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Abstract— The increasing availability of dynamically growing 
digital data that can be used for extracting social networks has 
led to an upsurge of interest in the analysis of dynamic social 
networks. One key aspect of social network analysis is to 
understand the central nodes in a network. However, dynamic 
calculation of centrality values for rapidly growing networks 
might be unfeasibly expensive, especially if it involves 
recalculation from scratch for each time period. This paper 
proposes an incremental algorithm that effectively updates 
betweenness centralities of nodes in dynamic social networks 
while avoiding re-computations by exploiting information from 
earlier computations. Our performance results suggest that our 
incremental betweenness algorithm can achieve substantial 
performance speedup, on the order of thousands of times, over 
the state of the art, including the best-performing non-
incremental betweenness algorithm and a recently proposed 
betweenness update algorithm. 

Keywords — Betweenness Centrality, Incremental Algorithms, 
Dynamic Networks, All-Pairs Shortest Paths. 

I. INTRODUCTION 
For decades, social network analysis has been an important 

tool for solving a number of problems such as revealing 
patterns of information dissemination, assessing the impact of 
business decisions in organizational structures, and identifying 
influential actors in social networks.  

There are a large number of algorithms in network science 
that seek to identify the most prominent nodes and relevant 
characteristics of nodes.  These can be roughly classed into the 
following categories based on the underlying key calculation:  
counting local edges, calculating shortest paths, counting two 
mode connections, correlation, etc.  Of these, the shortest path 
and correlation measures are the most costly to calculate, and 
that cost increases dramatically when there is temporal 
variation in what nodes and edges are present.  To address this 
problem we examine betweenness, which is the canonical and 
most widely used shortest path based metric, while 
recognizing that the basic steps here can be generalized to the 
other shortest path based metrics. We propose an incremental 
algorithm, which reduces the calculation costs for shortest 
path based metrics, and breaks up the shortest path calculation 
into steps so that the entire calculation can then be done in a 
distributed architecture. 

The betweenness centrality of a node x is defined as the 
fraction of the shortest paths that pass through x across all 
pairs of nodes in a network. Traditional techniques used for 
computing betweenness centrality involve solving the well-
studied all-pairs shortest paths problem. The all-pairs shortest 

paths problem has complexity on the order of O (𝑛𝑚 +
𝑛!log  𝑛) when it is computed by invoking a single-source 
shortest path computation using each social actor (node) as a 
source, where 𝑚 denotes the number of social ties (edges), 
and 𝑛 denotes the number of social actors (nodes). When an 
all-pairs shortest path algorithm such as the Floyd-Warshall 
algorithm [1] is used the complexity increases to  O(𝑛!). 

The initial design point for all of these centrality metrics, 
including betweenness, was static snapshots of small networks 
(e.g. 20-30 nodes) [2] and the limiting algorithmic 
complexities and computation times of centrality measures 
were not a significant problem for such small, static networks. 
However, restricting the representation of social networks to 
static snapshots results in substantial information loss, 
especially when the dynamism of social relationships is of 
interest in the research. 

Increasingly, network data is available through sensors and 
on-line resources from networks where the participants may 
be changing and/or the level of participation is changing.  
Examples include SMS networks, Twitter networks, and inter-
organizational alliance networks. 

Dynamic network analysis (DNA) is useful for analyzing 
social networks that evolve over time and serves as a response 
to the concerns about the limitations of analyses performed on 
static snapshots. However, keeping the costly-to-compute 
centrality metrics up to date in dynamic networks that rapidly 
change/grow becomes computationally very expensive. This is 
because many important centrality metrics such as 
betweenness require re-solving the all-pairs shortest path 
problem with every update/change made to the network. 
Expensive computation times inhibit many social network 
researchers from analyzing over-time variations of centrality 
values on time-variant networks.  

To facilitate solutions to costly problems on continually 
changing networks, incremental algorithms have been 
commonly used. An incremental algorithm is an algorithm 
that updates the solution to a problem after an incremental 
change is made on its input [3]. Incremental algorithms arrive 
at solutions for computationally complex problems in an 
efficient manner without recomputing everything from scratch 
by preserving significant information from prior 
computations. This paper extends existing incremental 
algorithms for solving the all pairs shortest path problem [4] to 
the case of incrementally computing betweenness centrality of 
nodes for each time snapshot of a dynamically updated, 
growing network. This requires significant additional 
computation and memory over the incremental all pairs 



shortest path algorithms. We present results that indicate how 
the proposed incremental algorithm for betweenness centrality 
will scale with realistic social network data sets. 

We broadly classify network updates that evolve a network 
into two categories: (i) growing network updates, and (ii) 
shrinking network updates. The first group of updates, the 
growing network updates, includes (i) inserting a new node, 
(ii) inserting a new edge, and (iii) decreasing the cost of an 
existing edge. We call them ‘growing network updates’ 
because they are usually observed due to new actors/agents 
joining the network or more/new interactions.  

Growing network updates can be handled by a single 
incremental algorithm. Insertion of a new node with no edges 
(i.e. an isolated node) has no effect on the shortest paths in the 
network; therefore, no further action would be required to 
complete the update. Insertion of a new node with one or more 
edges is equivalent to inserting one or more edges to or from 
the new node. Therefore, an algorithm designed to handle 
inserting new edges into a network can also handle inserting 
new nodes to the network. Inserting a new edge can be 
represented as a special case of the network update that 
decreases the cost of an edge. Because, inserting a new edge 
corresponds to decreasing the cost of an edge from infinity to 
a real, positive value in the adjacency matrix. Hence, as 
mentioned, a single incremental algorithm will be sufficient to 
cover all three sub-types of growing network updates. 

