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Abstract. Social networking sites such as Facebook and MySpace thrive
on the exchange of personal content such as pictures and activities. These
sites are discovering that people’s privacy preferences are very rich and
diverse. In theory, providing users with more expressive settings to spec-
ify their privacy policies would not only enable them to better articulate
their preferences, but could also lead to greater user burden. In this ar-
ticle, we evaluate to what extent providing users with default policies
can help alleviate some of this burden. Our research is conducted in
the context of location-sharing applications, where users are expected to
specify conditions under which they are willing to let others see their lo-
cations. We define canonical policies that attempt to abstract away user-
specific elements such as a user’s default schedule, or canonical places,
such as “work” and “home.” We learn a set of default policies from this
data using decision-tree and clustering algorithms. We examine trade-
offs between the complexity / understandability of default policies made
available to users, and the accuracy with which they capture the ground
truth preferences of our user population. Specifically, we present results
obtained using data collected from 30 users of location-enabled phones
over a period of one week. They suggest that providing users with a small
number of canonical default policies to choose from can help reduce user
burden when it comes to customizing the rich privacy settings they seem
to require.
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1 Introduction

Social networking sites such as Facebook and MySpace thrive on the exchange
of personal content such as pictures and activities. These sites are discovering
that people’s privacy preferences are very rich and diverse. While in theory,
providing users with more expressive settings to specify their privacy policies
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gives them the ability to accurately specify their preferences [7], it can also lead
to significant increases in user burden. In this paper, we investigate the extent
to which generated default policies can alleviate user burden. The use of default
policies has proven to be practical in other domains such as the configuration of
compact P3P policies in web browsers (e.g. Internet Explorer, Firefox). Here we
explore an extension of this approach by introducing the concept of canonical
default policies. These policies abstract away idiosyncratic elements of a user
context, making it possible to expose and discover common elements across
otherwise seemingly disparate user policies.

Specifically, we explore how we can learn default policies using machine learn-
ing techniques, and evaluate their effect in alleviating some of the user’s burden
in defining their privacy policies. Our objective is to minimize the number of
edits the user has to make to the default policy to arrive at a policy which she
is willing to use. In this work, we use accuracy as a metric to approximate the
user’s burden to reach an acceptable policy starting from some initial policy (e.g.
a blank policy or a default policy). We assume that a user is more likely to be
comfortable using default policies of higher accuracy, and requires less editing to
arrive at an acceptable final policy. As reported in previous studies (e.g. [22]),
users generally do not require policies that are 100% accurate to start using an
application. An example is a user with a policy that allows for less sharing than
she ideally would like to have.

In this study, we consider the scenario of helping a new user identify suit-
able default privacy settings. We present her with a choice of default privacy
settings that have been learned from our current set of users’ privacy settings
that she can easily understand and modify to specify her desired initial policy.
This work is complementary to research efforts that make it easier to edit poli-
cies to converge to desirable final policies (e.g. user controllable learning [16],
example-critiquing [10]).

We conduct this study in the context of location-sharing applications, where
users are expected to specify conditions under which they are willing to let others
(e.g. friends, colleagues, family members) see their locations based on different
contexts (e.g. based on day of the week, time of the day, or where they are).

Prior work [7, 22] has shown that users’ privacy policies can be very rich. For
example, a user may have a policy that only allows her colleagues to access her
location information when she is at work, and during regular business hours.
Trying to derive default policies through direct application of machine learning
techniques does not yield intuitive or usable polices. We show that one can
abstract away individual elements of a user’s schedule and the set of locations
she visits, to arrive at what we call canonical policies, such as ‘allow access
while at work’, or ‘deny access while at home in the evening’. We further show
that canonical policies lend themselves to identification of more meaningful and
intuitive default policies that users are more likely to be able to customize.

