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Abstract— Automation of data collection using online 
resources has led to significant changes in traditional practices of 
social network analysis. Social network analysis has been an 
active research field for many decades; however, most of the 
early work employed very small datasets. In this paper, a 
number of issues with traditional practices of social network 
analysis in the context of dynamic, large-scale social networks are 
pointed out. Given the continuously evolving nature of modern 
online social networking, we postulate that social network 
analysis solutions based on incremental algorithms will become
more important to address high computation times for large, 
streaming, over-time datasets. Incremental algorithms can 
benefit from early pruning by updating the affected parts only 
when an incremental update is made in the network. This paper 
provides an example of this case by demonstrating the design of 
an incremental closeness centrality algorithm that supports 
efficient computation of all-pairs of shortest paths and closeness 
centrality in dynamic social networks that are continuously 
updated by addition, removal, and modification of nodes and 
edges. Our results obtained on various synthetic and real-life 
datasets provide significant speedups over the most commonly 
used method of computing closeness centrality, suggesting that 
incremental algorithm design is a fruitful research area for social 
network analysts.  

Keywords—Closeness Centrality; Incremental Algorithms; 
Dynamic All-Pair Shortest Path; Dynamic Networks.

I. INTRODUCTION 

Today, with more people actively using the Internet in their 
daily lives, social network data that can be collected online is 
undergoing dramatic growth. This trend has caused the 
analysis of online social networks to emerge as an important 
tool for many social and business opportunities including 
creating and following trends, discovering new markets, 
running election and advertisement campaigns, and 
influencing national politics.

On the research side, due to this dramatic growth in 
available online social network data, along with the possibility 
of automated data collection, there is increasing interest in 
dynamic network analysis which focuses on developing 
custom-designed methods for very large, dynamic (over-time), 
multi-mode (where nodes can be in different categories), 
multiplex (where there are multiple types of links) networks. 
However, there still exist major challenges to be overcome in 
this transition from traditional social network analysis on 
small static networks to social network analysis on large-scale 
dynamic networks. 

In today’s online world, these links are constructed using 
information provided by email exchanges, file or photo 
sharing, or other features like ‘friend lists’, ‘membership’, 

‘tag’, ‘like’, ‘share this’, ‘follow’, ‘send a message’, etc. Such 
social graphs are constantly expanding and growing; 
presenting major challenges in identification of the most 
central actors in a given social network as it evolves over time.  
A majority of early research in the field of social network 
analysis targeted eliciting the most central/prominent actors in 
small, static networks that model small social groups.  

To date, hundreds of social centrality metrics have been 
designed and discussed in the literature. However, a 
significant number of publications analyzing social networks 
consider only a handful of metrics: degree centrality, 
eigenvector centrality [1], closeness centrality [2], and 
betweenness centrality [3]. Out of these four metrics, the latter 
two are shortest-path based metrics. The shortest-path based 
metrics consider the shortest communication paths in a given 
network topology and focus on the position of a node with 
respect to the shortest paths in the network.

Computations of the shortest path based centrality metrics 
usually require solving the costly all-pairs shortest path 
problem. Given that the most commonly used centrality 
metrics are designed for static networks, attempting to 
compute traditional centrality metrics on dynamic social 
networks boils down to fixing a dynamic network 
momentarily, performing computations on it, and then 
performing similar computations from scratch on an updated 
version of the network.

The goal of this paper is to draw the attention of the social 
network analysis community to the use of incremental 
computation of shortest paths in dynamic network analysis 
and to discuss how incremental algorithm design techniques 
would be beneficial to improve the traditional techniques used 
in social network analysis. Incremental algorithms are 
algorithms that are custom-designed for dynamically changing 
networks and respond to the over-time changes in the 
analyzed network by performing early pruning and 
propagating the updates only to the affected parts of the 
network. In general, incremental algorithms are saving 
redundant computations at the expense of the need to store 
information about prior computations. Another contribution of 
the algorithms designed in this paper is the fast computation of 
closeness centrality for large-scale static networks as we will 
show later in the results section. That is, applying the 
incremental algorithm at every step in building up a network 
can be less computationally expensive than running the 
traditional algorithm a single time on the final network.

This paper discusses the general class of centrality metrics 
based on the shortest paths across all possible pairs of nodes. 
As a case study, we present the design of an incremental 
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closeness centrality algorithm that handles various types of 
network updates including addition, removal, and 
modification of nodes and edges. Closeness centrality was 
selected as the focus for this paper for two reasons. First, 
closeness centrality is one of the most commonly used metrics 
in social network analysis. Second, the definition of closeness 
centrality depends entirely on the shortest path information 
across all pairs of nodes. The information on the shortest 
distance between pairs of nodes is inherently required by all 
shortest-path based metrics. This means that the incremental 
methods discussed in this paper are generalizable to other 
metrics with shortest-path computation as their core 
computational limitation. Most other shortest path based 
centrality metrics require information such as the number of 
the shortest paths between nodes, the predecessors and/or 
successors on these shortest paths. Therefore, this paper will 
focus on closeness centrality as the example incremental 
metric.

