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INFERRING LOGIT MODELS
FROM EMPIRICAL MARGINS
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We examine several approaches for inferring logit models from
empirical margins of predictor covariates and conditional margins
containing the means of a binary response for each covariate mar-
gin. One method is to fit proxy data to the conditional response
using the beta distribution, a process we call “margin analysis.”
Proxy data can obtained using three approaches: (1) implement-
ing the iterative proportional fitting (IPF) procedure on the mar-
gin totals, (2) sampling from a larger relevant data source such as
the census, and (3) enumerating, or sampling from, the combina-
toric space of all possible tables constrained by the margins. The
first procedure is a well-studied approach for estimating contin-
gency tables from margins, but it does not necessarily maintain the
associations between the covariates unless seeded with an initial
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table containing those associations. In the second approach, which
is appropriate for analyzing sociodemographic covariates, we can
use a large census sample adjusting for sampling biases observed
in the empirical margins. However, the appropriateness of using a
census proxy depends substantially on how similar the sampling
pools are. Our third approach entails exploring the combinatoric
space of all contingency tables constrained by the margins while
considering the associations among the covariates. We aggregate
the logit models estimated from each table in that space into a
single model. This approach is more robust than the first two as
it considers multiple proxies. While the estimated logit models
from each approach are generally similar to one another, for the
low-dimensional tables we explore in this paper, the combinatoric
approach incurs wider standard errors, which renders potentially
significant coefficients insignificant. Finally, we suggest weight-
ing the combinatoric models with evidence-relevant probabilities
obtained using the multivariate Pólya distribution.

1. INTRODUCTION

Model estimation for contingency tables is driven by the extent of in-
formation available about those tables, from exact cell frequencies to
odds-ratios to fixed margin totals. When all cell frequencies are avail-
able, the log-linear approach is appropriate, and it estimates coefficients
for predicting frequencies expected by the marginal totals as well as in-
teractions (Bishop, Fienberg, and Holland 2007). In the case of “partial
information release,” a contingency table (or distribution of tables) is
implied and demands alternative estimation approaches.1

A common form of partial information is marginal totals
(or simply margins), and these often summarize the data (including
some dependent response) or describe a sample while maintaining
confidentiality—for example, aggregated census data (Dobra, Karr,
and Sanil 2003; Fienberg 2005). The iterative proportional fitting (IPF)
procedure, another expectation-based estimation approach, provides
contingency tables constrained to margin totals (Deming and Stephan
1940).2 Additional information can include conditional margins, which

1 We credit Aleksandra Slavković for the phrase “partial information
release.”

2 In the basic implementation, the initial seeded table is uninformative and
contains uniform values.
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not only adds a dimension but also offers multidimensional margins,
as opposed to the typical unidimensional margins. The benefits of in-
ferring contingency tables and models from partial information are sig-
nificant, especially to research that extends and synthesizes the reports
and models of published material, such as meta-analysis.3

The data examined in this paper pertain to tax compliance be-
havior, particularly whether or not respondents have committed tax
evasion, or intentional tax error,4 on their recent tax returns.5 Since
the 1970s, a host of studies have modeled this behavior with various
sociodemographic, behavioral, and attitudinal predictors. A number of
these studies report marginal totals of their sample as well as condi-
tional margins typically in the form of proportion of respondents in
each margin category whose response is tax evasion.

We outline an approach for estimating a logit model from
proxy data whose margins are consistent with empirical sociodemo-
graphic sample count margins and are fitted to the conditional response
margins.6 The foremost complication is accounting for the association
between the covariates. Bishop and colleagues summarize some mea-
sures of association highlighting the work by Goodman and Kruskal
(1954, 1959, 1963, 1972). Single measures of association, such as the
correlation coefficient or chi-squared-based measures, are considered
inappropriate for tables larger than 2 × 2, as they do not adequately
capture the ways a table can deviate from independence. Since asso-
ciation is often a “multidimensional concept,” research suggests that
a multidimensional measure be employed for tables larger than 2 ×
2. As our work pertains to fixed margin totals, the class of relevant
measures is called “margin sensitive.” In this paper, we propose using

3 While we may obtain the original data from the authors of the published
works, our attempts were unfruitful.

4 The term “intentional error” stems from the IRS classification of incor-
rect portions of tax returns as being one of two types of errors: intentional and
inadvertent. The IRS, however, cannot definitively categorize an error as either
intentional or inadvertent; without substantial evidence of willful intention by the
taxpayer, the error is usually categorized as inadvertent. While we use the term
“noncompliance” also synonymously with “intentional error,” in other writings it
might be used to indicate either kind of error.

5 The time horizon varies from study to study, spanning past year’s returns
to 5-years to lifetime.

6 We use the phrase “logit model” synonymously with “logistic
regression.”
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the complete table to capture associations using a measure that offers
probabilistic comparisons to other tables.

In order to estimate a logit model, we require either covariate data
or a contingency table, which can be enumerated into data. Of course,
the margins of the proxy data will need to match the empirical margins.
Our first table is derived from the IPF and represents our control as it
largely assumes independence among the covariates. Next, we examine
the use of a secondary data set, which is presumptively similar to the
data underlying the margins. Since the margin covariates we examine are
strictly sociodemographic, we turn to census data as a potential proxy.

Our third approach eschews fitting to conditional margins from
just a single contingency table, and it explores the combinatoric space of
all possible contingency tables constrained by the sample margins and
aggregates the logit models produced by each hypothetical model. Fo-
cusing on a single combinatoric solution that best resembles the census
proxy is tantamount to seeding the IPF with informative values, in-
cluding census data, in order to maintain some level of association.
Deming and Stephan (1940), Friedlander (1961), Causey (1984),
Bartholdy (1991), and Little and Wu (1991) have investigated infor-
mative seeding of the IPF.

The aggregation of model coefficients can also be adjusted, if
the data underlying the reported sample margins presumptively exhibit
some association, by weighting each constituent model by its degree of
relevance to the empirical association. For these weights, we employ the
multivariate Pólya distribution, which offers a probabilistic measure of
fit between some evidence table and a candidate table. Finally, we deal
with additional complications due to inconsistent empirical margins
(indicative of missing data) and multiple ways of exploiting conditional
margins.

2. LINEAR PREDICTION OF CONDITIONAL RESPONSE
MARGINS

Among the prominent sociodemographic predictors often found in tax
compliance studies are gender, age, education, and self-employment.
While gender and self-employment are binary indicators, the others,
though discrete, span a range large enough to warrant condensing into
a smaller set of categories (or bins), as seen in many studies that report
margins of sociodemographic variables.
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The cases we explore include only discrete bivariate and trivari-
ate distributions, or contingency tables, of the predictors and a binary
response.7 As a diagnostic exercise, we first explore how well simple
linear prediction can reconstitute the joint response distribution, ex-
pressed as a table of proportions of the covariate contingency table. For
the diagnostics that follow, we restrict our options to five cases: 2 × 2,
2 × 3, 3 × 4, 2 × 3 × 2, and 2 × 3 × 4. These dimensions are associated
with the following covariate combinations:8

x1 x2 x3 nbins
1 nbins

2 nbins
3 nbins

Total

Gender Self-employment − 2 2 − 4

Gender Age − 2 3 − 6

Age Education − 3 4 − 12

Gender Age Self-employment 2 3 2 12

Gender Age Education 2 3 4 24

We fix the values for a covariate i of size nbins
i to span the discrete

range {0, . . . , nbins
i − 1}; for example, gender and self-employment take

on values of 0 and 1, while the age covariate can be 0, 1, or 2.
For our diagnostics, we want to assess the degree of predictive er-

ror incurred by table dimensionality. To this end, we generate simulated
data and predict the response by fitting a logit model to data margins.
Our response, y, is a binary variable, so we draw uniform Bernoulli
probabilities for p(y = 1) for each cell of the contingency table:

pij [k] ∼ Unif(0, 1), (1)

where i ∈ {0, . . . , nbins
1 − 1}, j ∈ {0, . . . , nbins

2 − 1}, and, if the data are
trivariate, k ∈ {0, . . . , nbins

3 − 1}. For sampling uniform contingency ta-
bles, we draw a prior probability vector of length nbins