We evaluate the accuracy with which a combination of canonical default
policies can cover the final privacy policies for a population of 30 users whose
privacy preferences were collected during the course of a week-long study. We
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learn users’ individual policies using a decision tree algorithm, and cluster the
individual policies into a set of more general default policies. We further discuss
tradeoffs between intuitiveness of the default canonical policies and the number
of such policies. The main contribution of the work is to show that canonical
default polices seem to offer a practical solution where traditional application of
machine learning techniques yield unintuitive and unusable policies. Our results
further suggest that in the case of location-sharing preferences considered in this
study, aiming for about 3 default policies is the “sweet-spot”, though additional
studies may be needed to further validate this result.

2 Related Work

To the best of our knowledge, there hasn’t been any prior work on learning de-
fault policies in location-sharing services. However, we briefly summarize some
of the work from the location-sharing services and user preference learning lit-
erature in general.

2.1 Preference Learning

There has been much prior work in applying machine learning techniques to
learn users’ preferences. In the recommendation systems literature ([8] is an
excellent survey), many successful systems have been proposed and built in
both—industry (e.g. Amazon.com, Netflix.com), and academia (e.g. [20],[1]).
Recommendation systems can usually be classified into content-based (where the
recommendation is based on past behavior), collaborative-filtering (where recom-
mendations are based on preferences of other people with similar taste), or a mix-
ture of both. There are basically two categories of collaborative-filtering: nearest
neighbor methods (e.g. [11],[24]), and latent factor modeling (e.g. [12],[23]). Al-
though latent-variable models are closest to our line of work, contrary to their
approach, our focus is not in arriving at more efficient representations, but in
reducing the amount of user burden in further customizing their policies.

In [16], the authors look at user-controllable learning, which is most related
to the field of example-critiquing. Unlike their approach where the user and
system tweak a common policy model, our work is geared towards helping users
bootstrap their privacy policy.

2.2 Location-Sharing Services

There are many commercial location-sharing services such as Loopt [2], Mo-
bimii [4] and Mobikade [3]. Significant academic work has been done in this
area (e.g. [25],[21]), where the focus has been on deployment, accurate location
detection and implementation of user’s privacy policies. A fair amount of work
has been done in looking at the types of information that people are willing to
share, and the conditions under which they are willing to share, in the form
of diary studies [6], interviews [13–15], surveys [18], and experience sampling
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techniques [9, 17, 22]. Lederer et. al. suggest that the nature of the requester is
the primary factor in choosing whether to disclose information or not [18], while
Consolvo et al. determined that along with requester information, the reason for
the request and the level of detail were important factors as well [9]. In [7], the
authors determined that along with the requester type, time of the request and
location of the person during the request were important factors in determining
whether to disclose their location information.

3 Experimental Setting

Our experimental data comes from a study conducted over the course of two
weeks in October 2008. We supplied 30 human subjects with Nokia N95 cell
phones for one week at a time (15 subjects per week).

Subjects were recruited through flyers posted around the university campus.
Our 30 subjects were all students from our university. The sample was com-
posed of 74% males and 26% females, with an average age of about 21 years
old. Undergraduates made up 44% and graduate students made up 56% of the
sample.

Our only requirement for entry into the study, was that they must already
have an AT&T or T-mobile phone plan, allowing them to transfer their SIM card,
into the phone we provided. We required that for the duration of the study the
participants use the phone as their primary phone. This requirement ensured
that the subjects kept their phones on their person and charged as much as
possible. Each of the phones was equipped with our location tracking program,
which ran at all times in the background, recording the phone’s location using a
combination of GPS and Wi-Fi-based positioning to an easily locatable text file
on the phone.

Each day, subjects were required to visit our web site and upload this file,
from their phone, containing their location information. We processed this file
immediately and then presented the participants with a series of questions based
on the locations they had been since they last uploaded (allowing flexibility in
case they had missed a day).

Every question pertained to a specific location that the participant had been
during that day, with a map showing the location and the duration they re-
mained there. For example, a question may have asked “Would you have been
comfortable sharing your location between Tuesday October 28th, 8:48pm and
Wednesday October 29th, 10:39am with:”

The users were then presented with four groups, to assess whether or not they
would have been comfortable sharing their location with each of these groups.
The four different groups of individuals were: i) close friends, ii) immediate fam-
ily, iii) anyone associated with Carnegie Mellon, and iv) the general population,
or anyone.