II. BACKGROUND

A. Definition & Computation of Closeness
The closeness centrality of node �, ��(�), is defined as the 

inverse of the sum of the distances from � and all other nodes 

in the network: ��(�) =
�

� �(�,	)
��
where 
(�, �) denotes the 

shortest distance from node x to node y. Closeness centrality is 
traditionally best computed by running a single-source 
shortest path algorithm using each node as the source node 
once. At each iteration, the distances found are summed up to 
obtain the total distance from the given source node, and this 
distance is inverted to obtain the closeness value of the source. 

In unweighted (binarized) networks, a breadth-first search 
algorithm may be used to discover the shortest paths from a 
source nodes, which is bounded by O(n+m) time complexity 
per source node, resulting in O(nm) complexity in total. In 
weighted networks, Dijkstra’s algorithm [4] has O((n +
m)logn) complexity, where n denotes the number of nodes, m
denotes the number of edges in the network. This complexity 
is achieved when a binary min-heap is used in the 
implementation of the priority queue. A faster run-time of 
O(m + nlogn) can be achieved by implementing the priority 
queue using a Fibonacci heap [5]. When Dijsktra’s algorithm 
is invoked using every node in the network as the source node 
to compute all-pairs shortest paths, the overall complexity is 
O(mn + n2

logn). Computation of closeness centrality can be 
performed by running an all-pair shortest paths algorithm (e.g. 
Floyd-Warshall [6]), which results in O(n3

) time complexity. 
The algorithmic complexities of Dijkstra and Floyd-

Warshall are sufficiently high that they are very difficult to
invoke at every time step in dynamically changing, large-scale 
networks. Hence, this paper proposes the use of incremental 
algorithms that avoid the cost of recomputing all of the 
shortest paths from scratch every time period. 

B.Example Use Cases for Closeness
Closeness centrality is a commonly used social centrality 

metric and it can have different uses in different contexts. 
Closeness centrality of a social actor describes actor’s 
efficiency for information propagation across the entire 
network. In other words, social actors with high closeness 
centrality values are considered to be efficient at making 
contact with others in the network. High closeness centrality is 

also regarded as representing high potential for independent 
communication. 

In the context of technological networks, such as wireless 
networks, closeness centrality identifies nodes that have rapid 
access to information (e.g. nodes that are close to many other 
nodes on average). Since closeness centrality is inversely 
proportional to the sum of the distances to all other nodes, it 
also provides an estimate of how long it will take information 
to spread from a node to all others. Hence, it can also be used 
as a performance measure in technological networks [7].

As another example, in [8], the authors discuss the use of 
closeness centrality for policy-making networks (e.g. drug 
policy making). In the context of policy-making networks, the 
actors that have information that is crucial to all other actors in 
the network should have high closeness centrality if the 
network is to function effectively. 

As we mentioned earlier, closeness centrality is one of the 
most commonly used metrics in social network analysis. 
Hence, it should be understood that there are several other 
papers that employ closeness centrality in the research 
literature on social network analysis and that the preceding 
discussion simply provides a few examples of the applications 
of closeness centrality in social network analysis. There exist 
other studies that discuss the extensions of closeness centrality 
metrics for dynamic, complex networks [9]. There has also 
been research on new methods to select top-k nodes in terms 
of closeness in large-scale networks [10] and on algorithms 
for approximation of closeness [11]. 

C. Dynamic All-Pairs Shortest Path Computation
To date, several algorithms have been proposed for solving 

the all-pairs shortest paths problem dynamically [12], [13], 
[14]. However, some of these solutions come with a number 
of restrictions and only work for certain conditions. For 
instance, [12] requires all edge costs to be integers below a 
certain threshold to be able to solve the all-pairs shortest paths 
problem dynamically. 

In this study, we use the dynamic all-pairs shortest path 
algorithm proposed in [13] as our starting point. In general,
Ramalingam and Reps algorithms define a full framework that 
works with all non-negative edge weights and its procedural 
structure enables distinguishing between the methods required 
for each network update type easily (e.g. inserting edges/nodes 
versus deleting edges/nodes). Second, Ramalingam and Reps 
algorithms are one of the most commonly used dynamic 
computation of all-pairs shortest paths algorithms. Third, 
Ramalingam and Reps algorithms have been shown to 
perform quite well on sparse, real-life networks/graphs. 

In terms of computational time and memory requirement,
[14] and [13] usually achieve similar performance. In [14], it 
has been discussed that the underlying computational platform 
is an important factor in deciding which algorithm performs 
better. The authors of [14] state that Ramalingam and Reps’ 
algorithm is likely to become faster as the number of nodes 
increases because it requires less space compared to 
Demetrescu & Italiano’s algorithm and exhibits better locality 
in the memory access pattern. Real life network experiments 
presented in [14] indicate that Ramalingam and Reps have the 
lowest or one of the lowest execution times among all 
dynamic all-pairs shortest path algorithms compared in that 
paper. Hence, we have decided to use Ramalingam and Reps 
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algorithm as a building block in the closeness centrality 
algorithms proposed in this paper.