Total from a uniform
Dirichlet and employ it in its conjugate multinomial draw for a sample

7 The response technically constitutes an additional dimension/
contingency.

8 For age and education, we condense the covariates into three and four
categories, respectively. This manner of condensing large-ranged covariates is not
uncommon.
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set of cells totaling to n:9,10

q ∼ Dirichlet(α = (1, . . . , 1))

x ∼ Multinomial(n, p = q)

Note that p in the multinomial is a parameter label and distinct from
the uniformly drawn p of equation (1). For these diagnostics, we set
the sample size to n = 200. For each contingency table x and response
distribution p, we infer a logit model, which can be accomplished by
either enumerating the x into a full data matrix or performing weighted
logistic regression. For example, for the two-dimensional data, we have
the following model:11

logit[p(y = 1)] = β0 + β1x1 + βx2

In order to assess the accuracy of IPF and margin analysis (an alter-
native fitting method we will explain shortly), we calculate the propor-
tional joint response distribution predicted from the logit on either the
actual sample x or some proxy derived from the sample (e.g., IPF),
and compare that to the original response p using mean square error
(MSE).

We draw a set of random response probabilities p and a set of
random sample distributions x. We then pair each joint response dis-
tribution p with each joint data distribution x, yielding a convoluted
population of x, p pairings. We keep only those pairings that are guar-
anteed to provide convergent models; specifically, we omit those that
contain zero margins or any joint response cell frequency of zero as these
seem to produce nonconverging results. Due to this manner of rejection
sampling, our initial set of draws varies according to its dimensionality:

9 We could accomplish this by multiplying the Dirichlet draw q by the
sample size n + 1 and taking the floor; however, this approach requires that we
reject draws that do not sum to n, which is typically about 4/5 of the draws, or
adjust the sample, which can lead to biases; therefore, this method is less efficient
than using the multinomial.

10 Our convention is that a boldfaced variable—for example, X or x—
denotes a vector or matrix of quantities as does a set of values held within a pair of
parentheses—for example, (x0, . . . , xn); nonboldfaced variables denote scalars.

11 The logit[x] is the log odds of x, log[ x
1−x ]; conversely, logit−1[x] represents

the inverse-logit, exp(x)
1+exp(x) = 1

1+e−x .
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p, x Potential Valid
Dimensions Draws Samples Samples

2 × 2 20 400 365
2 × 3 25 625 376
3 × 4 50 2500 317
2 × 3 × 2 50 2500 317
2 × 3 × 4 560 313600 392

We next summarize IPF and introduce margin analysis, a procedure to
fit covariate data to conditional response margins.

2.1. Iterative Proportional Fitting Procedure

The iterative proportional fitting (IPF) procedure is an approach for
estimating a contingency table from marginal totals and an initial seed
table (Deming and Stephan 1940; Friedlander 1961; Fienberg 1970;
Dobra and Fienberg 2001). A uniform seed table yields cells with ex-
pected values, similar to those produced by a log-linear model with
no interaction terms. We have an unknown contingency table with cell
values x from whose marginal totals we estimate x̂. For an uninformed
table, we choose initial seed values of x̂(0)

ij = 1 and repeat the following:12

x̂(2η−1)
ij = x̂(2η−2)

ij xi ·
J∑

k=0

x̂(2η−2)
ik

and x̂(2η)
ij = x̂(2η−1)

ij x· j

I∑
k=0

x̂(2η−1)
kj

,

where I = (the number of rows) and J = (the number of columns)
and the known marginal totals (i.e., row sums and column sums) are13

xi · =
J−1∑
k=0

xij and x· j =
I−1∑
k=0

xkj

12 Alternatively, the seeded table can contain nonuniform values, in which
case the IPF will maintain some of the interactions.

13 Boldfaced xi · denotes the vector of margin values while nonboldfaced
xi· refers to some scalar statistic, typically the sum over the unlabeled ‘·’ margin, in
this case the second dimension or column.
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until we reach a predetermined convergence condition⎛
⎝ I−1∑

i=0

J−1∑
j=0

x̂(t)
ij − x̂(t−1)

ij

⎞
⎠ < 1 × 10−10.

Not surprisingly, more information leads to greater accuracy in the IPF
estimation. For trivariate data, three sets of two-dimensional margins
provide a better fit than three sets of one-dimensional margins; how-
ever, papers typically report only one-dimensional margins. Beckman,
Baggerly, and McKay (1996) elaborate on Deming and Stephan’s ap-
proach for estimating multidimensional IPF tables from more than two
unidimensional margins.

Furthermore, conditional margins imply an additional dimen-
sion and provide not only an accompanying set of margins but a subset
of the multidimensional margins. For instance, in the 2 × 2 case (i.e.,
[g]ender by [s]elf-employment), an additional conditional response mar-
gin (i.e., y = noncompliance) implies 2 × 2 × 2 data. However, the con-
ditional response margins offer only two of the three two-dimensional
margins (i.e., g × y and s × y).14

Alternatively, we can perform IPF on the sample and response
margins separately to obtain the nonresponse IPF table

fIPF(x(1 − p)) = fIPF(x) − fIPF(xp),

where fIPF(z) is our function for the IPF algorithm and returns the
estimated contingency table fitted to a known set of margins associated
with table z. We can also obtain the IPF joint response distribution
pIPF:

pIPF = fIPF(xp)
fIPF(x)

.

We can then either expand both the rounded response and nonresponse
IPF tables into a full data set, including the binary response variable,
and perform a straightforward logistic regression or, to be more precise,
perform a weighted logistic regression.15 As the IPF ratio approach

14 While it might be possible to enhance IPF to use only some of the
required multidimensional margins, we have not found this in the literature.

15 IPF often yields noninteger cell values.
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exploits more information than the IPF, the estimated tables are more
similar (according to MSE or χ2) to the combined data and response
contingency table than tables estimated from three sets of unidimen-
sional margins.16 If the sample or conditional margins are inconsistent
due to missing data, we would need to augment the lesser margins. If
only the sample margins are consistent, or easily made consistent, we
can instead use the IPF-estimated table solely from the sample mar-
gins and fit a logit model to the conditional margins using the “margin
analysis” procedure we detail next.

2.2. Margin Analysis

As an alternative to the IPF ratio approach, we offer a way to fit the sam-
ple margins to the conditional response margins using actual or proxy
covariate data. This approach is also suitable when the conditional mar-
gins yield inconsistent response population sizes due to missing data.
Given a proxy contingency table with cells x̂ (either IPF-derived or from
another source such as a census), we wish to infer a logit model from
conditional response margins, p, and margins associated with a table
with unknown cells x. For example, given a 2 × 2 contingency table,
we have margins of length I and J and the following cell counts of the
proxy:

x2

0 1
0 x̂00 x̂01x1
1 x̂10 x̂11

For some set of parameter coefficients β, we obtain a predicted proba-
bility for each covariate combination, i and j where i, j ∈ {0, 1}

p̂ij = logit−1(β[i j ]T),

and we compute the predicted conditional response margins (i.e.,
weighted mean of the response for category for each covariate):

16 While the analysis supporting this assertion does not appear in this
paper, it is available from the authors upon request. Furthermore, we have yet to
test for the extent to which a complete set of multidimensional margins is superior
to IPF ratio.
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p̂i · =

J−1∑
j=0

p̂ij x̂ij

J−1∑
j=0

x̂ij

and p̂· j =

I−1∑
i=0

p̂ij x̂ij

I−1∑
i=0

x̂ij

.