In each of these assessments, or audits, the participants tagged the informa-
tion gathered with one of the following four classes

1. Allow - The participant would allow the requester to share her location.
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2. Deny - The participant would prefer to not share her location with the
requester.

3. Part of the time - The participants would like more granularity so that she
can allow requester to access her location part of the time.

4. Part of the group - The participant would like more granularity so that she
can allow only a part (one or several members) of the requester group to
access her location information. The main purpose of this designation was
to ensure that we did not over-simplify the types of groups we made available
in the study.

An additional option was provided for participants to designate the displayed
location as inaccurate. When this designation was made the participant was
not required to audit for each group, however in practice this was used very
infrequently (less than 1%).

The data collection process, specifics of the software implementation, and
survey details from pre- and post- questionnaires are explained in more detail
in the study [7], and are not repeated here. Although we use the same physical
location and auditing data, our focus is different from that study. [7] examines
the impact of different levels of expressiveness for privacy mechanisms. On the
contrary, we are interested in learning a few default policies that captures the
users’ privacy policies as accurately as possible while ensuring the policies are
both simple and intuitive.

4 Data Exploration

In all, we collected a little more than 3800 hours of location information. Less
than 1% of the audits were marked as inaccurate. We would like to determine
which attributes are useful in specifying default policies. We first only focus on
two of the features: time of day, and day of the week. Figure 1 shows a typical
sample of a user’s access policies – we can see a particular user’s audit, with
time of day (in hours) on the Y-axis, and day of the week on the X-axis. We
have used different colors to indicate the different audit statuses as follows: allow
(green), deny (red), inaccurate location information (white), and finally missing
information (dark blue). An audit is marked missing if the user did not provide
information for that time period, or if the user had tagged that audit as ‘part of
the group’.

4.1 Data Cleanup

To learn users’ default policies from these data, we first handle the audits with
missing information and inaccurate location information; and classify them as
‘allow’ or ‘deny’. The main reason for classifying all data is that we would like
to consider duration as a feature in our classifier, and we want to make sure
that missing information for a few minutes doesn’t affect our classifier. We could
inadvertently introduce two types of errors: we classify a deny as allow (false
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Fig. 1. A typical un-sanitized audit. The requester type is ‘university community’. The
x-axis in each figure is the day of the week, while the y-axis is time of the day (in hours)

positive), or we classify an allow as a deny (false negative). Different users may
face different levels of unhappiness depending on the type of classification error.
We try to account for this uneven level of happiness by considering the conser-
vativeness of a user, as explained below. The conservativeness ratio, κ is defined
as the ratio of the user’s unhappiness when the system wrongly allows access,
to the user’s unhappiness when the system wrongly denies access, i.e.

κ =
Unhappiness of instance wrongly classified as allow

Unhappiness of instance wrongly classified as deny
(1)

Our definition of the conservativeness ratio assumes that this ratio is fixed
for a user across all mistakes that the system makes. For instance, in a real life
situation, a user may be more lenient when a university associate is wrongly
denied access to her location, than when the requester is a family member, but
we do not consider such scenarios here.

We would like to point out that unlike in [7], we assume that the cost of
the system making a mistake is equal to the reward when the system gets a
correct prediction. In other words, we assume that for every correct prediction,
the user’s unhappiness reduces by a unit, while for every wrong prediction, the
user’s unhappiness increases by a unit.

We may have missing information in our data due to many reasons - the
data/location may not have been recorded because the cell-phone was turned
off; the GPS/Wi-Fi may not have reported an accurate position; or the specifi-
cations (with respect to the number and type of groups, and resolution of time
during events) may not have had enough expressiveness. The final classification
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of audits for these missing period depends on a number of factors – source of the
error, duration of the error, classification of the encapsulating period, and the
conservativeness factor, κ. We found that there is very little correlation between
the classification for the same time frame across days, and so we could not use
that information to classify missing periods.