III. INCREMENTAL CLOSENESS ALGORITHM

In order to handle the special needs of very dynamic large-
scale social networks, this paper presents an incremental 
algorithm design approach. An incremental algorithm is 
different from its static counterpart that performs all 
computations from scratch. The application of an incremental 
algorithm is as follows. At one point, an initial run is 
performed by an algorithm that performs the desired 
computation from scratch (e.g. computation of closeness 
values in a given network). The incremental algorithm is then 
used in subsequent runs to handle various network updates 
such as edge cost modifications (in the case of weighted 
networks), node/edge insertions, and node/edge deletions. The 
incremental algorithm uses information from earlier 
computations such that the changes in the network are 
reflected on the closeness values as well. The benefit of an 
incremental algorithm is that, by being able to build on prior 
computations, it is able to perform early-pruning and update 
only the affected parts of the network while avoiding 
recomputation to a significant extent.

After briefly reviewing the notation we use in this paper, the 
pseudocodes are provided for the proposed incremental 
closeness algorithms in Section 3.B and Section 3.C.

In Section 3.B, an incremental algorithm for the following 
network update types is presented: (i) inserting a new node, 
(ii) inserting a new edge, and (iii) decreasing the cost of an 
existing edge. The same algorithm can handle these three 
update types because inserting a new node can be handled by 
invoking insert a new edge for every edge that comes along 
with the new node and inserting a new edge corresponds to 
decreasing the cost of an edge from infinity to a real value. 
We call these update types growing network updates as social 
networks usually grow by new people joining a community, 
formation of new relationship, and relationships becoming 
closer which reflects as a decrease in the cost of 
communication.

Section 3.C provides the pseudocodes for the incremental 
algorithms for handling the remaining network update types: 
(iv) deleting an existing node, (v) deleting an existing edge, 
and (vi) increasing the cost of an existing edge. We call this 
group of updates shrinking network updates because social 
networks shrink by people departing from a community, 
ending relationships or by relationships that become more 
distant. The algorithms in Section 3.B and Section 3.C focus 
on unit updates, handling each edge modification (e.g. 
addition/deletion/cost modification) one at a time. Similar to 
growing network updates, deletion of a node with several 
edges reduces to several invocations of the algorithms 
provided in Section 3.C to handle the removal of each edge 
emanating from and/or entering into the processed node. 

In addition, undirected networks can be represented as 
directed networks where the edge {x � y} is represented using 
two directed edges {x ��y} and {y ��x}. Binary networks can 
be represented as weighted networks where existing edges’ 
weights/costs are always equal to 1. Therefore, directed, 
weighted networks provide the most generalized coverage of 

different network types. Thus, the algorithms in Section 3.B 
and Section 3.C consider weighted, directed networks.

A.Notation
This section briefly describes the notation we use in this 

paper. A directed network G is composed of a set of nodes 
V(G) and edges E(G). {x �� y} �  E(G) represents an edge 

directed from node x to node y. �� is the transpose (reverse) of 
network G where all edges in network G are reversed in 
direction. Similar to network G, the set of edges, nodes, and 

edge costs are defined for network �� as well. Pred(x) is used 
to denote the predecessor neighbors of node x that have direct 
edges going into node x. Similarly, Succ(x) is used to denote 
the successor neighbors of node x that have direct edges 
emanating from node x going into the successor nodes.

D(x, y) is used to hold the pairwise shortest path distances 
from node x to y while W(x, y) is used to denote the cost of the 
edge from x to y. In other words, when the network is 
weighted, D(x, y) denotes the sum of the edge costs over all of 
the edges along the shortest path(s) from x to y. And, when the 
network is binary, D(x, y) gives the shortest path distance from 
x to y in terms of number of edges along the shortest path. The 
algorithms discussed in this paper are applicable to networks 
with non-negative edge costs. The closeness values of nodes 
with a vector of length |V(G)| are represented by C�. Finally, 
SP(x, y, z) is true if the edge x �� y � E(G) is on a shortest 
path from x to z, false otherwise [13].
B. Incremental Closeness Algorithm: Handling Growing 
Network Updates

To compute the closeness values incrementally for 
streaming, dynamically changing social networks, the 
incremental all-pairs shortest-paths algorithm proposed by 
Ramalingam and Reps [13] is extended such that closeness 
values are incrementally updated in line with the changing 
shortest path distances in the network. 

Figure 1 - An abstract picture describing how affected sink and source 
nodes are selected and how early pruning is done.
Before moving on to low level details of how the shortest path 

distances and closeness values are updated, a high level 

description of early pruning of shortest paths is provided in 

Figure 1. When the edge {X � Y} is inserted to a network G 

depicted in Figure 1, the maintenance of the shortest paths 

starts with the inserted edge. The edges that are on the shortest 

paths are tracked and further processed to ensure propagation 

of the shortest path updates as far as needed. In Figure 1, the 

set of black nodes gives us the affected sink and source nodes. 

The edges drawn with solid lines are the edges on the shortest 

paths, and they are considered for subsequent processing later 

in the execution. The edges that are drawn with dashed lines 

and the gray nodes that are accessible from those edges that 

are not on the shortest paths. Such nodes are not affected by 

the incoming network update; hence pruned early from 

recomputation. 
When a growing network update is observed, the 

incremental computation of closeness centrality is handled by 
two sub-algorithms: INSERTEDGEGROWING and 
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INSERTUPDATEGROWING. The main entry point for execution is 
INSERTEDGEGROWING. The INSERTEDGEGROWING (Algorithm-
1) invokes INSERTUPDATEGROWING (Algorithm-2) several 
times to ensure identification of all affected source and sink 
nodes and to maintain closeness centrality values and the 
shortest distances to/from those nodes accurately. 
INSERTEDGEGROWING first invokes INSERTUPDATEGROWING to 
find the set of AffectedSink and AffectedSource nodes, 
passing once the source, once the destination of the inserted 
edge as a parameter to it (Lines 2–3 of Algorithm-1). Then, 
the INSERTUPDATEGROWING is invoked for each AffectedSink 
and AffectedSource (Lines 4–7 of Algorithm-1) to update the 
information required for accurate maintenance of closeness 
values in line with the newly-discovered, shortest paths (e.g. D
for the shortest distance between each node pair).