Many real-life dynamic networks that can be obtained 
online or by other digital means evolve only by growing 
network updates, and do not exhibit shrinking behavior. Thus, 
even with only support for growing network updates, a 
significant number of real life networks can be studied. For 
instance, consider a network of co-authorship. As researchers 
continue to publish, new nodes and edges are added to the 
network where nodes represent the authors and the edges 
represent coauthorship, and once the paper is published, the 
edge is expected to remain permanently. Hence, handling 
growing network updates is important and we primarily focus 
on this class of updates. 

II. COMPUTATION OF BETWEENNESS CENTRALITY 

A. Notation 
A directed network G consists of a set of nodes 𝑉(𝐺) and 

edges 𝐸(𝐺) where n is the number of nodes, and m is the 
number of edges in the network. x → y ∈ 𝐸(𝐺) represents an 
edge directed from node x to node y, where x ∈ 𝑉(𝐺) is a 
predecessor of y, and y ∈ 𝑉(𝐺) is a successor of x. 𝑃𝑟𝑒𝑑(𝑥) is 
used to denote all predecessors of x in the network. Px(y) 
denotes the set of predecessors of node y on the shortest paths 
from node x. 𝐺 is the transpose (reverse) of network 𝐺 where 
all edges in network 𝐺 are reversed in direction. The set of 
edges, nodes, and edge costs are also defined for network 𝐺. 

In weighted networks, each edge e in the network has a 
traversal cost of C(e) where C (x→y) > 0 for x → y ∈ 𝐸(𝐺). 
The length of a path Path is the sum of the costs of the edges 
on Path. The distance from node 𝑥 to 𝑦 is the length of the 
minimum-length path from x to y that is also called the 
shortest path. D(x, y) denotes the shortest distance while σ(x, 
y) denotes the number of shortest paths from node x to y. The 
vector 𝐵  holds the betweenness centrality value of each node. 

Finally, SP(x, y, z) is true if the edge x → y ∈ 𝐸(𝐺) is on a 
shortest path from x to z, satisfying the two conditions: (i) 
there is a path from x to z (i.e. the distance from x to z is D(x, 
z) ≠ ∞) and (ii) D(x, z) = C(x, y) + D(y, z). SP is false 
otherwise [4].  

The algorithms presented in this paper are designed to 
handle weighted, directional, dynamic networks with positive 
edge weights/costs. Undirected networks can be represented as 
directed networks where the edge {x − y} is represented using 
two directed edges {x → y} and {y → x}. Binary networks 
can also be represented as weighted networks where existing 
edges’ weights/costs are always equal to 1.  

B. Overview of Betweenness Centrality  
Betweenness centrality of a node 𝑖  is defined as the 

fraction of shortest paths that pass through node  𝑖 across all 
pairs of nodes. Let 𝜎(!,!) be the number of shortest paths from 
𝑗 to 𝑘 and 𝜎(!,!)(𝑖) be the number of shortest paths from 𝑗 to 𝑘 
that contain node  𝑖. 

𝐵(𝑖) =   
!(!,!)(!)  

!(!,!)
!∈! !   
!∈!(!)

  𝑤ℎ𝑒𝑟𝑒  𝑖 ≠ 𝑘, 𝑖 ≠ 𝑗,    𝑗 ≠  k  

C. State of the Art 
Herein we focus on betweenness centrality, as it is one of 

the most commonly used metrics in the field of social network 
analysis. The original argument for an algorithm for 
calculating betweenness was introduced by Freeman [2]. 
Currently, the majority of the implementations for 
betweenness centrality use Brandes’ algorithm or a variant of 
it [5] which yields O(nm + n2logn) performance for a weighted 
network where n is the number of nodes in the network and m 
is the number of edges. The Brandes’ algorithm exploits the 
sparsity of real life networks to avoid some of the superfluous 
work done in ϴ(n3) algorithms, by following an idea similar to 
that of Dijkstra’s algorithm. 

D. Algorithm Variants for Computing Betweenness 
 Many researchers have provided algorithms for variants of 

betweenness centrality. One set of variants of betweenness 
centrality focus on incorporating over-time information into 
the definition of betweenness for dynamically changing 
graphs (e.g. [6] [7] [8] [9]). In contrast, we do not change or 
extend the definition of betweenness; we rather focus on faster 
computation of the original betweenness metric in 
dynamically growing networks. Another recent study focusing 
on speeding up the exact computation of betweenness 
centrality is [10]. The authors use two different heuristics: 
structural equivalence and partitioning the network into 
smaller components. Although [10] focuses on speeding up 
betweenness computation, it targets static networks; and does 
not maintain betweenness centrality dynamically. Another 
approach that is closely related to ours is QuBE, which 
focuses on updating betweenness centralities without 
computing all-pairs shortest paths in the network [11]. We 
provide comparisons with the QuBE algorithm later in the 
results section. 

E. Work on Dynamic Shortest Path Computations 
We also draw on earlier research on dynamic shortest path 

computations. Computation of betweenness centrality is 



tightly coupled with solving the all-pairs shortest paths 
problem. In the literature, there are many different techniques 
proposed for solving the all-pairs shortest paths problem 
dynamically [4] [12]  [13]. However, some of these techniques 
come with a number of restrictions. For instance, [12] solves 
the all-pairs shortest paths problem in networks that have 
positive integer edge costs that are less than a certain number, 
b, which is inapplicable for networks whose edges are positive 
real valued numbers. The Demetrescu and Italiano algorithm 
[13] depends on the notions of locally shortest paths and 
locally historical paths. The main idea is to maintain 
dynamically the set of locally historical paths, which is a path 
that has been identified as a shortest path at some point and 
has not been modified since then. In this study, we use the 
dynamic all-pairs shortest path algorithm proposed by 
Ramalingam and Reps in [4] as our building block to maintain 
all-pairs shortest paths dynamically. 