If the information is missing for just a couple of minutes (we used a threshold
of 5 minutes in this work), or if the source of the missing information is in the
data collection process, we classify the audit based on a linear combination of the
permissions of the previous and next periods weighted by the conservativeness
of the user. In other words, if the missing period is in between two periods
with same access types (e.g. both allow), then we classify the period with a
similar access type (e.g. allow). The trickier case is when the missing period is in
between periods of different access types. For example, if a user allowed access
in the period leading to the missing period, and denied access in the period
following, and has a conservativeness ratio greater than 1, we deny access during
the missing period. Specifically,

δ(period) =
{

0 if period is allow;
κ if period is deny. (2)

class(missing) =
{
allow if δ(prev. period) + δ(next period) < 0.5;
deny otherwise. (3)

4.2 Some Observations

The sanitized data (time of day, and day of the week dimensions) for the 30
users when the requester is a member of the University is shown in Figure 2. It
has only two possible states: allow (green) and deny (red). The missing audits
and inaccurate audits have also been classified albeit with zero penalty weight,
which is not shown in this figure. We assign zero penalty weight to make sure
we are not penalized for classifications for which we did not have ground truth.

Preferences collected on weekdays were similar, as were those collected on
weekends. We can see this trend in Figure 2, where in each of the 30 cells, the
access pattern during most of the day on Sunday and Saturday are correlated
while access patterns during nights on Friday and Saturday are similar. Thus,
we combined the days of the week into a feature (that we use in our algorithms)
with just two values: weekdays, and weekends. We would also like to note that
this grouping would lead to a bias in our learning samples since we have more
weekday training samples than weekend training samples. However, assuming
that the user cares about the average performance of the system, this should not
be a problem since this reflects the actual proportion of weekdays to weekend
days in a week.

Another trend that we noticed in our data was that, taking all users’ audits
into account, variance within a requester type was much lower than between
requester types. For instance, when the requester type is ‘family’, there is a
higher tendency for the access to be ‘allow’, than when the requester type is
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Fig. 2. Sanitized audits of the 30 users (Location shared with University members).
The x-axis in each figure is the day of the week, while the y-axis is time of the day (0
- 24 hours)

‘anyone’. This prompted us to learn rules conditioned on the requester type.
Thus, much of the analysis in the rest of the paper will look at each requester
type separately, and we will explicitly mention when we do not do so.

We also noticed (as may be expected), that there is a tendency for access
permissions to switch from ‘allow’ to ‘deny’ as we move from family / close friend
requester types to the ‘anyone’ requester type. For instance, if someone denied
their close friends from seeing their location during a particular period, it is
highly likely that requesters in the ‘university members’, and ‘anyone’ categories
would also be denied access. We do not take advantage of this observation in
our algorithms currently, but we may use this in the future.

5 Methodology

As mentioned earlier, we would like to examine the extent to which we can
identify groups of users with similar privacy policies, and ascertain good default
policies for them. In addition to the policies being accurate, our aim is to ensure
that these policies are both intuitive and understandable, so that our users can
customize them to fit their specific needs. While direct application of machine
learning algorithms may achieve high accuracy, a naive application of learning
may not guarantee understandable and customizable policies. To illustrate this
point, in Figure 3, we show the result of applying K-means directly on the input
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data. Here we cluster the privacy profiles of our users when the requester is
a family member, based on the time of day, and day of the week. We set the
number of clusters to 4. Each cluster corresponds to a characteristic privacy
profile.

Fig. 3. Base case: Non-canonical and unintuitive policy clusters for Family obtained
from direct application of clustering (red = deny, green = allow).