In Algorithm-2, the list Workset holds the set of edges that 
should be processed to detect formation of new shortest paths 
or existing paths becoming shorter. Since closeness centrality 
is computed as the inverse of sum of the distances from a node 
to all other nodes in a network, the only information it needs is 
the shortest distances between all pairs of nodes (represented 
as D). It is not necessary to know the number of shortest paths, 
the predecessors on these shortest paths, etc. 

Assume that the shortest path distances and closeness 
centralities are already computed for a given network. In the 
case of a network update, we only need to update the 
closeness of a node x if the shortest distance from node x to 
any other node in the network changes. We check for the 
changes in the shortest distances using the condition given in 
Line-6 of Algorithm-2. If this condition holds, it means that 
there is now a shorter path from node x to z which passes 
through the edge {x�y}, and the distance from x to z (i.e. D(x,
z)) should be updated accordingly (Line-14). 

Before the previous value of D(x, z) is overridden with the 
new value, Lines 8-13 of Algorithm-2 handle the accurate 
maintenance of closeness centrality. To update closeness value 
of node x accurately, it is first necessary to check if node z was 
previously reachable from node x (e.g. D(x, z) � �). If it was 
reachable before, then it means the distance from x to z had a 
contribution to the closeness value of node x. In this case, it is 
necessary to first subtract the previously known shortest 
distance from node x to z (e.g. D(x, z)), and then add the new 
shortest distance (e.g. W(x, y) + D(y, z)) to the sum of 
distances to all nodes from node x. Otherwise, nothing is 
subtracted, only the new shortest distance is added to the sum 
of distances from node x. The closeness of node x is obtained 
by inverting the total distance (Algorithm - 2, Line 13).

The final part of the INSERTUPDATEGROWING algorithm 
(Algorithm-2, Lines 15-17) performs checks for subsequent 
processing. In this part of the algorithm, the portions of the 

network that are not affected by the changes in the shortest 
paths are pruned. For each of the edges to/from the affected 
node x, it is checked to see if they are on the inspected shortest 
paths. If SP returns true, and if the other end of the edge (node 
u) is not in the list of already processed nodes, the edge u ��x
is inserted in the set of edges for subsequent processing.

C. Incremental Closeness Algorithm: Handling Shrinking 
Network Updates

In this section, the part of the incremental closeness 
algorithm that handles shrinking network updates (e.g. 
deletion of a node/edge or edge cost increase) is presented. 
The shrinking network updates are handled by two sub-
algorithms: DELETEEDGESHRINKING (Algorithm-3) and 
DELETEUPDATESHRINKING (Algorithm-4). 

DELETEEDGESHRINKING (Algorithm-3) follows a very 
similar logic to that of INSERTEDGEGROWING (Algorithm-1). 
After updating the adjacency matrix for the modified/deleted 
edge, DELETEUPDATESHRINKING (Algorithm-4) is invoked 
several times: first, to identify affected sink and source nodes 
and then, to process each sink and source nodes separately. 

The DELETEUPDATESHRINKING algorithm (Algorithm-4) has 
two distinct phases. The first phase of Algorithm-4 is between 
Lines 1-14 while the second phase is between Lines 15-38. 
The first phase of the algorithm identifies the set of affected 
vertices. In this case, affected vertices are those nodes whose 
shortest distances to node z (the third parameter of the 
algorithm) have increased. The shortest path distance from 
node x to z may only increase if the network update is made 
on an edge which used to lie on the shortest paths between 
those two nodes and all the available shortest paths pass 

Algorithm-3:  DELETEEDGESHRINKING (G, src, dest, c)
1. W(src, dest����c;   �� (dest, src����c
2. AffectedSinks  �  DELETEUPDATESHRINKING(��, dest, src, src)

3. AffectedSources�DELETEUPDATESHRINKING(G, src, dest, dest)
4. for s � AffectedSinks

5.       DELETEUPDATESHRINKING (G, src, dest, s)

6. for s � AffectedSources

7.       DELETEUPDATESHRINKING (��, dest, src, s)

Algorithm-2:  INSERTUPDATEGROWING (G, src, dest, z)
1. Workset ��{������	
��};
2. VisitedVertices ��{src};
3. AffectedVertices ���
4. while Workset ���
5.         {
����} ��pop (Workset) 

6.         if W (x, y) + D (y, z) < D (x, z)

7.               Add x to AffectedVertices

8.               TotDist(x) =
�

��(�)

9.         if D (x, z)� �
10.               TotDist(x) = TotDist(x) - D (x, z) + W (x, y) + D (y, z)  
11.       else

12.      TotDist(x) = TotDist(x) + W (x, y) + D (y, z)  
13.       ��(�) =

� 

�����!�(�)