We employ the beta distribution to fit our predicted marginal prob-
abilities to the empirical conditional margins pi · and p· j .17 The log-
likelihood, for the two-dimensional table, is18,19

L =
I−1∑
i=0

log[Beta( p̂i ·|α = (1 − pi ·)xi · + 1, β = pi ·xi · + 1)]

+
J−1∑
j=0

log[Beta( p̂· j |α = (1 − p· j )x· j + 1, β = p· j x· j + 1)]

We find the maximum likelihood β using the Newton-Raphson gradient
descent optimization algorithm.20 We obtain the covariance matrix of
the estimated coefficients by taking the negative inverse of the Hessian
or inverse of the Fisher information matrix, produced by the Newton-
Raphson algorithm.21 If the conditional response margins yield
inconsistent total response counts (i.e.,

∑
i pi ·xi · �= ∑

j p· j x· j ), the MA
approach will fit toward an overall mean response, weighted by each
dimension’s total:

∑
i pi ·xi ·

/∑
i xi · +

∑
j p· j x· j

/∑
j x· j . This situation

17 The beta distribution is suitable because the solution converges to the
same estimates and covariance as the logit, when solved with full data, including
response, rather than sample and conditional margins.

18 Each additional margin would add a beta log-likelihood term.
19 L denotes a log-likelihood.
20 While an analytical solution exists for non-logit models (i.e., probabili-

ties are treated as the response to a straightforward linear regression), one does not
for the logit model. An analytical solution is intractable due to the logit transfor-
mation. If we were fitting to simple [0,1] probability, we can obtain an analytical
solution for the two covariate models; we omit the solution from the paper, but it is
available upon request.

21 For example, the variance V for a univarate model (i.e., intercept and
one covariate) is

V = −[I−1] = −
[

δL
δβi β j

]
.
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can arise if there are missing data, leading to sample margins having
different totals, and/or the sample or conditional margins are erro-
neous, producing different response proportions, even with normalized
margins. For the data we examine in this paper, we are faced with both
complications.

2.3. Diagnostic Results

For each pair of covariate data x and joint response distribution p, we
estimate a predicted distribution p̂ from model coefficients β predicted
through

1. the logit model using x and p (i.e., the full data);
2. margin analysis (MA) to fit the actual data x to the conditional

response margins derived from p;
3. margin analysis using IPF-derived tables from x fitting also to the

conditional response margins derived from p; and
4. a weighted logit model on the IPF ratio (IPFR).

We compare each p̂ to its associated p using mean square error (MSE):

MSE =
√√√√ I−1∑

i=0

J−1∑
j=0

( p̂ij − pij)2.

We also obtain the following diagnostic MSEs:22,23

Minimum Mean Maximum

Dim. Logit MA IPF IPFR Logit MA IPF IPFR Logit MA IPF IPFR

2 × 2 0.000 0.000 0.004 0.031 0.255 0.255 0.306 0.392 0.961 0.961 1.285 2.079
2 × 3 0.100 0.100 0.110 0.085 0.499 0.509 0.536 0.526 1.137 1.123 1.772 1.301
3 × 4 0.532 0.537 0.542 0.361 0.965 0.987 0.975 0.889 1.581 1.558 1.568 1.730
2 × 3 × 2 0.480 0.481 0.501 0.368 0.897 0.920 0.935 0.902 1.482 1.693 2.306 1.937
2 × 3 × 4 0.872 0.872 0.888 0.911 1.359 1.374 1.364 1.339 1.890 1.915 1.890 2.053

Higher dimensionality incurs an increase in the potential nonlinearity
of the response distribution so we expect a concomitant increase in

22 We obtain a similar pattern in the results when we employ a χ 2 test of
fitness between the actual and predicted response count tables. These are available
from the authors upon request.

23 We ignore extreme, degenerative models (i.e., coefficients >5).
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the MSEs. However, since the IPFR can model nonlinearities in the
response, we are not surprised to see its lower MSE relative to the
others.

Because we want to better understand the effect of dimensional-
ity of error, we consider several relevant predictors: cell count, degrees
of freedom, and the length of the diagonal. If we have I row margins,
J column margins, and K slices or layers, the number of unknowns or
degrees of freedom is24

Unknown cells − Known margins = Unknown variables (df )

I × J × K − I + (J − 1) + (K − 1) = I J K − I − J − K + 2

We require only one full set of margins, I , to provide us with a total
sample count, which is why we require only J − 1 and K − 1 parts
of the other margins. The diagonal

√
I2 + J2 + [K2] is a measure of

dimensional size. For two-dimensional tables, we omit the K2 term.
The predictors are then

I J K Number of Cells Number known Number unknown Diagonal

2 2 – 4 3 1 2.83
2 3 – 6 4 2 3.61
3 4 – 12 6 6 5.00
2 3 2 12 5 7 4.12
2 3 4 24 7 17 5.39

In order to control for the full dimensional space, we normalize the
MSE, dividing by the maximum possible, which for proportions is√

IJK . The mean and standard deviations of the normalized MSEs
are

Logit MA IPF IPFR

I J K μMSE σMSE μMSE σMSE μMSE σMSE μMSE σMSE

2 2 – 0.127 0.094 0.127 0.094 0.153 0.097 0.196 0.138
2 3 – 0.204 0.080 0.208 0.079 0.219 0.090 0.215 0.099
3 4 – 0.279 0.054 0.285 0.057 0.282 0.054 0.257 0.064
2 3 2 0.259 0.058 0.266 0.065 0.270 0.070 0.260 0.065
2 3 4 0.277 0.036 0.281 0.037 0.278 0.035 0.273 0.040

24 Here we use I , J, K to indicate the full length of each dimension, not
the highest index. We also, attribute the term “slice” to Deming (1940).
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Even with the normalization, there remains the increase of error with di-
mensionality with a slight drop at 2 × 3 × 2 for the first three measures,
suggesting that the diagonal might be the best predictor. Furthermore,
the marginal increase in error drops and even reverses, suggesting a
nonlinear trend. Also, the IPF and IPFR generally exhibit the lowest
minimum and the highest maximum MSEs (previous table), so we see
larger standard deviations above. When we predict the normalized MSE
by the candidate predictors separately, we find that the diagonal pre-
dictor confers the highest adjusted-R2s. Due to the nonlinear nature of
the MSE pattern, we also examine quadratic models.25

Predictor Logit MA IPF IPFR Logit2 MA2 IPF2 IPF2
R

Intercept −0.013ˆ −0.015ˆ 0.037∗∗∗ 0.115∗∗∗ −0.491∗∗∗ −0.539∗∗∗ −0.412∗∗∗ −0.002
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Diagonal 0.058∗∗∗ 0.059∗∗∗ 0.048∗∗∗ 0.030∗∗∗ 0.301∗∗∗ 0.326∗∗∗ 0.277∗∗∗ 0.090∗∗∗
(0.002) (0.002) (0.002) (0.020) (0.020) (0.021) (0.026)

Diagonal2 −0.029∗∗∗ −0.032∗∗∗ −0.028∗∗∗ −0.007∗
(0.002) (0.002) (0.003) (0.003)

Adj-R2 0.373 0.372 0.268 0.090 0.423 0.429 0.314 0.092
n 1743 (for all models)

The models are modestly improved with the quadratic term. However,
the pattern is inconclusive as we examined only five dimensional forms;
it remains possible that the error trend reaches a plateau of ∼0.300.