There are many reasons why we use Ramalingam and Reps 
algorithm as our basic building block. First, Ramalingam and 
Reps algorithm is the most commonly used dynamic all-pairs 
shortest paths algorithm in the literature. Second, it has good 
performance compared to other dynamic all-pair shortest path 
algorithms available in the literature considering the 
experiments presented in [14]. Ramalingam and Reps 
algorithm performs quite well on sparse, real-life networks 
and the compute times of Ramalingam and Reps algorithm 
and Demetrescu and Italiano’s algorithm are very close. In 
experiments done with real life networks (presented in [14]), 
Ramalingam and Reps have the lowest or one of the lowest 
compute times among all dynamic all-pairs shortest paths 
algorithms. Third, Ramalingam and Reps algorithm is shown 
to scale better as the number of nodes increases because 
Demetrescu & Italiano’s algorithm maintains more global 
structures and requires more memory while Ramalingam and 
Reps algorithm requires less space and exhibits better locality 
in its memory access pattern. Since supporting an increasing 
number of nodes is important for dynamically growing social 
networks, we decided to use Ramalingam and Reps algorithm 
as a building block in our algorithm. 

III. INCREMENTAL BETWEENNESS ALGORITHM 

A. Background on Incremental Algorithm Design 
An incremental algorithm updates the solution to a 

problem after an incremental change is made on its input [3]. 
In the application of an incremental algorithm, the initial run 
is conducted by an algorithm that performs the desired 
computation from scratch and the incremental algorithm is 
used in the subsequent runs (i) using information from earlier 
computations and (ii) to reflect the update on the network 
while avoiding re-computations as much as possible.  

The computation of betweenness centrality depends on the 
number of shortest paths in a network and the intermediate 
nodes on these paths. A network update such as an edge 
insertion or edge cost decrease might result in creation of new 
shortest paths in the network. However, a considerable portion 
of the older paths might remain intact, especially in the 
unaffected parts of the network. Therefore, accurate 
maintenance of the number of shortest paths and the 
predecessors on the shortest paths will suffice for accurately 
updating betweenness values in the case of dynamic network 

updates. This is the key observation we make in the design of 
our incremental betweenness centrality algorithm.  

Our incremental betweenness centrality algorithm extends 
the dynamic, all-pairs shortest path algorithm proposed by 
Ramalingam and Reps in [4]. The original Ramalingam and 
Reps algorithm [4] is a dynamic all-pairs shortest-path 
algorithm which maintains only the shortest distances when a 
network is updated. While the Ramalingam and Reps 
algorithm can be used as a basic building block for the 
proposed incremental betweenness centrality algorithm, 
several major extensions are required for detecting the newly 
formed shortest paths of equal length, maintaining the number 
of shortest paths, and maintaining the predecessors on these 
shortest paths. Due to space constraints, we describe only the 
algorithms we have designed for our incremental betweenness 
computation. The pseudocodes are provided in the Appendix. 

B. Procedures for Incremental Betweenness Centrality 
1) InsertEdge Procedure  
When there is a network update (e.g. edge insertion or 

edge cost decrease), the entry point of execution is the 
INSERTEDGE procedure. In the first phase of the INSERTEDGE 
procedure, INSERTUPDATE is invoked twice (Lines 3–4 of 
Algorithm-1) to determine the sets of affected sinks and 
affected sources, passing once the source, once the destination 
of the inserted edge as a parameter to it. INSERTUPDATE is 
then invoked for each affected sink and source node (Lines 5–
8) to modify the information required for accurate 
maintenance of betweenness values. The modified information 
includes the shortest distances (D), the number of distinct 
shortest paths (σ), and the predecessors on these shortest 
paths. After all the shortest distances, predecessors, and the 
shortest path counts are updated accurately for the affected 
nodes, betweenness values of the intermediate nodes that lie 
on the paths between affected source and affected sink nodes 
are adjusted (Line 9). The first two lines prepare auxiliary data 
that are only used during the current update, and are not 
maintained across different updates. 

2) InsertUpdate Procedure  
The INSERTUPDATE procedure examines the impact of the 

updated edge {src → dest} on the network, for each affected 
sink or affected source node z. The update process continues 
until there are no edges that were on the shortest paths that 
would propagate the update further. The INSERTUPDATE 
procedure consists of three phases:  
• If a strictly shorter path is found, the shortest path 

distance is updated. The predecessors and the number of 
shortest paths are cleared. Betweenness values for the 
intermediate nodes on the cleared paths are also reduced 
opportunistically. (Lines 7–14 of Algorithm-2). 

• If the shortest paths have changed in any way (number or 
length), the predecessors and the number of shortest paths 
are adjusted accordingly (Lines 15–25 of Algorithm-2). 

• Propagation of the update across the network is continued 
if appropriate (Lines 26–29 of Algorithm-2). 

Consider the case where the edge {x → y} is updated. In 
the first phase of the algorithm, assume that there is now a 
path from node x to z passing through the edge {x → y}, 
which is strictly shorter than the previously known shortest 
path(s) from x to z (Lines 7–14 of Algorithm-2).  