14.       D (x, z) ����(x, y) + D (y, z) 

15.          for u � Pred(x)  

16.  if SP (u, x, src) == 1 && u " VisitedVertices

17.          push {����
} into Workset

18.          Insert u into VisitedVertices

19. return AffectedVertices

Algorithm-1:  INSERTEDGEGROWING (G, src, dest, c)

1. W (src, dest����c; �# (dest, src����c
2. AffectedSinks       �  INSERTUPDATEGROWING (��, dest, src, src) 

3. AffectedSources  � INSERTUPDATEGROWING (G, src, dest,
dest)
4. for s � AffectedSinks

5.       INSERTUPDATEGROWING (G, src, dest, s)

6. for s � AffectedSources

7.       INSERTUPDATEGROWING (��, dest, src, s)
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through the modified/deleted edge (i.e. when there is no 
alternative shortest paths that would still be shorter). The 
check for this condition is in Lines 12-13 of Algorithm-4. 

The second phase of Algorithm-4 determines the new 
shortest path distance to node z for all nodes in the set of 
affected vertices identified in the first phase of the algorithm. 
The maintenance of new distances to node z is handled by 
min-key priority queue where the priority of a node 
corresponds to its distance to node z. Closeness values are also 
updated in the second phase of Algorithm-4. To be more 
precise, closeness values are updated whenever a change on a 
D value is observed but right before this is change is recorded, 
overriding the prior knowledge on previous D value (Lines 
18-24 and Lines 28-34). The idea behind closeness updates is 
similar to the idea described in Section 3.B. However, in this 
case additional checks are performed to avoid updating 
closeness values with a distance that was just set to infinity.

D. Comments on Algorithmic Complexity 
In this section, the complexities of the proposed incremental 

closeness algorithms are discussed. For incremental 
algorithms, there are different perspectives on how to evaluate 
their complexities. It has been demonstrated that, in the worst 
case, no incremental algorithm can perform asymptotically 
better than the algorithm that computes everything from 
scratch [15]. Hence, worst-case upper bound time complexity 
is usually not descriptive enough to explain the performance 
difference of an incremental algorithm from an algorithm 
solving the same problem from scratch.

For incremental algorithms, a preferred way of discussing 
their computational complexity is through the sum of the sizes 
of changes in the input (e.g. the modified graph/network) and 
output (e.g. modified distance and closeness centrality values). 
Next, we discuss the computational complexities of the 
INSERTEDGEGROWING and the DELETEEDGESHRINKING
algorithms in terms of the changes in the input and output.

The INSERTEDGEGROWING algorithm calls the 
INSERTUPDATEGROWING for every AffectedSink and 
AffectedSource node. The INSERTUPDATEGROWING essentially 
performs a traversal in the neighborhood of every 
AffectedSink and AffectedSource, respectively. Hence, the 
complexity of each of these operations is on the order of 
O(||Affected||) where ||Affected|| is used to denote the sum of 
the number of edges and the nodes in the subgraph formed by 
AffectedSource and AffectedSink nodes’ neighborhoods.

Similar complexity analysis can be performed for 
DELETEEDGESHRINKING. Similar to the INSERTEDGEGROWING,
DELETEEDGESHRINKING invokes DELETEUPDATESHRINKINGfor 
every AffectedSink and AffectedSource node. However, 
DELETEUPDATESHRINKING is more complicated than 
INSERTUPDATEGROWING. The DELETEUPDATESHRINKING has 
two distinct phases with different algorithmic complexities. 
Phase-2 makes use of a priority queue, whose time complexity 
must be taken into account separately. 

Line-13 of Algorithm 4 checks the existence of the shortest 
paths between a predecessor (e.g. x) and a successor (e.g. y) of 
node u. This makes the time complexity of Phase-1 to be 
limited by O(||Affected||2) where the subscript 2 denotes the 
size of two hop neighborhood of all affected nodes. The set of 
affected nodes is given by (AffectedSink $ AffectedSource). 
The complexity of Phase-2 is dominated by the complexity of 
priority queue, denoted by O(||Affected|| log ||Affected||).

Since all the changes that are made to compute closeness 
centrality are of O(1) time complexity, computing closeness 
centrality along with the dynamic maintenance of the shortest 
paths does not increase the overall time complexity of 
Ramalingam and Reps algorithm. Similar to the Ramalingam 
and Reps algorithm, the memory requirement is quadratic.

As one final note, the algorithms presented in this section 
are the modified versions of the dynamic shortest path 
algorithms proposed in [13] to incorporate the computation of 
closeness centrality. Both in Algorithm-2 and Algorithm-4, 
closeness centrality of a node x is updated only when the 
shortest distance from node x to another node is updated. 
Hence, accurate maintenance of closeness values depends on 
the accurate maintenance of shortest distances, whose 
correctness was proved in [13]. The reader is referred to [13]

Algorithm-4:   DELETEUPDATESHRINKING  (G, src, dest, z)
1.   AffectedVertices ���
2.   at_least_one_exists = false;

3.   for each x % Succ(src) 

4.  if (SP(src, x, z) == true)

5. at_least_one_exists = true;

6. break;

7.   if (at_least_one_exists == false)