As we can see from Figure 3, using actual times to determine privacy policies
yielded rules that were not generalizable and unintuitive. The main reason could
be that our user’s demographics (students) have schedules that are more event-
based (e.g. after work), rather than time based (e.g. after 5:00 PM). In order
to capture this, we incorporate a coarser notion of time by dividing a day into
coarser intervals of different granularity. We experimented with different intervals
of 1, 2, 3, 4, 6, 8, and 12 hours. Every ‘activity’ is then tagged with the periods
during which it occurred. For example, let us consider the case of 3 hour intervals.
If a user allowed access from 2:00 PM - 11:30 PM, then we tag that event with
three time tags - periods 6, 7 and 8, corresponding to the intervals (3:00 PM -
6:00PM, 6:00 - 9:00 PM, and 9:00 PM to 12:00 AM). We include all the periods
where the event occured at least γ% of the time. We determine γ as follows

γ =
{

80 if period is allow;
80
κ if period is deny. (4)

where, κ is the conservativeness ratio defined earlier. The reasoning behind
this is that if a user was very conservative ( say κ = 5), and denied access during
a portion (say around 40% of the time) of a particular period, we would make
sure that the classification of the period in the mined rule lowers the expected
unhappiness of the user (and classifies it as deny). We chose 80% as the cutoff
(Equation 4) after experimenting with different values for the cutoff. Also, as
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noted in our data exploration step, we incorporated a coarser notion of day of
the week (as weekday or weekend).

Next, we incorporated ‘canonical’ location information in our study. As men-
tioned earlier, our location measurement devices (GPS and Wi-fi positioning on
the phone) returned location in terms of latitude and longitude observations. We
wanted to get a tag for this location, so that we can group locations that have
similar context. We used Wikimapia [5] to get this tag information. Wikimapia
allows users to tag locations on a google map. Users of Wikimapia mark an area
on the map provided, and give a tag for that area such as ‘Kiva Han Cafe’. We
used this previously tagged information to reverse-geocode the users’ latitudes
and longitudes into a named location (e.g. Carnegie Mellon, Starbucks etc.). We
then tagged these locations as off-campus, school, on-campus residence, restau-
rant, mall, and, unclassified depending on the named location. We also noticed
different access patterns between people who lived on-campus and those who
lived off-campus. Hence, we created different location categories for them. Our
University is spread out, and there are a few restaurants very near campus build-
ings - closer than the resolution of our positioning estimates. In cases where we
don’t have a clear classification for a particular location, we have two entries in
our data - one for campus, and the other for restaurants.

The last attribute we incorporated was the duration of the event. We wanted
to see whether the duration of the event would have an impact on the privacy
profiles. For instance, a user might want to allow her family to know her location
if she was working longer than usual.

As mentioned in the Introduction, the aim of this paper is to present the
new user with a choice of default policies learned from existing users. In the first
part of this section, we deal with helping users learn a suitable policy using their
own audits using a supervised learning approach. We identify a few features,
and show how these features can be used to learn an individual privacy policy
for the user. In the latter part, we describe how to mine suitable default policies
from these individual policies.

5.1 Learning Individual User’s Policies: An empirical approach to
approximating accuracy limits

Along with the fact that we needed to learn policies for new users from their first
set of audits, the main reason for this step is also operational — in the data that
we collected, we did not collect policies from users in the form of rules. Hence,
we need to use this step to determine rules from the audits to determine default
policies for our users too.

In order to learn rules from the user’s audits, we use a decision tree to gen-
erate them based on the attributes that were dicussed earlier. We used the C4.5
decision tree algorithm [19] to mine rules automatically from each of the users’
audits separately. We used 10-fold cross validation to ensure that there was no
overfitting. We trained various combinations of features (requester type, time in
4 hour intervals, day of the week, tagged location and duration of the event) to
understand which of the features were instrumental in reducing the test error. In
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addition to lower test error, we prefer simpler rules trading off a slightly higher
test error. We achieve this by ensuring that the depth of the tree was small. In
all, save 1 of the 30 users, the type of requester was the first feature based on
which the tree was branched - thus confirming our previous notion that requester
type is the most important feature.