3. TAX COMPLIANCE DATA

Vogel (1974) collected data on tax compliance behavior and attitudes
toward taxation from a sample of the Swedish population in 1974.
For the subsequent analysis, we focus on three covariates that fea-
ture prominently in the literature of tax noncompliance: gender, self-
employment, and age. Other tax compliance studies that offer margins
include Houston and Tran (2001) and Mason and Calvin (1978).26

25 The significance stars in our regression models follow the standard
nomenclature:

p <

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.001 if ‘***’

0.01 if ‘**’

0.05 if ‘*’

0.1 if ‘ ˆ ’
26 We select Vogel’s study as he reports a more varied set of margins and

employs a larger sample size.
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We highlight some research on the effects of these covariates on tax
compliance.27

3.1. Gender

Being male is consistently associated with higher levels of noncompli-
ance. Social psychological evidence points to men exhibiting a higher
degree of anti-authoritarian and risk-seeking attitudes than women.
Most tax evasion studies report gender effects that are consistent with
this observation (Vogel 1974; Mason and Calvin 1978; Tittle 1980;
Jackson and Milliron 1986; Baldry 1987; Porcano 1988; Collins,
Millliron, and Toy 1992). While men have traditionally committed more
crimes than women, these crimes are often borne of masculine physi-
cality and circumstance, factors that do not necessarily contribute to
tax evasion. Hence, some studies, such as those conducted by Houston
and Tran (2001) and Friedland, Maital, and Rutenberg (1978), find a
reverse trend; however, their effect and sample sizes are too small for
the claim to be significant.

3.2. Self-Employment

Self-employment offers nonwithholding income and, consequently, ad-
ditional opportunities to evade taxes, so it is no surprise that the eva-
sion rate for self-employed individuals is consistently higher than that
for those who are not. Since reports of this observation appear as mar-
gins (Vogel 1974; Houston and Tran 2001; Schuetze 2002) and both
significant and insignificant model predictions (Aitken and Bonneville
1980; Groenland and van Veldhoven 1983; Porcano 1988; Andreoni
et al. 1998; Wahlund 1992; Slemrod et al. 2001), the finding is incon-
clusive and further complicated by self-employment’s moderate associ-
ation with other sociodemographics, particularly gender and age. Fur-
thermore, risk-seeking individuals, who are more likely to evade taxes,

27 While typical tax compliance studies include additional sociodemo-
graphic and nonsociodemographic covariates, we focus on these three covariates as
they are commonly reported (or included in models) and allow us to maintain our
goal of providing logit models amenable to meta-analysis.
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might also be more likely to be self-employed; this linkage has not been
sufficiently explored in the literature.

3.3. Age

On the other hand, increasing age has a diminishing effect on non-
compliance, allegedly due to increasing conservatism as well as risk
aversion and increased perception of risk (Mason and Calvin 1978;
Wahlund, 1992). Furthermore, a host of studies, across several decades,
all report an overall diminishing effect for age on noncompliance (Vo-
gel 1974; Mason and Calvin 1978; Houston and Tran 2001; Friedland
et al. 1978; Baldry 1987; Jackson and Milliron 1986; Andreoni, Erard,
and Feinstein 1998; Ritsema, Thomas, and Ferrier 2003). Jackson and
Milliron (1986) offer that generational and life cycle differences may be
responsible for some of the inconsistent findings, and Porcano (1988)
and Collins, Milliron, and Toy (1992) report no significant effect due to
age, when controlling for attitudes and personality traits. While taxpay-
ers might gain further knowledge about the tax system and, potentially,
ways to evade as they age, increased income also becomes a factor in
compliance (Mason and Calvin 1978), although some evidence points
to a nonlinear pattern (Jackson and Milliron 1986).

3.4. Association Among Sociodemographic Variables

In addition to IPF estimated contingency tables, we examine the pre-
dictive capabilities of a large proxy sample—namely, an n = 10,000
nationally representative subsample of the U.S. Year 2000 Census’ Pub-
lic Use Micro Sample (PUMS) data.28,29 There is broad agreement that
these sociodemographic traits are mildly correlated.30 Men, on average,

28 We drew our subsamples from the 5% PUMS using person-level weights.
29 We use the U.S. 2000 Census largely because of convenience as it is

employed in a larger project of which this work is a part. While data from an
earlier and/or Swedish census would be more appropriate, the use of the census is
illustrative and does not detract from the importance of the alternative combinatoric
approach, which relies only moderately on census data.

30 For consistency with the margins we analyze later, the “Age” covariate
here has been condensed into three categories, 20–29, 30–59, and 60–70; we exclude
individuals whose ages fall outside those three groups.
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are more likely to be self-employed than women (according to both
U.S. and Swedish sources) or are more likely to have nonwithholding
jobs (Mason and Calvin 1978), all of which impact noncompliance.31

These interrelationships between sociodemographic traits require one
to consider them concurrently in any inference exercise. Gender is often
a prominent predictor even in those models that include attitudes and
personality traits. An inspection of the Pearson correlation coefficients
and χ2 statistics for our census sample reveals this to be the case:32

Pearson correlation ρ χ2 statistic︷ ︸︸ ︷ ︷ ︸︸ ︷
Gender Age Gender Age

Age −0.012∗∗∗ 1.68
Self-employment 0.104∗ −0.075∗∗∗ 107.15∗∗∗ 81.18∗∗∗

While the associations are nominal, two exhibit significance at the p <

0.001 level for our large sample.33 The χ2 test mitigates the relationship
between gender and age, which is not surprising as the age structure
differences are subsumed by our coarse condensation of age.34

31 Several reports point to over 2.5 times more Swedish men than women
being self-employed throughout 2000–2010, which is greater than the 1.9 ratio we
find in our PUMS subsample (Eklund and Vesju 2008; Brunk and Andersson 2009).
Also, the definition of self-employment in Sweden appears comparable to that in
the United States (Brunk and Andersson 2009).

32 We employ this sample throughout the rest of the paper. We also argue
that these correlations of the U.S. census population do not substantially differ with
the Swedish population.

33 Incidentally, the correlation coefficients stop exhibiting significance at
a subsample level of approximately n = 500, which is not surprising for low corre-
lations.

34 Also, if we reduce our sample to n = 1000 (which is the size of the
margin sample we will analyze), the χ 2 maintain significance, with the age and S.E.
relationship reduced to χ 2 = 8.08, p < 0.05:

x1 x2 χ 2

Gender Age 0.21

Gender S.E. 10.91**

Age S.E. 8.08*
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4. INFERRING LOGIT MODELS FROM EMPIRICAL
MARGINS

We explore logit model inference for the 2 × 2 (gender by self-
employment), 2 × 3 (gender by age), and 2 × 3 × 2 (gender by age
by self-employment) cases.35

4.1. 2 × 2 Analysis

For our first inference, we estimate a logit model for the following
margins reported by Vogel (1974):

Covariate Categories/Bins % Noncompliant nVogel ||n||
Gender Female = 0 21.7 506 0.416

Male = 1 32.3 709 0.584
Self-employment (S.E.) No = 0 27.9 967 0.901

Yes = 1 37.1 106 0.099

For comparison of the sample covariate margins, we present the nor-
malized row and column margins of the initial PUMS as well as the
PUMS if we condition on row (gender) and column (self-employment)
separately:36

Row/Gender Column/S.E.
Raw Norm

Data 0 1 0 1 MSE MSE

Vogel 0.416 0.584 0.901 0.099 – –
PUMS 0.504 0.496 0.904 0.096 0.1241 0.0621
Row conditioned 0.416 0.584 0.899 0.101 0.0038 0.0019
Column conditioned 0.509 0.491 0.901 0.099 0.1234 0.0622

The MSE columns allows us to measure the similarity of each proxy
distribution to the Vogel margins. The raw MSE is directly calculated
from a vector form by concatenating the normalized row and column
margins:

35 We introduce our approach incrementally for pedagogical reasons. The
procedure for obtaining the combinatoric models becomes more complicated with
the increasing size and number of dimensions, and we feel the reader would be
better served by being exposed to the less complicated cases first.

36 We restrict the age range to 20–70, as reflected in Vogel’s data.



94 LEE AND CARLEY

MSE =
√∑

[(v0·, v1·, v·0, v·1) − (x0·, x1·, x·0, x·1)]2

where v refers to the normalized Vogel margins and x refers to the nor-
malized margins of a proxy PUMS table. The normalized MSE divides
the raw by the maximum possible MSE, which is

√
1 + 1 + 1 + 1 = 2

for the 2 × 2 case. The PUMS as a source of comparison can be relevant
if we maintain the belief that it reflects the true sampling distribution
better than the IPF, and we have no other option for choice of proxy.