8.    Workset ��{src};
9.    while Workset ���
10.         u ��pop (Workset)

11.         Add u to AffectedVertices

12.         for each x � Pred(u) such that SP(x, u, z) == true

13.             if (all y � Succ(x) s.t. SP(x, y, z) == true and y �

AffectedVertices)

14.      push x into Workset

15.      PriorityQueue���
16. for (a � AffectedVertices)

17.             min_dist = min ({W(a, b) + D(b, z) | {�����} � E(N) & b "

AffectedVertices}, {�})

18.             TotDist(a) =
�

��(&)

19.              if D(a, z)� �
20.  TotDist(a) = TotDist(a) - D(a, z)

21.          D(a, z) ������	���
22.          if D(a, z)� �
23.            TotDist(a) = TotDist(a) + D(a, z)

24.           ��(') =
� 

�����!�(&)

25. while PriorityQueue � �  

26.   ����extractMin(PriorityQueue) 

27. for each c � Pred(a) such that W(c, a) + D(a, z) < D(c, z) 

28.                TotDist(c) =
�

��(�)

29.                if D (c, z)� �
30.               TotDist(c) = TotDist(c) - D(c, z)

31.                 D(c, z) � W(c, a) + D(a, z)

32.            if D (c, z)� �
33.      TotDist(c) = TotDist(c) + D(c, z)

34.             ��(%) =
� 

�����!�(�)

35.        if c � PriorityQueue

36. DecreaseKey (PriorityQueue, c, D(c, z)) 

37. else  

38. Insert (PriorityQueue, c, D(c, z)) 

39.  return AffectedVertices
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for more details on the proof of correctness regarding the 
shortest path updates.

IV. DATASETS AND RESULTS

The goal of this paper is to draw attention to the use of 
incremental algorithm design in social network analysis 
methods. In particular, in this paper, we show how to design 
an incremental algorithm for closeness centrality; and, we 
explore how much speedup we obtain due to the use of this
incremental algorithm on different types of synthetic and real-
life networks that are used by social network researchers. 
Hence, our performance evaluations primarily show how 
much performance improvement can be achieved over the 
most commonly used way of computing the all-pairs shortest 
paths in a network as well as closeness centralities as a by-
product of it (e.g. Dijsktra’s algorithm). 

A. Coding and Computing Environment
The proposed incremental algorithms were coded as an 

extension to GraphStream [16]. Performance results were 
measured on a machine with a quad-core 3.20 Ghz Intel Xeon 
CPU and 256 GB RAM. 

B.Performance Results with Synthetic Networks
To understand the performance of the proposed incremental 

closeness algorithm, we have designed experiments with 
networks that are generated using different graph generation 
algorithms and network sizes. To understand the impact of 
topology, we ran a number of experiments on synthetic 
networks using three different topologies, while keeping the 
number of nodes and the average degree fixed. In our 
experiments, we use three different topologies: preferential 
attachment networks [17], Erdos-Renyi networks [18], and 
small-world networks [19]. We use networks with 1000, 3000, 
and 5000 nodes and set the average degree to 6. The average 
degree of a network is a measure that compares the number of 
edges against the number of nodes in the network. It is 
computed as 2.|E(G)| / |N(G)| as each edge contributes to the 
degree of both nodes it is connecting. For small world 
networks, the rewiring probability is 0.5. 

To measure the performance of the incremental closeness 
algorithm for growing network updates, we generate the 
synthetic networks described above with all but 100 edges that 
are selected randomly. We insert the last 100 edges 
incrementally and get the average update performance in 
terms of execution time over the repeated invocations of 
Dijkstra’s algorithm. For instance, if it takes 5 seconds to 
complete a set of updates using incremental algorithms and 30 
seconds to complete the same set using Dijkstra’s algorithm, 
we conclude that the incremental algorithm is 6x faster than 
Dijkstra’s algorithm on average. The values presented in 
Table 1 reflect speedup values obtained this way. Table 2
shows the percentage of total number of nodes that are 
affected. 

Similar experiments have been designed for measuring the 
performance of the proposed incremental closeness algorithm 
under shrinking network updates and the respective 
performance values are reported in Table 3. In the experiments 
performed for shrinking network updates, we start with the 
full network and incrementally remove the same set of edges 
used in the experiments whose performance values are 
reported in Table 1. Hence, we also have a way of comparing 

how different types of network updates affect the 
performance. The performance values in Table 1 and Table 3 
describe the speedup obtained by the incremental closeness 
algorithm over computing closeness via repeated invocations 
of Dijkstra’s algorithm averaged across 100 updates on the 
network. Considering the results presented in Table 1 – 4, 
several observations are in order. Firstly, the performance 
improvement obtained over traditional computation methods 
is less with shrinking network updates than the growing
network updates although the number of affected nodes is 
lower on average for the shrinking update types. Since 
DELETEUPDATESHRINKING maintains a priority queue while 
INSERTUPDATEGROWING does not, the overall algorithmic 
complexity and the actual execution time are higher in 
shrinking network updates.
Table 1 - Performance improvements obtained on networks with 
different topologies/sizes (Using InsertEdgeGrowing and 
InsertUpdateGrowing over repeated invocations of Dijkstra’s algorithm).