In this first phase of the algorithm (Lines 7–14 of 
Algorithm-2), since a strictly shorter path from x to z is found, 
the previously known shortest paths are no longer the shortest. 
Hence, the number of known shortest paths and the 
predecessors should be cleared (Line 11 of Algorithm-2). 
Before we clear the number of shortest paths (σ (x, z)) and the 
update distance from x to z (D (x, z)) to be equal to the new 
distance (alt), we temporarily record their values in σold (x, z) 
and Dold (x, z) and reduce the betweenness values of the old 
predecessors because these intermediates do not have any 
contribution from the (x, z) pair anymore. Attempt to retrieve 
σold and Dold values returns the temporarily stored values if 
they exist and returns current σ and D values otherwise.   

At the beginning of the first phase, we check if it is the 
first time a strictly shorter path is found from x to z by 
checking if σold contains any information on the pair (x, z) 
(Line 8 of Algorithm-2). We check σold because a change in 
betweenness values is required if the number of shortest paths 
changes even if the shortest distance does not necessarily 
change. For every updated pair, we record the original number 
of shortest paths from x to z known before the update to ensure 
accurate reduction of betweenness values for the nodes that 
were on the paths that are not shortest paths anymore.  

Since the original Ramalingam and Reps algorithm is 
concerned with only updating the D values, in their algorithm, 
the AffectedVertices set only covers the nodes with lower-cost 
paths to/from z that pass through the modified edge {src → 
dest}. However, for computing betweenness centrality, we 
need to maintain the number of shortest paths (σ) and the 
predecessors (𝑃 ) accurately as well. Hence, we need to 
consider the alternative shortest paths of equal length and 
expand the AffectedVertices to include nodes that have new 
alternative shortest path(s) to/from node z passing through the 
originally modified edge {src → dest}.  

The second phase of the algorithm (Lines 15–25 of 
Algorithm-2) checks if the shortest distance from x to z is now 
equal to the cost of the alternative shortest path passing 
through the edge {x → y} (Line 15 of Algorithm-2). If they 
are equal, then we need to update the number of shortest paths 
from x to z and the predecessors on these shortest paths.  

The entry condition of the second phase (Line 15 of 
Algorithm-2) is not a condition that is tied to the if block 
between Lines 7–14. Once the condition in Line 7 (alt < D(x, 
z)) is satisfied (i.e. a strictly shorter path is found), the value of 
D(x, z) is updated in Line 9 to be the newly found alternative 
distance alt. Therefore, the condition in Line 15 of Algorithm-
2 (alt = D(x, z)) is satisfied for all cases that originally 
satisfied the initial check of alt < D(x, z) in Line 7. However, 
the condition alt = D(x, z) covers additional cases where there 
are newly formed alternative shortest paths of equal length. 
Such cases would not satisfy the condition on Line 7 which 
checks for strictly shorter paths, but would still satisfy the alt 
== D(x, z) condition in Line 15. This new part of the 
algorithm, not handled by Ramalingam and Reps, is required 
for accurate maintenance of betweenness. Finally, in Line 25 
of Algorithm-2, we mark node x as affected whose 
predecessors should be further checked to understand if the 
update has a wider impact on the network.  

When updating the number of shortest paths from x to z, 
we increase the number of shortest paths only by the number 

of shortest paths that are newly formed due to the change 
made in the network. To obtain the number of newly formed 
shortest paths, the number of shortest paths from x to z that 
use the modified or inserted edge {src → dest} should be 
counted. The number of newly discovered paths is calculated 
as σ(x, src) * 1 * σ(dest, z), and then added to the σ(x, z) to 
calculate the total number of shortest paths from x to z. From 
src to dest, there may be other shortest paths that might 
already be counted in. Hence, to avoid double counting, we 
only consider the modified edge, which is represented with the 
‘1’ in the above given formulation (Line 21 of Algorithm-2). 

This second phase of the algorithm also updates the 
predecessors on the shortest paths from x to z due to formation 
of new shortest paths that pass through the edge {x → y}. 
Hence, the new shortest paths can be represented in the 
following form: x → y→ vi……vn → z. In this case, x becomes 
a predecessor of y, and the predecessors on the shortest path(s) 
from y to z become predecessors on the shortest path(s) from x 
to z. Predecessors denote the nodes that are the last stop(s) 
before the final destination node, which is z in this case. The 
predecessors are updated in Lines 22–23 of Algorithm-2.  

The final phase of the INSERTUPDATE procedure (Lines 
26–29 of Algorithm-2) is for pruning the parts of the network 
that are not affected by the changes in the shortest paths. For 
each of the edges to/from the affected node x, it is checked to 
see if they are on the inspected shortest paths. If SP returns 
true, and if the other end of the edge (node u) is not in the list 
of already processed nodes, the edge u → x is inserted in the 
set of edges that would need inspection for subsequent 
processing. This part of the algorithm is responsible for 
propagating updates further if required. The ripples of updates 
expand outwards as much as required starting at the modified 
or inserted edge in the center. In this case, the edge u → x 
would carry the network update to the next ripple level. 

3) ReduceBetweenness Procedure  
This procedure opportunistically reduces the betweenness 

values of intermediates on the old set of shortest paths from x 
to z that are no longer shortest paths. To be able to construct 
the shortest paths, we only store predecessors; not the whole 
path. The shortest paths from node x to z are constructed on 
demand by following the predecessors. However, since these 
paths are constructed on demand, there might be subpaths that 
might have already been updated before the network update 
propagation reaches the shortest paths/distance from x to z. In 
such cases, there will be some intermediate nodes that are 
already cleared and not reachable anymore. The nodes that are 
already deleted from the shortest paths are stored in trackLost. 