We observe clear differences between Vogel’s sample and our
unconditioned PUMS sub-sample. The head of a household who also
files tax returns tends to be male, which would explain why Vogel’s data
exhibits an overrepresentation of males. This suggests row-conditioned
(i.e., conditioned on gender) treatment of our PUMS sample might
be appropriate. In fact, the low MSE suggests that the relationships
between gender and self-employment are similar across the Vogel and
PUMS samples despite the differences in their sampling pools. Given the
high MSE for the column-conditioned PUMS, we can probably dismiss
the notion that Vogel’s data are biased by self-employment instead of
gender.

As Vogel’s margins sum to two different sample sizes of 1215 and
1073, due to missing data, and for the sake of simplicity, we will proceed
with our analysis by assuming a sample size of n = 1000 applied over
the normalized row and column sums. Also, for consistency, we impose
this sample size on the PUMS proxies as well, which will continue to
exhibit the normalized margins obtained from the 10K sample. The IPF
and the IPF ratio methods require the sample and response margins to
be consistent; hence, we must account for the missing data, which we
detail in Appendix B.

In order to explore the combinatoric space of contingency table
solutions that satisfy the margins, we can express the constraints on the
cell values to the following integer programming problem:

x00 + x01 = 416

x10 + x11 = 584

x00 + x10 = 901

x01 + x11 = 99,
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where all values x ≥ 0. This reduces to the following equations with one
unknown:

x10 = −x11 + 584

x01 = −x11 + 99

x00 = x11 + 317,

where the sole constraint is 0 ≤ x11 ≤ 99.
We can now enumerate all 99+1 combinatoric tables that ful-

fill the marginal totals.37 We compare each combinatoric table x to the
IPF-derived contingency table, the row and column conditioned PUMS
(R and C), and the initial PUMS (0) with MSE; the last three have been
normalized to a sample size of 1000 (i.e., their normalized tables have
been multiplied by 1000). We also compare, with MSE, the logit coef-
ficients (β) produced by marginal analysis on each of the proxies and
the empirical conditional margins to those of coefficients borne from
each combinatoric table (βx). The beta-binomial likelihood function is
parameterized as follows:38

p00 = 0.217, x00 = 506

p01 = 0.323, x01 = 709

p10 = 0.279, x10 = 967

p11 = 0.371, x11 = 106

For illustrative purposes, we display the first few and last few combina-
toric distributions along with the MSE results in Table 1.

The labels “R” and “C” refer to the row- and column-
conditioned PUMS as the proxy distribution and “0” refers to the
initial 10K PUMS sample. As an inquiry into internal consistency, we
highlight those combinatoric solutions that minimize the MSE between
them and each of the proposed proxy distributions; we also highlight

37 For more detailed investigation into bounds on constrained tables, see
Dobra and Fienberg (2001) and Dobra et al. (2003).

38 While we normalize the size of the candidate proxy table to 1000 so that
the constraint equations are more readable, we retain the empirical sample counts
for accuracy in the fit. This disparity does not have any noticeable consequence on
the final logit models.
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TABLE 1
First and Last Three Combinatoric Results

Combinatoric
Table x Mean Square Error Between x or βx and . . .

x00 x01 x10 x11 IPF βIPF R βR C βC 0 β 0

317 99 584 0 116 0.679 146.0 0.764 146.0 0.764 234.2 0.788
318 98 583 1 114 0.657 144.0 0.743 144.0 0.743 232.3 0.766
319 97 582 2 112 0.636 142.0 0.722 142.0 0.722 230.5 0.745...

...
...

...
...

...
...

...
...

...
...

...

414 2 487 97 78 0.222 48.1 0.136 48.1 0.136 91.0 0.128
415 1 486 98 80 0.228 50.1 0.141 50.1 0.141 90.5 0.133
416 0 485 99 82 0.233 52.1 0.146 52.1 0.146 90.1 0.138

those solutions that minimize the error of the model coefficients, as
shown below:

Combinatoric
Table x Mean Square Error Between x or βx and

x00 x01 x10 x11 IPF βIPF R βR C βC 0 β 0

375 41 526 58 0 0.000 30.1 0.091 134.7 0.112 134.0 0.111
390 26 511 73 30 0.092 2.0 0.002 113.7 0.037 113.1 0.036
416 0 485 99 82 0.233 52.0 0.143 90.2 0.136 90.1 0.138
392 24 509 75 34 0.104 4.5 0.013 111.2 0.035 110.6 0.034

A boldfaced MSE score points to the combinatoric table, which offers
the minimum MSE for the associated column. Of course, we expect to
find a perfect, or near-perfect, minimum for IPF since an IPF estimated
table exists within the constraints of any set of margins. While the min-
imum row-conditioned PUMS (R) offers almost-zero minimal MSEs,
the associated table differs significantly from the IPF solution (MSE =
30.1), suggesting they are not interchangeable and one’s choice model
must be selected with care.

The column conditioned PUMS and the initial PUMS samples
are similar (normalized marginal MSE is 0.0041), so we observe iden-
tical combinatoric solutions. However, the minimal MSE solutions for
table and model coefficients differ, indicating that the MSE function
for tables and coefficients have divergent solution topologies especially
when the proxy has no close combinatoric solutions.
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FIGURE 1. MSE of IPF, PUMSgender and PUMS0. For the range of possible values of x11,
we display in (a) the mean square error between the distribution x and the
IPF (I, dotted), gender-conditioned PUMS (R, solid black), self-employment-
conditioned PUMS (C, solid gray), and nonconditioned PUMS (“0”, dashed). In
(b), we display the MSE between the β”s of each combinatoric logit model and
of the marginal analysis of the IPF, the conditioned and unconditioned PUMS.
The raw PUMS (0) and self-employment (C) curves overlay one another.

Still, we need to consider the empirical association between
“gender” and “self-employment”. The correlation coefficient from an
IPF-derived table will be almost zero, ρIPF = 0.001, while the row-
conditioned PUMS and its minimal combinatoric solution exhibit
higher correlations: 0.100 and 0.103 respectively. The χ2 statistics are
respectively 0.002 (IPF), 10.22 (R), and 10.64 (combinatoric), with the
PUMS R and combinatoric maintaining nearly the same association
level shown in the unconditioned PUMS subsample of equivalent size.
While the exact association for the Swedish population was unavailable
to us at the time of writing, some investigation points to the correlation
lying closer to the PUMS than IPF given the claim that significantly
more men than women are self-employed.

Figure 1 shows how each of the MSEs vary across the space of
joint distributions. We see that the MSEs can become appreciably large
relative to their respective minima. The MSEs of the coefficients in
particular span a range large enough to warrant concern over selecting
the correct proxy data and, consequently, being accurate about the
association among the covariates.
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In Table 2, we present the logit models that have been estimated
using the IPF, the row and column conditioned PUMS, and the ini-
tial PUMS.39 We also perform a weighted logit on IPFR in which the
conditional margin is incorporated into the IPF estimation, with the
response and nonresponse tables obtained separately through IPF.

We introduce and then aggregate the “All” models in which we es-
timate model coefficients from each of the combinatoric tables through
MA. In combining the combinatoric models, we compute the mean
of each covariate coefficient and, for the standard errors, we combine
both within- and between-solution variance.40,41 The “AllM” model
fits each solution to self-employment margins augmented for missing
data.42 “AllR” is similar to IPFR but examines combinations of both the
response and nonresponse tables; however, this approach also requires
consistent margins (i.e., missing data augmentation).43

Finally, in “AllW,” we enhance the combinatoric approach by
weighting each model’s estimates by how well each combinatoric
table reflects some weighted empirical evidence—namely, the row-
conditioned PUMS as its margin MSE with the Vogel margins its

39 For comparison, we offer those models based on combinatoric tables
closest to each treatment of the PUMS data in Appendix C.