#(Nodes) Preferential Attachment Erdos-Renyi Small World

1000 900x 123.07 x 288.97 x

3000 16732.48 x 515.35 x 1093.86 x

5000 47738.81 x 890.56 x 2228.91 x

Table 2 - Percentage of affected nodes in incremental network updates: 
union of nodes in AffectedSinks and AffectedSources.

#(Nodes) Preferential Attachment Erdos-Renyi Small World

1000 3.79%         60.86%        28.38% 
3000 2.13% 69.02% 30.69%

5000 1.33% 70.66% 27.26%

Table 3 - Performance improvements obtained on networks with 
different topologies/sizes (Using DeleteEdgeShrinking and 
DeleteUpdateShrinking over repeated invocations of Dijkstra’s 
algorithm).

#(Nodes) Preferential Attachment Erdos-Renyi Small World

1000 467.70 x         58.37 x       121.75 x 
3000 2852.33 x 169.83 x 290.16 x

5000 10150.29 x 304.44 x 586.36 x

Table 4 - Percentage of affected nodes in decremental network updates: 
union of nodes in AffectedSinks and AffectedSources.

#(Nodes) PreferentialAttachment Erdos-Renyi Small World

1000 2.93%         43.71%         22.45% 
3000 1.51% 41.31% 25.71%

5000 0.97% 41.21% 22.91%

Table 5 - Network statistics. There are additional metrics that are 
measured but not listed. For all the networks laid out in this table 
Network Fragmentation is 0, and Avg. Deg. is 6.

Topology Size
Min 
Deg

Max 
Deg

Degree
StdDev

Diam
eter

Avg 
Path 
Len

Cluste
ring 
Coeff

Pref. Attach. 1000 3 89 6.822 10 3.45 0.014

Pref. Attach. 3000 3 233 8.064 14 4.126 0.007

Pref. Attach. 5000 3 212 8.251 16 4.442 0.005

Erdos-Renyi 1000 1 14 2.498 15 6.305 0.003

Erdos-Renyi 3000 2 13 1.572 14 7.086 0.001

Erdos-Renyi 5000 2 11 1.362 14 7.492 0.001

Small World 1000 3 12 1.545 33 7.612 0.044

Small World 3000 3 12 1.526 55 10.333 0.039

Small World 5000 3 4 1.502 71 11.934 0.039

Secondly, incremental closeness algorithm performs best with 

networks that are generated following preferential attachment 

network generation model both for growing and shrinking 

updates. Comparing the speedup obtained on different 

networks, speedup obtained using the incremental closeness 

algorithm increases with the increased network size. It is also 

observed that other parameters shown in Table 5 such as 

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

1255



network diameter and characteristic path length are inversely 

related with the performance obtained. For instance, in 

networks generated using a preferential attachment generation 

model, characteristic path length and diameter are lower 

compared to other topologies. When the paths in a network are 

short, an update on the shortest paths cannot propagate very 

far, resulting in quick return from the update and a very 

limited number of affected nodes (e.g. less than 5% in the case 

of preferential attachment networks). To elaborate, when the 

shortest paths in a network are not long, there are fewer nodes 

that lie on the shortest paths (i.e. fewer nodes are affected) and 

the overall depth of the shortest path tree is shorter, which also 

results in fewer updates when there is need for reconstruction 

of the shortest paths in the network.

Building Large Networks Incrementally: One important 

point about larger networks is that it takes too long for them to 

compute measures and cope with the dynamism. And, the 

performance improvements that were obtained on networks 

with short average/characteristic path length are substantial 

(See performance results obtained on preferential attachment 

networks presented in Table 3). One key use of incremental 

algorithms for larger networks is that they can substitute for 

the traditional closeness algorithms for computing centralities 

for the very large network even after all the updates in the 

network are final. In other words, incremental closeness 

algorithms support both on-the-fly computation and faster 

computation of the metric on large, static networks. 

Figure 2 - Performance of incremental 
closeness computation on large 
preferential attachment networks. The 
Dijkstra’s algorithm executed only once 
after all updates completed.

Table 6 - Performance 
improvements for the 
results in Figure 2.

|N| |E| Perfor
mance  

10,000 30,000 14.78

20,000 60,000 24.17

30,000 90,000 26.28 

40,000 120,000 29.53 

We support this claim by the results presented in Figure 2, in 

which traditional closeness centrality computation is executed 

only once instead of modeling the growth of the network. In 

other words, we pretend to build the network incrementally by 

invoking the INSERTEDGEGROWING once for each edge in the 

network and compare its performance against computing 

closeness centrality by running Dijkstra only once from each 

node in the network on the final version of the network. Since 

many real-life, large-scale networks exhibit scale-free 

behavior and the best performance improvements with 

incremental closeness centrality are obtained on preferential 

attachment networks. The performance benefits in this case 

are primarily governed by the network structure, which 

contains relatively short shortest paths compared to other 

network topologies. In the results presented in Figure 2 and 

Table 6, we use four different preferential attachment networks 

where the number of nodes is varied between 10,000 and 

40,000 with a step size of 10,000 and we set the average 

degree to 6.
C. Performance Results with Real-Life Networks
Next, we evaluate the performance of incremental closeness 

algorithm on a variety of real-life networks that are of 
different scale and have different topological features. The 
real life networks used in our evaluations in this section are 
prepared as weighted networks where the cost of an edge is 
inversely proportional to the strength of the relationship it is 
modeling. We obtain the edge costs by consolidating multiple 
updates for the same pair of nodes in a single edge. For 
instance, if a communication or interaction from node x to y
has been recorded twice up to a certain point, then the edge x
� y has the cost of 1/2. When a new, third communication or 
interaction is observed from node x to y, then the cost of the 
edge x � y is updated to be 1/3. 