In Lines 1–20 of Algorithm-3, first, we reduce the 
betweenness of each node v that is found to be an intermediate 
from x to z and remove the contribution of the node pair (x, z) 
from the betweenness of node v. Then, we process currently 
unreachable intermediate nodes that originally belonged to the 
shortest paths from x to z and reduce their betweenness values 
as required (Lines 21–29 of Algorithm-3).  

4) IncreaseBetweenness Procedure  
By the time INCREASEBETWEENNESS is invoked in the 

INSERTEDGE procedure (Line 9 of Algorithm-1), all the 
shortest paths, the number of distinct shortest paths, and the 
predecessors affected by the network update have accurately 
been adjusted. Since we have also reduced the betweenness 



values of the intermediate nodes on the invalidated shortest 
path by invoking REDUCEBETWEENNESS, the only remaining 
action is updating the betweenness values for the new set of 
intermediate nodes on the paths from the affected source 
nodes to the affected sink nodes. For each node pair (x, z) that 
is recorded in the σold set, we increase the betweenness value 
of each intermediate n on the shortest paths from x to z by (σ 
(𝑥, 𝑛) * σ (𝑛, 𝑧) / σ (𝑥, 𝑧)). With this step, incremental update 
of betweenness centralities is complete. 

5) Discussion on Algorithmic Complexity 
Next, we discuss the time complexities of the proposed 

algorithms. Earlier, it has been shown that an incremental 
algorithm can perform asymptotically no better than its static 
counterpart for some dynamic problems [15] because in the 
worst case an incremental algorithm needs to solve the entire 
problem set. In our case, the proposed algorithms’ 
complexities are not any lower than that of Brandes algorithm. 
We express the complexity analysis for incremental 
algorithms by incorporating the complexity of changes for 
expressing the time complexity of the incremental function. 

The INCREASEBETWEENNESS procedure runs a for loop for 
σold many iterations and inside the outer for loop, there is one 
for loop, and one while loop. These two loops should be 
considered in combination because the intermediate nodes on 
the shortest paths from src to dest are handled by one or the 
other and the distinction is irrelevant. The complexity of the 
bodies of these loops are O(1), and they are executed once for 
each intermediate node. So, the overall complexity of the 
procedure is O(|σold| I) where I represents the total number of 
intermediates processed for all node pairs listed in σold. In the 
REDUCEBETWEENNESS procedure, the run time is dominated 
by the if block at the end (Lines 25 – 29 of Algorithm-3). This 
block performs a search over the map of all known 
intermediate nodes on the shortest paths from a to z and uses 
two intermediates at a time to form the key to the map. Hence, 
its complexity is O(Ia,z

2) where Ia,z represents the number of 
intermediates on the shortest paths from a to z. 

The overall complexity of the INSERTUPDATE procedure is 
dominated by the complexity of the priority queue Workset. 
Workset is used to track all the affected nodes as the 
propagation of the update progresses. INSERTUPDATE 
essentially performs a traversal in the neighborhood of every 
AffectedSink and AffectedSource. The work performed inside 
the while loop is O(||Affected|| log ||Affected||) + I2) where 
||Affected|| is used to denote the sum of the number of the 
edges and the nodes in the subgraph formed by 
AffectedSource and AffectedSink nodes’ neighborhoods. 
Finally, the INSERTEDGE procedure invokes the 
INSERTUPDATE procedure for each AffectedSink and 
AffectedSource node once, followed by an invocation of the 
INCREASEBETWEENNESS procedure, yielding 
O((|AffectedSink|+|AffectedSource|)||Affected||log ||Affected||) 
+ I2 + |σold| I) time complexity overall. 

The proposed algorithms depend on the dynamic all-pairs 
shortest path algorithms proposed in [4] to incorporate the 
computation of betweenness centrality. Incremental 
algorithms usually provide faster solutions at the cost of more 
memory usage. The incremental betweenness algorithm also 
takes quadratic space, using memory on the order of O(n2 + 
m). Accurate maintenance of betweenness centralities depends 

on the accurate maintenance of shortest distances, whose 
correctness was proved in [4]. The reader is referred to [4] for 
more details on the proof of correctness. 

IV. IMPLEMENTATION, DATASETS, AND RESULTS 

A. Implementation Environment 
We implement our algorithms in an open source, dynamic 
Java graph library [16]. Our performance results are collected 
on a machine with a 3.20Ghz CPU and 256 GB of RAM.  

B. Synthetic Networks 
For synthetic networks, we use preferential attachment 

networks (PF) [17], Erdos-Renyi (ER) networks [18], and 
small-world (SW) networks [19]. We vary the number of 
nodes from 1000 to 5000 with a step size of 2000, and fix the 
average degree to 6. For small world networks, the rewiring 
probability is 0.5. We generate these synthetic networks with 
all but 100 edges that are selected randomly. We insert the last 
100 edges incrementally and get the average update 
performance in terms of execution time over the repeated 
invocations of Brandes’ algorithm, which is the best 
performing algorithm used in standard implementations. 

TABLE 1 - PERFORMANCE IMPROVEMENTS OBTAINED ON DIFFERENT 
NETWORKS WITH DIFFERENT TOPOLOGIES/SIZES. 