40 We employ the approach of Gelman et al. (2003) to combining the
variance across of M sample sets:

T = (n − 1)
n

W + 1
n

B,

where M is number of estimations and the between-sample variation is

B = n
M − 1

M∑
i=1

(
βi − β

)2

and the within-sample variation is

W = 1
M

M∑
i=1

σ 2
i .

These errors are nearly identical to those obtained by multiple imputation.
41 It would be inappropriate to apply meta-analytic fixed- or random-

effects estimation of the combined effects as each solution is not new evidence.
42 See Appendix B for details on missing data augmentation.
43 In this paper, we infer an aggregated model from the combinatoric

response/nonresponse tables for only the 2 × 2 case.
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lowest.44 We employ the Pólya distribution to measure that fit:45

L = log
[
Pólya

(
xi |κ · xPUMS

R + 1
)]

, (2)

where i is an index to one of the combinatoric solutions (i.e., xi ),
xPUMS

R = (389, 27, 510, 74), and κ = 0.01, our belief in the relevance
of the row-conditioned PUMS to the Swedish sample. Despite the sim-
ilarity in the margins of the Vogel and the row-conditioned PUMS, we
acknowledge that the 2000 PUMS and the sample of the 1974 Swedish
population are different enough to warrant a low weight on the PUMS
as evidence.46

We easily convert the log-likelihoods into probabilistic weights:

wi = exp(Li − Lmax).

In effect, we weight those combinatoric tables that resemble the row-
conditioned PUMS slightly higher than those that do not. While other
measures of association, such as the correlation coefficient, are appli-
cable to the 2 × 2 case, the Pólya approach is more easily interpretable
and applicable to higher dimensional cases.

44 The Gelman approach for aggregated model coefficients, described in
an earlier footnote, is adjusted so that β is now a weighted mean as is the mean
within-sample variance W . Furthermore, the between-sample variation becomes
weighted variance.

45 The multivariate Pólya distribution is a Dirichlet prior on a multinomial
and is the multivariate analogue of the beta-binomial. Essentially, we obtain the
probability of some data n arising from the probability distributions specified by
the Dirichlet parameterized with evidence, x, in this case the κ weighted, row-
conditioned PUMS. The density of the Pólya is

Pr(x|α) = n!∏
k (nk!)




(∑
k

αk

)




(
n +

∑
k

αk

) ∏
k


(nk + αk)

(αk)

,

where 
 is the gamma function, nk is the number of items of x in group k, and
n = ∑

k nk.
46 We can alternatively employ the Swedish self-employment gender ratio

in constructing an evidence table, but we save that for future investigation.
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In all of the models, “gender” remains a prominent and sig-
nificant predictor whereas the significance and effect size of “self-
employment” wavers, confirming those findings that self-employment’s
involvement in tax compliance is not a foregone conclusion as we might
intuitively expect. The models based on single proxy naturally display
narrower coefficient standard errors than the aggregated models. How-
ever, we notice that the errors of the ratio combinatoric model, “AllR”,
exhibit shrinkage from the other “All” models. We would expect fur-
ther shrinkage if we were to combine both the combinatoric ratio and
evidence-weighted approaches.

4.2. 2 × 3 Analysis

To demonstrate how larger dimensionality complicates the combina-
toric approach, we extend our analysis to the covariate pair “gender” ×
“age” whose dimensions are 2 × 3. Vogel’s age margin is expressed with
five categories, which we condense into three.

% Combined Combined
Covariate Categories Evasion n % Categories % Evasion n ||n||
Age 20–29 = 0 38.8 288 23.7 = 0 288 0.237

30–39 = 1 31.5 230 18.9}
30–59 = 1 30.4 488 0.401

40–59 = 2 29.5 258 21.2
60–69 = 3 19.6 226 18.6}

60+ = 2 18.1 440 0.362
70+ = 4 16.5 214 17.6

The normalized row and column margins and MSE scores are shown
below.

Row/Gender Column/Age
Raw Norm

Data 0 1 0 1 2 MSE MSE

Vogel 0.416 0.584 0.237 0.401 0.362 – –
PUMS 0.504 0.496 0.218 0.486 0.296 0.1661 0.0678
Row conditioned 0.416 0.584 0.219 0.486 0.295 0.1096 0.0447
Column conditioned 0.504 0.496 0.237 0.401 0.362 0.1247 0.0510
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While the row-conditioned PUMS remains superior, its advantage is
only slight largely because there is only a small association between
gender and age. We suspect survey bias on both gender and age to
be largely responsible for the observed margin differences rather than a
significant difference in the population age structure.47 We again assume
a sample size of n = 1000, and the equations simplify to the following:48

x00 = x11 + x12 − 347

x01 = −x11 + 401

x02 = − x12 + 362

x10 = −x11 − x12 + 584,

with the free parameters being {x11, x12} and, again, subject to the
constraint that all values x ≥ 0. We find 69,438 total solutions and
obtain the minimal MSE results shown in Table 3.

In this case, the rounded IPF produces margins that do not coin-
cide with a combinatoric solution—hence, the nonzero MSE. The cor-
relation coefficients for IPF, R, and C are respectively −0.014, −0.024,
and −0.043, while the empirical PUMS correlation is −0.012; these
imply that the IPF-derived table here is the best candidate for model
inference. Upon inspecting the χ2, we obtain 0.008 (IPF), 0.112 (R),
and 0.177 (C), of which the last is closest to the PUMS statistic 0.21.

None of the PUMS proxies are close to any of the combinatoric
tables, with the closest being column-conditioned PUMS (C). Despite
that, we find parity in the model coefficients β across the board, with
the minima β MSEs all less than 0.05. However, we suspect the lack of
association between the covariates renders the inference process insen-
sitive to the structure in the table. The similarity of models is confirmed
in Table 4, in which the effect sizes are more consistent than those shown
in Table 2. We observe that “age” remains a consistently significant pre-
dictor, while the effect of “gender” is mitigated only in the unweighted
combinatoric models.

47 The 1974 Swedish population data were unavailable at the time of writ-
ing. However, the margins for the 2000 Swedish population are gender then age
concatenated (0.512, 0.488, 0.163, 0.544, 0.293), and they resemble the 2000 U.S.
population (MSE = 0.0808) more so than the Vogel margins (MSE = 0.2216).

48 Refer to Appendix A for details on the simplification.
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TABLE 3
MSE Results for Gender × Age (2 × 3)

Combinatoric
Table x Mean Square Error Between x or βx and. . .
x00 x01 x02

x10 x11 x12 IPF βIPF R βR C βC 0 β 0

98 167 151 1.4 0.003 78.8 0.014 75.0 0.037 107.2 0.034
139 234 211
98 169 149 4.2 0.000 79.5 0.017 75.0 0.039 107.2 0.036

139 232 213
97 161 158 13.3 0.019 77.7 0.010 76.1 0.031 108.1 0.024

140 240 204
106 139 171 49.7 0.014 86.4 0.007 93.9 0.034 121.9 0.029
131 262 191
87 174 155 20.4 0.050 81.5 0.039 72.7 0.034 105.5 0.023

150 227 207
83 217 116 89.2 0.036 127.6 0.036 110.6 0.013 133.5 0.012

154 184 246
87 174 155 20.4 0.050 81.5 0.039 72.7 0.034 105.5 0.023

150 227 207
84 204 128 65.2 0.036 109.2 0.032 93.2 0.016 119.8 0.007

153 197 234

4.3. 2 × 3 × 2 Analysis

Our final analysis combines the three covariates into a single model.
The normalized margins are shown below.

Row/Gender Column/S.E. Slice/Age
Raw Norm

Data 0 1 0 1 2 0 1 MSE MSE

Vogel 0.416 0.584 0.237 0.401 0.362 0.901 0.099
PUMS 0.504 0.496 0.218 0.486 0.296 0.904 0.096 0.1661 0.0480
Conditioned on . . .

row 0.416 0.584 0.219 0.486 0.295 0.899 0.101 0.1096 0.0317
column 0.504 0.496 0.237 0.401 0.362 0.905 0.095 0.1248 0.0360
slice 0.504 0.496 0.217 0.487 0.296 0.901 0.099 0.1656 0.0478

The row-conditioned PUMS maintains only a slight advantage
over column-conditioning.