We studied the accuracy of our classifier by considering an exhaustive com-
bination of all the features. We observed that using ‘duration’ as a feature in-
creases both the error and the complexity of the policies (with p < 0.05). So, in
the rest of the paper, we only use ‘canonical’ location, day of the week (weekday
/ weekend) and a coarse representation of time as the relevant features for our
classification.

In Figure 9, we give a sample individual policy learned by the decision tree
for a specific requester group. In this case, the learned simple policy specifies
that the user allows access to her location to anyone from the university only
when she is not at home 1. Hence, this policy does not depend on the day of the
week (w.r.t. weekday / weekend) or the time of the day.

In the next set of results, we represent the error in estimation as accuracy loss.
Accuracy loss is the error rate in classification weighted by the conservativeness
ratio (Equation 5). For instance, if the policy generated has 10% of the periods
wrongly classified as allow, and 5% of the periods wrongly classified as deny, and
the conservativeness ratio (κ) of the user is 2, the accuracy loss is calculated to
be 0.25.

accuracy loss =
Period wrongly classified as allow

Total period classified
· κ+

Period wrongly classified as deny

Total period classified
(5)

We first compare the effect of the granularity of the time information. In
Figure 5, we plot a histogram of the test error for various intervals of time,
arranged by requester type. We have only included a few of the time intervals
in this plot. As we see in Figure 5, we got the best accuracy when we used time
intervals of 1 hour. This is useful when learning individualized policies, but often
leads to very fractured and possibly unintuitive policies when trying to identify
default policies for an entire population of users (Figure 4).

Next, we wanted to see the effect of conservative policies. As mentioned
before, the conservativeness ratio (κ) is the ratio between a misclassified allow
(i.e. the system decides to deny when the user actually wanted to allow) and a
misclassified deny. We plot a histogram of the test error in Figure 6, for various
ratios. The ratios are represented as 1:κ in the figure. We see that as a user gets
more conservative, the mean error increases (i.e. the distribution spreads out).

1 Since, the requester cannot differentiate between ‘offline’ mode and ‘deny’ mode,
having a deny policy for a specific canonical place may not necessarily reveal one’s
location.
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Fig. 4. An example of a less intuitive policy that was learned with time period of 1.
Area shaded in green is allow, while area shaded in red is deny.

Fig. 5. Histogram of accuracy loss for different time granularity for the University
group. Here, each instance is a user, and the accuracy loss is calculated across all
audits by that user. We see that as granularity increases, error increases too.
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Fig. 6. Histogram of accuracy loss for different conservative ratios for people from the
University group. Here, each instance is a user, and the accuracy loss is calculated
across all audits by that user. We see that error increases for more conservative users.

5.2 Identifying Promising Default Policies

At the end of the previous step, we have a set of individual policies. Each policy
has a set of rules mined for each user based on their audits. Now, we intend
to cluster people into groups such that the ideal policies of the people in each
cluster have very little variance, and we can thus ensure that a default policy
that is very similar to one person’s ideal policy is likely to be very similar to
others in the group.

We use the K-means clustering algorithm to cluster users into groups. As
input to the clustering algorithm, we use the individual policies - either, learned
from the users’ decision trees (as shown in the previous section), or taken as
input directly from an existing user of the system. More specifically, each of the
feature vectors is an individual user’s decision tree applied to the entire state-
space weighted by the frequency of occurence of the various rules in the users
training set. This step is required since the learned tree uniformly weighs all
rules as equally likely. Once the users are grouped into various clusters, the final
rules can be learned again by concatenating the users’ rules into a single list of
rules, and using a decision tree on this concatenated list. It may seem intuitive to
learn directly from the individual policies, instead of using the users’ rules. But,
learning directly from the individual policies does not take into account the fact
that decision tree outputs uniformly weigh all instances – including instances
where the tree has never seen a single training point.

We experimented with different values for k (the number of clusters). The
number of clusters corresponds to the number of default policies that the new
user gets to choose from. We show a comparison of accuracies achieved by dif-
ferent values of k, varying them from 1 to 4 in Figure 7. We see that as the
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Fig. 7. Accuracy loss for different requester groups and for different number of default
policies per group when the day is divided into 6 intervals of 4 hours each.