 
 
 
 
 

 
TABLE 2 - PERCENTAGE OF AFFECTED NODES (AFFECTEDSINKS + 

AFFECTEDSOURCES) 
 

 
 
 

 
Table 1 lists average speedup obtained per new edge 

insertion while Table 2 shows the percentage of nodes that are 
affected in terms of the sizes of AffectedSinks and 
AffectedSources. These results indicate that the incremental 
betweenness algorithm performs best with the preferential 
attachment networks. Comparing the network statistics and the 
speedup obtained on different networks (Table 3), the speedup 
obtained using the incremental betweenness update algorithm 
increases with the increased network size. It is also observed 
that other parameters such as network diameter, characteristic 
path length, and min/max betweenness values are inversely 
related with the performance obtained. The values in Table 1 
and the speedup column in Table 4 describe the speedup 
obtained over Brandes’ algorithm averaged across 100 updates 
on the network. For instance, for a single update on 1000-node 
Erdos-Renyi network, the incremental betweenness algorithm 
is 7.99 times faster on average than invoking Brandes 
algorithm for the same update, resulting in a 799x faster 
cumulative execution time for a sequence of 100 updates. 

For instance, in preferential attachment networks, the 
average path length and the diameter are lower than they are 
in other topologies. However, the average betweenness value 
and the network size exhibit the strongest correlation with the 

#(Nodes) PF ER SW 
1000   1178.66 x 7.99 x 17.48 x 
3000 971.40 x 18.98 x 18.53 x 
5000 3760.48 x 31.19 x 22.54 x 

#(Nodes) PF ER SW 
1000  3.54% 79.16% 32.52% 
3000   1.98% 85.7% 33.35% 
5000   1.16% 87.36% 31.86% 



obtained speedup. The performance benefits of the 
incremental betweenness algorithm increase with the 
increasing network size. When the average betweenness 
values are considered, the difference across different 
topologies is very large. This is because in preferential 
attachment networks, there are fewer nodes that are on the 
shortest paths of many other nodes than in other network 
topologies. Hence, when there is a network update, there are 
fewer nodes whose betweenness values should be adjusted. 
Another factor is the average and maximum of the shortest 
path lengths (i.e. average path length and diameter). When the 
average distances are low, fewer nodes lie on the shortest 
paths which also results in tracking of fewer predecessors 
when there is need for reconstructing the shortest paths. 

TABLE 3 - NETWORK STATISTICS. 

Topo
logy Size Max Btw 

Avg. 
Btw 

Std. 
Dev. 
Btw 

Dia
me
ter 

Avg 
Path 
Length 

Clust 
Coef 

PF 1000 1953.97 94.37 177.47 10 3.45 0.014 
PF 3000 5183.26 197.59 434.828 14 4.126 0.007 
PF 5000 12987.22 292.48 749.003 16 4.442 0.005 
ER 1000 25429.36 4777.28 4249.81 15 6.305 0.003 
ER 3000 76713.80 18136.7 10087.4 14 7.086 0.001 
ER 5000 108061.5 32073.4 16062.9 14 7.492 0.001 
SW 1000 12401.46 2685.67 2255.69 33 7.612 0.044 
SW 3000 82585.03 11296.2 10401.4 55 10.33 0.039 
SW 5000 147015.4 21003.3 20449.2 71 11.93 0.039 

 
TABLE 4 - PERFORMANCE BENEFITS AND NETWORK STATISTICS OBTAINED ON 

SMALL WORLD NETWORKS (1000 NODES, AVERAGE DEGREE = 6). 

p 

 
Speed
up 

 
Affect 
% Max 

Btw 
Avg. 
Btw 

Std. 
Dev. 
Btw 

Dia
me
ter 

Avg 
Path 
Len 

Clust 
Coef 

0.2 1.36 47.78 34020 4305 3104 35 9.71 0.154 
0.4 9.97 36.47 15036 3183 2395 30 8.02 0.071 
0.6 18.3 28.00 14763 2268 2463 31 7.79 0.024 
0.8 67.3 13.06 6779 833 1162 22 6.44 0.005 
1.0 72.2 2.23 1026 100 144 12 3.86 0.003 

In addition, small world networks have different 
topological characteristics and performance values depending 
on the rewiring probability, p, chosen. We perform a sweep of 
p values covering the range of 0.2 - 1.0 with a step size of 0.2 
on 1000-node networks, with an average degree of 6. As 
shown in Table 4, with the increasing rewiring probability, 
clustering coefficient, diameter, and the characteristic path 
length reduce. This reflects as a reduction in the average of 
unscaled betweenness values along with an increase in the 
speedup obtained using the incremental betweenness 
algorithm similar to the results presented in Table 1 and Table 
3. In addition, the speedup obtained over repeated invocations 
of Brandes’ algorithm increases with the reducing percentage 
of affected nodes, in line with the results presented earlier. 

C. Real Life Networks  
Next, we evaluate the performance of our algorithm using 

a number of real life networks that are of different magnitudes 
and that grow incrementally over time. The networks used in 
our evaluations are prepared as weighted networks where the 
cost of an edge is inversely proportional to the strength of 
relationship. We consolidate multiple updates for the same 
pair of nodes in a single edge. For instance, if an interaction 
between two nodes x and y has been recorded twice up to a 
certain point, then the edge x → y has the cost of 1/2. When a 
third update is recorded between x and y, then the cost of the 

edge x → y is updated to be 1/3. We first describe the datasets 
we have used, and then compare the performance of our 
incremental betweenness update algorithm against the best-
performing non-incremental betweenness algorithm (Brandes’ 
algorithm [5]). We use four different real life networks: 
SocioPatterns (communication between conference attendees) 
[20], Facebook-like (online-forum communication between 
students) [21], HEP Co-Authorship Network (coauthorship 
relations between High-Energy Physics researchers) [22], and 
P2P Communication Network (P2P file sharing) [23]. 