Again, we employ Gaussian elimination to determine the un-
known variables.49 Since the solution space is now greatly expanded,

49 See Appendix A for further details.
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especially for the sample count of n = 1000, we resort to a sampling
of the combinatoric space instead of enumerating it. First, we sample a
solution for the entire self-employment 2 × 2 slice by using a uniform
Dirichlet prior on a multinomial:50

q ··1 ∼ Dirichlet (α = (1, 1, 1, 1, 1, 1))

x··1 ∼ Multinomial (n = 99; p = q ··1),

where each draw x··1 = (x001, x011, x021, x101, x111, x121). Given the solu-
tion for x··1, we then sample the remaining variables for a solution for
the partial row x1·0 subject to

x100 + x110 + x120 = r1 − (x101 + x111 + x121),

where the row sum is r1 = ∑
x1 . . The sampling process is similar to the

one shown above:

q1·0 ∼ Dirichlet(α = (α100, α110, α120) = (1, 1, 1))

x1·0 ∼ Multinomial(n = r1 − (x101 + x111 + x121); p = q1·0).

With x··1 and x1·0, we obtain the rest of the sampled contingency table.
However, due to the additional constraints of all values to be greater
than or equal to 0 (i.e., x ≥ 0), we are not guaranteed a valid solution.51

Instead of constraining our sampling strategy further, we simply reject
all those solutions that do not satisfy the constraint. Out of 200,000
drawn samples of {x1·0, x··1}, we obtain 74,382 valid solutions.52 The
minimal MSE results apper in Table 5.53

50 In fact, this is the equivalent of drawing random variates from an unin-
formed Pólya.

51 Using the basis approach for finding unique linear algebraic solutions
incurs the same negative value issue.

52 Even if each of the free variables took on as few as 10 values, we
would still be looking at 10 million tables. Furthermore, the enumeration of tables
subject to constraints is not a trivial issue. Some early work on the enumeration
of margin constrained tables was done by Gail and Mantel (1977). For improving
the sampling of constrained tables, we would investigate work by Diaconis and
Sturmfels (1998) and also the generalized shuttle algorithm, in Dobra et al. (2003),
which can incorporate additional constraints.

53 Due to space constraints, we omit the minimum MSE combinatoric
tables.
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TABLE 5
MSE Results for Gender × Age × Self-Employment (2 × 3 × 2)

IPF βIPF R βR C βC S βS 0 β0

0.0 0.000 72.5 0.062 82.5 0.122 106.1 0.106 106.7 0.105
19.1 0.050 63.8 0.017 76.6 0.074 97.2 0.059 97.7 0.059

196.6 0.009 204.4 0.066 227.8 0.123 237.7 0.107 237.5 0.107
41.0 0.092 58.3 0.085 83.3 0.115 93.6 0.113 94.1 0.116

147.3 0.055 160.0 0.013 176.8 0.070 192.8 0.056 192.9 0.056
58.3 0.113 79.0 0.099 58.7 0.108 87.0 0.089 87.9 0.086

183.1 0.118 198.9 0.060 194.4 0.015 197.9 0.015 198.6 0.018
52.9 0.264 73.0 0.277 61.9 0.292 85.6 0.274 85.9 0.271

287.2 0.110 304.6 0.055 295.7 0.023 299.6 0.008 300.2 0.008
52.9 0.264 73.0 0.277 61.9 0.292 85.6 0.274 85.9 0.271

311.0 0.103 327.2 0.049 318.9 0.029 322.2 0.008 322.7 0.005

Since we are unable to explore the entire space of solutions,
the above minima are estimates, with the exception of the first line, in
which we compare the actual IPF solution to the rest. Interestingly, the
additional dimension produces MSEs for the nearest R and C, which
are lower than those for 2 × 3, both normalized and absolute. Given that
the normalized margin MSE for 2 × 3 is worse than the MSE for this
and the 2 × 2 cases, we again suspect that the structural similarity we
gain through conditioning on gender while including self-employment
as a covariate is responsible.

Still, the minima are far from ideal. The difference between the
real IPF MSE and the sampled MSE suggests that closer solutions to
R, C, and 0 also exist. Disparities between solutions associated with
minima proxies and the minima β MSEs confirm our belief that the
relationship between the β MSEs and proxy MSEs is complicated. We
confirm this in Figure 2. One region exhibits some correlation while, in
another denser region, the MSE of the coefficients is insensitive to the
MSE of the proxy.

In Table 6, we present the logit models. As we would expect,
the coefficients for weighted combinatoric model “AllW” land in be-
tween those of the unweighted combinatoric and the proxy models. The
conservative finding is that “self-employment” has a comparable yet
insignificant effect on tax evasion. So far, in all the cases, the combi-
natoric “All” models tend to stretch out the covariate coefficients such
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FIGURE 2. MSEs of PUMS R Proxy by β. We obtain m = 5, 000 samples of the combinatoric
tables and display the MSEs for the PUMS R by the PUMS R β for each of the 2 ×
3 and 2 × 3 × 2 cases.

that their absolute effect sizes are larger than the proxy models. In this
2 × 3 × 2 case, the effect is countered by one of the covariates (i.e.,
self-employment). Also, an inspection of the coefficient distributions
(not shown) reveals those for gender and ages to be skewed left and
right, respectively, with the tails stretching into more positive values
for gender and more negative for age. These tails reflect that region
of highly correlated MSE PUMS R proxy and MSE β in Figure 2.
Hence, the “All” model coefficients are influenced by those combi-
natoric tables that stray drastically from the proxies, particularly the
PUMS R.

5. Conclusion

We explored several methods for estimating logit models from empiri-
cal margins of sociodemographic covariates and conditional responses
for tax noncompliance. These methods are particularly valuable in
estimating predictive models when only margins are published. Models
estimated with our approaches can be employed in expansive work such
as meta-analysis. Often in meta-analysis the reported models and/or
margins need to be reworked and made consistent with one another in
order to be combined.
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The contingency table estimated from a uniformly seeded itera-
tive proportional fitting of margins is suitable when there exists little or
no association between the margin covariates. The use of a larger proxy
data source, in our case a subsample of the U.S. Census PUMS can serve
as an alternative proxy provided the margin proportions and covariate
associations are sufficiently similar to either those of the census sample
or a conditioned treatment of it.

However, both proxy approaches require a fitting procedure to
the conditional response margin. For this, we fit our predicted response
to the beta distribution (i.e., marginal analysis [MA]), which yields
models similar to the logistic regression, of which the standard errors
account for the fact we are fitting to conditional mean, and not actual,
responses. On the other hand, the IPF ratio, which incorporates the
conditional margins into IPF estimation, requires no such ancillary
fitting as it directly produces a joint response distribution. According
to the diagnostics, we can generally obtain more accurate models using
an IPF ratio rather than MA, particularly if the association between
the response and covariates is nonlinear.

Both the IPF+MA and the IPF ratio approaches require con-
sistent margins, which we lack due to missing data. For IPF+MA, it
is sufficient to account for just the margin sample sizes, for which the
most straightforward approach is to proportionally pad those counts
(i.e., normalize and scale by the desired sample size). As for inconsis-
tent response margins, the MA approach will fit to the equivalent of
a weighted mean, which is potentially problematic if the resulting re-
sponse count exceeds a known limit. In order to employ the IPF ratio
method (i.e., IPF over both the response and sample margins), it is nec-
essary to impose additional assumptions while augmenting the sample
and conditional response margins. We realize that, with MA, linear
prediction becomes more tenuous with increasing dimensionality, the
best measure of which is, in the cases we examined, the diagonal of the
covariate contingency table.

