of resolving a field defect are available, then 
the predicted number of field defects can be combined with the 
estimated costs to project the amount of maintenance resources 
needed for the first year after deployment. ABB will need to 
evaluate if the error in predictions (the ~25% ARE for Product A 
and the ~77% ARE for Product B) are tolerable. 

5.3 Plans for improvement 
We present results of our analysis using rank-correlation and 
linear modeling with model selection.  
The top three predictors of field defects selected using Spearman 
rank correlation for Product A and Product B are in Table 9. 
These predictors are more statistically important than the other 
predictors. 

Table 9.  Spearman rank correlated predictors 
Product A Predictors Correlation P-Value 
    Open Issues 0.770 0.021 
    Target Changes 0.803 0.015 
    Service Pack -0.520 0.162 
Product B Predictors Correlation P-Value 
    Months Since 1st Release -0.683 0.009 
    Open Issues -0.643 0.015 
     Target Changes 0.424 0.130 

The top two selected predictors using BIC model selection for 
each product are in Table 10. These predictors are statistically 
significant and capture different sources of variance. 

Table 10.  BIC selected predictors 
Product A Predictors 
    Open Issues 
    Service Pack 
Product B Predictors 
    Open Issues 
    Months Before Next Release 

We have identified development, deployment and usage, and 
software and hardware configurations metrics as common factors 
that are related to field defects across two products in the same 
organization for process improvement planning.  
We find that deployment and usages factors (Service Packs for 
Product A and Months Before Next Release for Product B) and 
software and hardware configuration metrics are important 
predictors. Identifying these two predictors to be important 
motivates collecting better deployment and usage information.  
We find that two development factors (Targeted Changes and 
Open Issues) are highly correlated to field defects across both 
products at ABB using rank correlation. Identifying these two 
predictors to be important motivates collecting better development 
defect information (discussed in 4.2.3).  
These two predictors also identify areas where the development 
process can be improved. For example, the Open Issues metric, 
which measures the number of reported problems that have not 
been examined at the time of release (see section 4.2.3), can be 
used to better manage releases. ABB can use the results in two 
ways. First, it can change the development/deployment process to 
delay deployment of Product A when there are large numbers of 
unexamined problems at the time of release. Second, if there are 
large numbers of Open Issues, then ABB can reduce the scope of  
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the next release of Product A and allocating enough time and 
resources to resolve field defects.  

6. LESSONS LEARNED 
In this section, we summarize the insights we gained regarding the 
practical issues of selecting an appropriate modeling method for 
product testing prioritization and process improvement planning, 
evaluating accuracy of predictions across multiple releases in 
time, and conducting analysis with incomplete information.  

6.1 Selecting an appropriate modeling method  
We have found that identifying areas for improvement and 
prioritizing product testing both required attributing effects to 
specific predictors (explicability) and being able to weigh the 
relative importance of different predictors (quanitifiability). Given 
our objectives, explicability and quanitifiability are more 
appropriate criterions than accuracy for selecting a modeling 
method. Given the criterions, we elect to use linear modeling with 
model selection in our study.  
Other researchers have noted problems with using accuracy as the 
criterion for selecting a modeling method (e.g. Shepperd in [35]); 
however, we are among the few to identify specific situations in 
which accuracy is not the most appropriate criterion and the 
modeling method to use given the situations.  

6.2 Evaluating accuracy of predictions across 
multiple releases in time 
We have found that the forward prediction evaluation procedure 
gives a more realistic assessment of the accuracy of prediction of 
modeling methods for multiple releases in time.  
From talking with experts and examining change logs we 
concluded that the software systems and the software development 
organizations for both Product A and Product B changed during 
the observational periods (13 releases between 2000 and 2005 for 
Product A and 15 releases between 1996 and 2005 for Product B). 
The evaluation procedures used in previous studies assumed that 
time did not matter and did not consider change in the software 
system and the development organization. Our forward prediction 
evaluation procedure accounted for this evolution process.  
Our forward prediction evaluation procedure is taken from time-
series analysis; however, our application to software field defect 
prediction evaluation is novel. 

6.3 Conducting analysis with incomplete and 
missing information 
We have found that by acknowledging data deficiencies and using 
available information, we are able to find rationale for better data 
collection and produce useful analysis results.  
For example, we were not able to collect exact deployment and 
usage; however, we used available information to derive rough 
measures. Although not perfect, the rough measures enabled more 
accurate predictions (since the measures were selected as 
important predictors). By showing that the rough measures were 
important, we might be able to make an effective case for better 
data collection. 

7. CONCLUSION  
In this paper, we have reported experiences and empirical results 
from initiating quantitatively-based risk management activities. 

We have presented technical results prioritizing product testing, 
comparing modeling methods for field defect predictions, and 
planning for process improvement efforts. In addition, we have 
reported experiences on selecting a modeling method when 
explicability and quantifiability are important, selecting an 
evaluation technique when time is a factor, and conducting 
analysis with incomplete data. 
Our study contains preliminary findings. We have not fully 
gauged the adequacy of our results. For example, we do not know 
if predictions with ~25% ARE for product A and ~77% ARE for 
product B are accurate enough to aid maintenance resource 
allocation. However, initial feedback from experts has been 
positive, initial usage of the results (discussed in section 6.1) has 
been promising, and the results have contributed to buy-in for 
process improvement activities.  
More work is necessary to derive benefits for ABB. We need to 
investigate how current product testing is conducted. We need to 
complete data collection and analysis for Product B. We need to 
expand our analysis to more projects within ABB. Finally, we 
need to investigate the results in more detail. For example, we 
need to determine why the open issues metric has a positive 
relationship to field defects for Product A but a negative 
relationship to field defects for Product B. 
Improved testing, better maintenance resource allocation, and 
better process improvement planning can lower the risk of field 
defects for software consumers and software producers. The 
results in this paper are steps towards achieving that goal using 
quantitatively-based methods.  
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