TABLE 5- PERFORMANCE OF INCREMENTAL BETWEENNESS ALGORITHM ON 
REAL LIFE NETWORKS. 

Network 
 
D? 

 
#(N) #(E) 

Avg 
Speedup Affect% 

SocioPatterns U 113 4392 9.58 x 38.26% 
FB-like D 1896 20289 18.48 x 27.67% 
HEP Coauthor U 7507 19398 357.96 x 42.08% 
P2P Comm. D 6843 7572 36732 x 0.02% 

 
TABLE 6- NETWORK STATISTICS COLLECTED ON REAL LIFE NETWORKS. 

 
 
Network Max Btw Avg. Btw 

Std. 
Dev. 
Btw 

Diam
eter 

Avg. 
Path 
Len. 

Clus 
Coef 

SocioPatterns 423.477 36.752 51.139 3 1.65 0.53 
FB-like 146171.2 2848.62 9753.8 8 3.19 0.08 
HEP Coauthor 820318.2 13553.29 38024 15 5.74 0.46 
P2P Comm 1515.99 0.3298 18.870 3 1.24 0 
For evaluating the performance of our incremental 

betweenness update algorithm, we first compute the 
betweenness centrality values for each network modeling all 
but 100 interactions. Then, we incrementally update the 
network and record the average speedup obtained over 
Brandes’ algorithm. Table 5 presents the performance 
improvements obtained along with basic information on the 
networks, while Table 6 lists additional information about 
other topological properties of the networks. 

The results presented in Table 5 and Table 6 suggest that 
the incremental betweenness update algorithm can obtain 
substantial performance benefits, but these benefits vary with 
the network topology. The avg. speedup column in Table 5 
describes the speedup obtained over Brandes’ algorithm 
averaged across 100 updates on the network. For instance, for 
a single update the incremental betweenness algorithm is 9.58 
times faster on average than invoking Brandes algorithm for 
the same update; resulting in 958x faster cumulative execution 
time for a sequence of 100 updates. 

The performance benefits improve with the increasing 
network size and decreasing characteristic path length, 
diameter, and average betweenness as shown in Table 5 and 
Table 6. For instance, on the HEP co-authorship network, 
there are several close-knit groups and it is a relatively more 
connected network than the P2P communication network, 
where only a  few users act as servers for the other users 
providing them with files to download. Hence, in the P2P 
communication network, very few nodes can lie on the 
shortest paths between other nodes. Consequently, when a 
network update occurs, few shortest paths tend to be changed, 
and thus few betweenness values are affected, resulting in a 
dramatic average speedup per each update (36732x) over 
Brandes’ algorithm. The rightmost column of Table 5 shows 
the percentage across the entire set of nodes that were 
affected. In undirected (bidirectional) networks, the 
percentage of affected nodes tends to be higher as each 
inserted edge causes the network update to propagate in 
multiple directions. 



D. Comparison with QuBE Algorithm [11] 
The idea of the QuBE algorithm depends on estimating the 

nodes whose betweenness values might change due to an 
update in a network while avoiding computation of all-pairs 
shortest paths. In contrast, our algorithm depends on dynamic 
maintenance of all-pairs shortest paths and the related 
auxiliary data. The QuBE algorithm covers edge 
insertions/deletions, leaving out node insertions for growing 
networks and edge cost modifications for weighted network 
types. In contrast, our algorithm supports node/edge insertion 
and edge cost modifications for the weighted networks.  

Providing support for weighted networks makes the 
algorithm more complex. For example, assume that there is a 
path from x to y. Then, with a network update an edge from 
node x to y is inserted into the network. In binary networks, it 
is obvious that no path between x and y can be smaller than a 
direct edge between x and y, and several changes on the 
shortest paths can be maintained by considering the number of 
hops. However, in weighted networks, when an edge from x to 
y is inserted, it is still necessary to check the paths of 
equivalent length before ruling out all previously known 
shortest paths between x and y. 

TABLE 7- PERFORMANCE COMPARISON OF QUBE AND OUR PROPOSED 
ALGORITHM. 

 
Network Type  #(Node)  #(Edge) QuBE 

Incremental 
Betweenness 

Eva [24] Ownership  4457 4562 2418.17 25425.87 
CAGrQc [25] Collaboration  4158 13422 2.06 67.86 

We compare our algorithm against the QuBE algorithm 
using the datasets the authors used in their paper [11]. We 
select two of their datasets: the dataset on which QuBE 
performs the best (Eva), and the dataset on which QuBE 
performs the lowest (CAGrQc). Table 7 reports the average 
performance results for 100 random updates on the networks. 
For purposes of fair comparison, the updates included 
shrinking network updates as well, which were handled by an 
incremental shrinking network update algorithm we have 
under development and excluded due to space reasons. Both 
QuBE and our algorithm are compared against the Brandes’ 
algorithm as baseline. Our algorithm performs 10-30 times 
better than the QuBE algorithm while providing substantial 
improvements over Brandes’ algorithm. Additional analyses 
of speedup and memory consumption are presented in [26]. 