Since empirical margins for discrete data explicitly constrain
the space of contingency table solutions, we exploit this con-
straint and offer linear logit models that aggregate the coeffi-
cients from each combinatoric solution satisfying the marginal (and
other) constraints. This method entails enumerating these com-
binatoric solutions, or sampling from them if the space is too
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large to enumerate. The estimated coefficients are aggregated, ac-
counting for each model’s standard errors and the between-model
variance.

This approach is improved when we weight each logit model in
a manner that reflects the relevance of each combinatoric table to some
known empirical distribution. The multivariate Pólya provides us with
an interpretable probability density for how well the proposed candi-
date contingency table matches some similar empirical table. Despite
its being a scalar measure, the probability weight is sufficient for our
purposes since all we need to know is how similar the combinatoric
proxy is to our evidence. However, the weight for the evidence itself,
κ, was subjectively yet conservatively determined, and a more precise
manner of deciding κ is warranted.

The weighted models naturally exhibit standard errors that
are constrained relative to those produced by the unweighted aggre-
gated models, but they are still wider than those from single-proxy
predictions. While our method of obtaining samples of valid com-
binatoric tables is generalizable, at least up to the 2 × 3 × 2 case,
we recognize that the rejection sampling approach will need to be
optimized (1) for larger and more numerous dimensions and (2) in
order to obtain those contingency table solutions that at least sur-
round the mode of the Pólya probability (i.e., the evidence table itself).
The unweighted model is the natural and conservative choice when
we lack supplementary information regarding the association among
the covariates.

Admittedly, we have not fully explored the ways in which the
combinatoric approach can be of use to our problem. We recognize
that it can be extended to the response and nonresponse tables as well
as to the possible solutions for augmenting the missing data, thereby
obviating the need for MA. However, this approach can be computa-
tionally intensive with increased span of covariates, even with rejection
sampling from the space of possible solutions, and begs for a more
efficient approach. Furthermore, our investigation reveals that an ag-
gregated model based on separate combinatoric response and nonre-
sponse tables incur narrower errors than the combinatoric base table
+ MA approach. For simplicity in our models, we have omitted inter-
actions and nonlinear terms and anticipate examining them in future
research.
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Additionally, the weighted or unweighted combinatoric ap-
proach can be extended to model estimation beyond the logit. For
example, for nonbinary dependent variables, we can aggregate esti-
mates from combinatoric log-linear models in the same manner that we
created the logit models.

APPENDIX A: MATRIX FORMULATION OF MARGIN
EQUATIONS

For the 2 × 3 case, we have the following linear system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x00

x01

x02

x10

x11

x12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0

r1

c0

c1

c2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

416

584

237

401

362

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Employing Gaussian elimination, we obtain

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 −1 −1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x00

x01

x02

x10

x11

x12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

c0 − r1

c1

c2

r1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−347

401

362

584

⎤
⎥⎥⎥⎥⎥⎦ ,

for which the unknown variables are {x11, x12}.
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For the 2 × 3 × 2 case, the initial linear system is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x000

x010

x020

x100

x110

x120

x001

x011

x021

x101

x111

x121

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0

r1

c0

c1

c2

s0

s1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

416

584

237

401

362

901

99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Through elimination, we obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −1 −1 0 −1 −1 −1 −2 −2

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 1 1 1 0 0 0 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x000

x010

x020

x100

x110

x120

x001

x011

x021

x101

x111

x121

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



INFERRING LOGIT MODELS 113

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c1 − c2 − s1

c1

c2

r1

s1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−862

401

362

584

99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In doing so, we obtain the 7 unknown variables, each of which appears
in more than one equation: {x110, x120, x011, x021, x101, x111, x121}. The
complementary set contains the solvable variables and are associated
with exactly one coefficient in the Gaussian form.

APPENDIX B: MISSING VOGEL DATA

There is clearly some missing information in the data from
Vogel (1974), as evidenced by the inconsistent margin totals:

709 + 506 = 1215 (male + female count)

967 + 106 = 1073 (∼self-employed + self-employed count)

� = 142 (difference),

where “∼” denotes logical negation, or “not.” The missing data are also
responsible for the disparate counts of evaders:

(709)(0.323) + (506)(0.217)

= 338.809 (number of evaders according to gender)

(967)(0.279) + (106)(0.371)

= 309.119 (number of evaders according to self-employment)

Furthermore, the proportions of evaders in the sample are also
incongruous:

pgender = 338.809
1215

= 0.2788551
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ps.e. = 309.119
1073

= 0.2880885.

We thus seek to augment the missing self-employment data by first
inferring the base self-employment by response contingency table:

(967)(0.279) = 269.793 ⇒ ∼ self-employed evaders

(106)(0.371) = 39.326 ⇒ self-employed evaders

967 − 279 = 697 ⇒ ∼ self-employed ∼ evaders

106 − 39 = 67 ⇒ self-employed ∼ evaders.

We augment each of the self-employment categories equally to the sam-
ple count exhibited by gender:

967x + 106x = 1215

x = 1.132339.

We then obtain the following augmented sample counts for self-
employment:

967x = 1094.972

106x = 120.028.

This gives us the following contingency table, with the potential
augmentation:

Self-employment

n̂00 = 697 + a n̂01 = 67 + bgender ,
n̂10 = 270 + c n̂11 = 39 + 142 − (a + b + c)

where {a, b, c} denote the missing data, subject to the following
constraints,
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∑
n̂ ·1 = 339 number of evaders according to gender∑
n̂0· = 1095 augmented ∼self-employed count∑
n̂1· = 120 augmented self-employed count,

and also the presumptive constraint that the difference in evasion rates
across self-employment statuses remains the same:

n̂11

n̂1·
− n̂01

n̂0·
= 0.371 − 0.279 = 0.092.

We obtain the solution

a = 102.431

b = 9.56889

c = 25.5689,

which gives us the augmented contingency table

S.E.

799.43100 76.56889Gender
295.56890 43.43121

Rounded−−−−−→ 799 77.
296 43

The margins and response rates for self-employment are shown below.

Marginal Counts Evasion Rates

Sample ∼Self-employed Self-employed ∼Self-employed Self-employed

Original 957 106 0.279 0.371
Augmented 1095 120 0.2703196 0.3583333

Note that an alternative, minimal ad hoc adjustment, targeting just the
proportion of evaders by adding 3 and 32, yields the roughly same
results.
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APPENDIX C: COMBINATORIC TABLE MODELS BASED
ON PUMS

We present models affiliated with those combinatoric tables most sim-
ilar to the conditioned and unconditioned PUMS distributions. Inter-
estingly, conditioning on age or self-employment (C or S) yields distri-
butions whose combinatoric solution is shared by the initial PUMS (0):

2×2 2×3 2×3×2︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Predictor R C/0 R C/0 R C S/0

Intercept −1.283∗∗∗ −1.260∗∗∗ −0.726∗∗∗ −0.718∗∗∗ −0.752∗∗∗ −0.792∗∗∗ −0.676∗∗∗
(0.108) (0.108) (0.143) (0.147) (0.106) (0.139) (0.116)

Gender 0.522∗∗∗ 0.508∗∗ 0.546∗∗∗ 0.517∗∗∗ 1.249∗∗∗ 0.650∗∗∗ 0.513∗∗∗
(0.151) (0.165) (0.153) (0.153) (0.167) (0.099) (0.101)

Age −0.526∗∗∗ −0.517∗∗∗ −0.933∗∗∗ −0.560∗∗∗ −0.576∗∗∗
(0.096) (0.095) (0.167) (0.099) (0.101)

S.E. 0.340 0.201 0.478 0.498∗ 0.348
(0.226) (0.247) (0.247) (0.244) (0.231)

The “R” model of the 2 × 3 × 2 case has unusually large effect sizes.
We suspect that either the combinatoric sample needs to be expanded
or those solutions that are similar to the row-conditioned PUMS need
to be explicitly sought.
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