Fig. 8. An example of a less intuitive default policy that was learned (One of the four
default policies learned for the friends requester type). It’s classified as less intuitive
since the policy generated is very fractured.
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number of default policies increase, the overall classfication error reduces. There
is a marked decrease in error when going from 1 default policy to 2 default poli-
cies. In contrast, [7] suggests that the users had 6 time rules, 19 location based
rules and 24 location / time rules to describe their privacy policy completely,
without restricting the rules to be intuitive. While our policies are specified in
a slightly different fashion, we see that we are able to get within 90% accuracy
with as little as 3 intuitive rules for each requester group type.

Using more clusters leads to some policies that are highly specific to a small
set of users, and are less intuitive for a general new user (Figure 8). In constrast,
Figure 9 shows an example of an intuitive default policy when the requester is
a university friend, and we have three default policies. We use the duration of
each rule of the policy (i.e. the size of the contiguous block in the figure) as a
simple measure of ‘intuitiveness’ of the policy. Rules with very short durations
are classified as less intuitive. We also see a marginal increase in error, as we
increase the time resolution from 1 hour to 6 hours in most cases, although as we
saw in Figure 4, the intuitiveness of the resulting policy decreases with 1 hour
resolution.

Fig. 9. An example of an intuitive default policy that was learned (One of the three
default policies learned for the University member requester type).

6 Conclusions and Future Work

In this work, we considered the scenario of helping a new user identify suit-
able default privacy settings. We presented her with a choice of default privacy
settings that have been learned from our current set of users’ privacy settings
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that she can easily understand and modify to specify her desired initial policy.
We conducted this study in the context of location-sharing applications, where
users specified conditions under which they were willing to let others see their
locations based on different contexts.

We demonstrated that deriving default policies through direct application of
machine learning techniques did not yield intuitive or usable polices. We then
showed that one could abstract away individual elements of a user’s schedule
and the set of locations they visit, to arrive at what we call canonical policies,
that lent themselves to identification of more meaningful and intuitive default
policies that users were more likely to be able to customize.

We evaluated the accuracy of default canonical policies for a population of 30
users whose privacy preferences were collected during the course of a week-long
study. We learned the users’ individual policies using a decision tree algorithm,
and clustered the individual policies into a set of more general default policies.
We demonstrated the relationship between conservativeness and accuracy, and
between time granularity and accuracy. We further discussed tradeoffs between
intuitiveness of the default canonical policies and the number of such policies.
The main contribution of the work was to show that canonical default polices
seem to offer a practical solution where traditional application of machine learn-
ing techniques yield unintuitive and unusable policies. Our results further suggest
that in the case of location-sharing preferences considered in this study, there
was a sweet-spot of around 3 default canonical policies per requester group. We
have included the final set of default policies obtained in the Appendix.

We are extending this experiment in Locaccino (http://www.locaccino.
org), where we are doing a much larger study with many more Facebook users
spanning over multiple weeks. In Locaccino, users actively share their locations
based on their specified privacy policies. We hope to utilize the more diverse set
of users to study the impact of the suggested canonical default policies.
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Appendix

In Table 1, we present the set of default canonical policies that were mined from
our experiment. The policies are presented by type of requester. These results
are based on a conservativeness ratio of 1, and the days were divided into 6 time
periods — morning, mid-day, afternoon, evening, night and late-night.

Table 1. Default policy options arranged by requester types. A user selects a default
policy by choosing one default rule for each category of requesters.

Default Canonical Policies Learned

Requester Type Default Rules

Family Members
1. Allow always
2. Deny if in an unlabeled location

Close Friends
1. Allow Always
2. Deny if in off-campus residence in the mornings
3. Deny if at school during late-nights

University Colleagues
1. Allow Always
2. Deny on weekends and weeknights
3. Deny if at off-campus residence

Anyone
1. Deny Always
2. Allow if in school during morning-to-afternoon on weekdays
3. Allow if in school