Next, we report our performance results and explain them in 
line with the topological features of the networks described 
above. For the real life network, in order to test how the two 
algorithms (incremental closeness algorithm vs. traditional 
closeness computation using Dijkstra’s algorithm) perform 
with the growing network updates, we start with an earlier 
version of the network that has all the information expect the 
last 100 updates. Similarly, to obtain performance results with 
shrinking network updates, we start with the final version of 
the network and remove the same set of 100 edges that we 
have used in our runs with growing network updates.

Table 7 - Performance improvements of incremental closeness centrality 
over computing closeness centrality using Dijkstra's algorithm. 
Information on the affected portion of the network is also provided.

Network
Growing 
Speedup

Growing 
Affected%

Shrinking 
Speedup

Shrinking 
Affected%

SocioPatterns [20] 10.68 38.57 39.36 5.92

OnlineForum [21] 241.65 13.84 122.34 4.74

P2P [22] 173505.1 0.026 19694.11 0.026

HEPCo-authorship [23] 8101.75 9.99 3133.75 8.41

Table 8 - Topological features of real-life networks. Corresponding 
performance results are presented in Table 8.

N E
Avg 
Deg

Max 
Deg

Std. 
Dev. 
Deg

Dia
met
er

Avg
Path 
Len.

Clus
Coef

SocioPatterns 113 4392 38.8 98 18.3 3 1.656 0.53

OnlineForum 1897 20290 21.4 339 35.6 8 3.196 0.08

HEPCoauthor 7507 38804 5.16 64 6.14 15 5.742 0.45

P2P Comm. 6843 7572 2.21 2185 38.3 3 1.248 0

In general, similar to the results obtained on synthetic 
networks, performance benefits of the proposed incremental 
closeness algorithm increase with the increasing network size 
and the growing network updates return higher benefits than 
the corresponding shrinking network updates. However, how 
much performance improvement can be obtained is also a 
factor of the changes made to the network, the portion of the 
network that is affected as well as the structure of the shortest 
paths in the network. 

For instance, in P2P file transfer network, there are very few 
nodes that serve files for download to the other users, and the 
majority of the network consist of users that do not share files 
and are only there for downloading file that are of interest for 
them. Hence, the shortest paths in this network are very short. 
The average shortest path length is 1.24, which is slightly 
more than a single hop, which reflects as an enormous 
speedup that is obtained over the non-incremental algorithm. 
So, the majority of the edges are on the shortest paths for the 
nodes they are connecting. Hence, the speedup that can be 
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obtained on such a network in the case of shrinking networks 
is lower, as it is also shown in Table 7. Because most of the 
time we remove an edge {x � y}, we actually make a change 
on the shortest paths, and the algorithm probes all other 
neighbors of node x to see if it can find another path to y and 
which one is the shortest if any. Given that the network has 
hubs with very high degree centrality (max degree = 2185), 
probing for the new shortest path might take longer when an 
edge is removed than it takes when an edge is inserted. 

Another interesting observation comes from the 
SocioPatterns network. This network is a small network and it 
reflects the interactions between the attendees of a conference. 
This group of people constitutes a relatively close-knit group, 
with high transitivity and a global clustering coefficient of 
0.534. Transitivity refers to the probability of two nodes i and 
k being connected given that there exist an edge (i, j) and (j,
k), and this is a kind of behavior one would expect to observe 
in conference-like environment. When we insert new edges in 
the SocioPatterns network a substantial portion of the network 
(38.57%) is affected. However, when we start removing
edges, the network starts becoming partitioned into several 
disconnected components, and the portion affected by the 
shrinking network updates is substantially lower (5.92%). 
Therefore, although the DELETEEDGESHRINKING has higher 
complexity compared to the INSERTEDGEGROWING algorithm, 
the performance improvement obtained on shrinking network 
updates becomes higher in the SocioPatterns network. 

Finally, the experiments are run separately for the growing 
and shrinking network updates to measure the performance 
across different update types and to quantitatively measure the 
performance differences. However, the algorithms cover the 
most generic case where network updates can be issued in any 
order. 

V. CONCLUSIONS AND FUTURE WORK

This paper proposes incremental algorithms for computing 
closeness centrality in dynamic social networks. In general, 
the incremental algorithm proposed in this paper increases the 
speed with which closeness centrality can be calculated for all 
nodes in a network. The performance gain increases with the 
size of the network. The ability to calculate closeness 
centrality incrementally means that we can use these metrics 
to quickly identify over-time change and to set up alerts. A 
second use of this metric is to use it on a large static network. 
By “pretending” that the network is being built incrementally 
we can apply this algorithm and calculate closeness more 
quickly than we can using the non-incremental algorithm. In 
conclusion, incremental algorithm design offers the potential 
to allow dynamic social network analysis to be applied to real 
time data, and to much larger datasets than would have been 
possible using traditional centrality metric computations. 
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