V. CONCLUSION 
This paper proposes an incremental betweenness algorithm 

that performs dynamic maintenance of betweenness values in 
the cases of a new edge/node insertion and/or edge cost 
decrease. The goal is to avoid re-computations involved in the 
analysis of dynamic social networks and reflect changes 
triggered by a network update as efficiently as possible. The 
approach in this paper has already been extended to other 
types of centrality measures and to networks that grow and 
shrink over time [27]. While the underlying behavior of 
incremental all-pairs shortest path computation has been 
studied, the memory and computation required to extend the 
shortest path algorithm to a particular centrality metric can 
result in significantly different scaling of computation time 
and memory requirements with network size and type. Our 
performance results indicate substantial performance 
improvements over the state of the art including non-

incremental and dynamic update algorithms on realistic social 
network data. 
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APPENDIX 
Algorithm-1: INSERTEDGE (src, dest, cost)  
1. σold ← [ ]; Dold   ←  [ ]; trackLost   ←  [ ]; PairsDone = [ ] 
2. C (src, dest) ← cost 
3. Sinks      ←  INSERTUPDATE (dest, src, src, PairsDone) 
4. Sources  ← INSERTUPDATE (src, dest, dest, PairsDone) 
5. for s ∈ Sinks 
6.      INSERTUPDATE (src, dest, s, PairsDone) 
7. for s ∈ Sources 
8.      INSERTUPDATE (dest, src, s, PairsDone) 
9. INCREASEBETWEENNESS( ) 
 
Algorithm-2: INSERTUPDATE (src, dest, z, PairsDone) 
1. Workset ← {src → dest}  
2. VisitedVertices    ← {src}   
3. AffectedVertices  ← ∅ 
4. while Workset ≠ ∅ 
5. {x → y} ← pop (Workset) 
6. alt ← C (x, y) + D (y, z) 
7. if alt  < D (x, z) 
8. if <x, z>∉ σold 
9. Dold (x, z) ← D (x, z);  σold(x, z)   ← σ(x, z); 
10. REDUCEBETWEENNESS (x, z); 
11. σ(x, z)   ← 0;   Clear 𝑃!(𝑧); 
12. if [u, z] ∈ PairsDone 
13. Remove [x, z] from PairsDone 
14. D (x, z) ← alt  
15. if alt == D (x, z) and D (x, z) ≠ ∞ 
16. if [x, z] ∉  PairsDone 
17. if <x, z>∉ σold 
18. REDUCEBETWEENNESS (x, z); 
19. if σ (x, z)≠ 0 
20. σold (x, z) ← σ (x, z) 
21. σ (x, z) ← σ (x, z) + (σ (x, src) * 1 * σ (dest, z)) 
22. Append x to 𝑃!(𝑦) and 𝑃!(𝑧) to 𝑃!(𝑧) 
23. Insert [x, z] into PairsDone 
24. Insert x into AffectedVertices 
25. for u ∈ Pred (x) sorted w.r.t. edge costs in asc. order 
26. if SP (u, x, src) = 1 && u ∉ VisitedVertices  
27. push {u → x} into Workset 
28. Insert u into VisitedVertices 
29. return AffectedVertices 
 
 
 
 
 



Algorithm-3: REDUCEBETWEENNESS (a, z) 
1. if σold (a, z) = 0 
2. return; 
3. Known ← ∅; Stack ← ∅ 
4. for n  ∈ 𝑃!(𝑧)   
5. if D (a, z) ≠Dold (a, n) + Dold (n, z) 
6. continue; 
7. else if a ≠ n & n ≠ z 
8. B(n) = B(n) – (σold (a, n) * σold (n, z) / σold (a, z)) 
9. Add <a, z, n> to trackLost  
10. Add 𝑛 to Stack and Known 
11. while Stack ≠ ∅ 
12. 𝑝 ← pop (Stack) 
13. Add 𝑝 to Known 
14. for 𝑛   ∈ 𝑃!(𝑝)   
15. if D (a, z) ≠ Dold (a, n) + Dold (n, z) 
16. continue; 
17. else if a ≠ 𝑛 & 𝑛 ≠ z &  𝑛 ∉ Known 
18. B(𝑛) = B(𝑛) – (σold (a, 𝑛) * σold (𝑛, z) / σold (a, z)) 
19. Add <a, z, n> to trackLost  
20. Add 𝑛 to Stack and Known 
21. AlreadyDone ← (Known ∪ a) 
22. if D (v, z) = Dold (a, v) + Dold (v, z) where v1, v2  ∈ Known 

and <v1, v2, v>  ∈ trackLost  
23. if 𝑣 ∉ AlreadyDone 
24. B(v) = B(v) – (σold (a, v) * σold (v, z) / σold (a, z)) 
25. Add 𝑣 to AlreadyDone 
26. Add <a, z, 𝑣> to trackLost  
 
Algorithm-4: INCREASEBETWEENNESS () 
1. for (𝑠𝑟𝑐,𝑑𝑒𝑠𝑡) ∈  σold 
2. Known ← ∅;  Stack ← ∅ 
3. for 𝑛 ∈ 𝑃!"#(𝑑𝑒𝑠𝑡)   
4. Add 𝑛 to Stack and Known 
5. if 𝑠𝑟𝑐 ≠ 𝑛 & 𝑛 ≠ 𝑑𝑒𝑠𝑡 
6. B(𝑛) ←B(𝑛) + (σ (𝑠𝑟𝑐, 𝑛) * σ (𝑛, 𝑑𝑒𝑠𝑡) / σ (𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡)) 
7. while Stack ≠ ∅ 
8. 𝑛 ← pop (Stack) 
9. Add 𝑛 to Known 
10. for 𝑝 ∈ 𝑃!"#(𝑛)   
11. if 𝑝 ≠ 𝑠𝑟𝑐 & 𝑝 ≠ 𝑑𝑒𝑠𝑡 & 𝑝 ∉ Known 
12. Add 𝑝 to Stack and Known 
13. B(𝑝) = B(𝑝) + (σ (𝑠𝑟𝑐, 𝑝)*σ (𝑝, 𝑑𝑒𝑠𝑡) / σ (𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡)) 
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