
Incremental Closeness Centrality
for Dynamically Changing Social Networks

Miray Kas, Kathleen M. Carley, L. Richard Carley

Carnegie Mellon University

Pittsburgh, PA, USA

{mkas@ece.cmu.edu, kathleen.carley@cs.cmu.edu, carley@ece.cmu.edu}

Abstract— Automation of data collection using online
resources has led to significant changes in traditional practices of
social network analysis. Social network analysis has been an
active research field for many decades; however, most of the
early work employed very small datasets. In this paper, a
number of issues with traditional practices of social network
analysis in the context of dynamic, large-scale social networks are
pointed out. Given the continuously evolving nature of modern
online social networking, we postulate that social network
analysis solutions based on incremental algorithms will become
more important to address high computation times for large,
streaming, over-time datasets. Incremental algorithms can
benefit from early pruning by updating the affected parts only
when an incremental update is made in the network. This paper
provides an example of this case by demonstrating the design of
an incremental closeness centrality algorithm that supports
efficient computation of all-pairs of shortest paths and closeness
centrality in dynamic social networks that are continuously
updated by addition, removal, and modification of nodes and
edges. Our results obtained on various synthetic and real-life
datasets provide significant speedups over the most commonly
used method of computing closeness centrality, suggesting that
incremental algorithm design is a fruitful research area for social
network analysts.

Keywords—Closeness Centrality; Incremental Algorithms;
Dynamic All-Pair Shortest Path; Dynamic Networks.

I. INTRODUCTION

Today, with more people actively using the Internet in their
daily lives, social network data that can be collected online is
undergoing dramatic growth. This trend has caused the
analysis of online social networks to emerge as an important
tool for many social and business opportunities including
creating and following trends, discovering new markets,
running election and advertisement campaigns, and
influencing national politics.

On the research side, due to this dramatic growth in
available online social network data, along with the possibility
of automated data collection, there is increasing interest in
dynamic network analysis which focuses on developing
custom-designed methods for very large, dynamic (over-time),
multi-mode (where nodes can be in different categories),
multiplex (where there are multiple types of links) networks.
However, there still exist major challenges to be overcome in
this transition from traditional social network analysis on
small static networks to social network analysis on large-scale
dynamic networks.

In today’s online world, these links are constructed using
information provided by email exchanges, file or photo
sharing, or other features like ‘friend lists’, ‘membership’,

‘tag’, ‘like’, ‘share this’, ‘follow’, ‘send a message’, etc. Such
social graphs are constantly expanding and growing;
presenting major challenges in identification of the most
central actors in a given social network as it evolves over time.
A majority of early research in the field of social network
analysis targeted eliciting the most central/prominent actors in
small, static networks that model small social groups.

To date, hundreds of social centrality metrics have been
designed and discussed in the literature. However, a
significant number of publications analyzing social networks
consider only a handful of metrics: degree centrality,
eigenvector centrality [1], closeness centrality [2], and
betweenness centrality [3]. Out of these four metrics, the latter
two are shortest-path based metrics. The shortest-path based
metrics consider the shortest communication paths in a given
network topology and focus on the position of a node with
respect to the shortest paths in the network.

Computations of the shortest path based centrality metrics
usually require solving the costly all-pairs shortest path
problem. Given that the most commonly used centrality
metrics are designed for static networks, attempting to
compute traditional centrality metrics on dynamic social
networks boils down to fixing a dynamic network
momentarily, performing computations on it, and then
performing similar computations from scratch on an updated
version of the network.

The goal of this paper is to draw the attention of the social
network analysis community to the use of incremental
computation of shortest paths in dynamic network analysis
and to discuss how incremental algorithm design techniques
would be beneficial to improve the traditional techniques used
in social network analysis. Incremental algorithms are
algorithms that are custom-designed for dynamically changing
networks and respond to the over-time changes in the
analyzed network by performing early pruning and
propagating the updates only to the affected parts of the
network. In general, incremental algorithms are saving
redundant computations at the expense of the need to store
information about prior computations. Another contribution of
the algorithms designed in this paper is the fast computation of
closeness centrality for large-scale static networks as we will
show later in the results section. That is, applying the
incremental algorithm at every step in building up a network
can be less computationally expensive than running the
traditional algorithm a single time on the final network.

This paper discusses the general class of centrality metrics
based on the shortest paths across all possible pairs of nodes.
As a case study, we present the design of an incremental

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

1250
ASONAM'13, August 25-29, 2013, Niagara, Ontario, CAN
Copyright 2013 ACM 978-1-4503-2240-9 /13/08 ...$15.00

closeness centrality algorithm that handles various types of
network updates including addition, removal, and
modification of nodes and edges. Closeness centrality was
selected as the focus for this paper for two reasons. First,
closeness centrality is one of the most commonly used metrics
in social network analysis. Second, the definition of closeness
centrality depends entirely on the shortest path information
across all pairs of nodes. The information on the shortest
distance between pairs of nodes is inherently required by all
shortest-path based metrics. This means that the incremental
methods discussed in this paper are generalizable to other
metrics with shortest-path computation as their core
computational limitation. Most other shortest path based
centrality metrics require information such as the number of
the shortest paths between nodes, the predecessors and/or
successors on these shortest paths. Therefore, this paper will
focus on closeness centrality as the example incremental
metric.

II. BACKGROUND

A. Definition & Computation of Closeness
The closeness centrality of node �, ��(�), is defined as the

inverse of the sum of the distances from � and all other nodes

in the network: ��(�) =
�

� �(�,)
��
where
(�, �) denotes the

shortest distance from node x to node y. Closeness centrality is
traditionally best computed by running a single-source
shortest path algorithm using each node as the source node
once. At each iteration, the distances found are summed up to
obtain the total distance from the given source node, and this
distance is inverted to obtain the closeness value of the source.

In unweighted (binarized) networks, a breadth-first search
algorithm may be used to discover the shortest paths from a
source nodes, which is bounded by O(n+m) time complexity
per source node, resulting in O(nm) complexity in total. In
weighted networks, Dijkstra’s algorithm [4] has O((n +
m)logn) complexity, where n denotes the number of nodes, m
denotes the number of edges in the network. This complexity
is achieved when a binary min-heap is used in the
implementation of the priority queue. A faster run-time of
O(m + nlogn) can be achieved by implementing the priority
queue using a Fibonacci heap [5]. When Dijsktra’s algorithm
is invoked using every node in the network as the source node
to compute all-pairs shortest paths, the overall complexity is
O(mn + n2

logn). Computation of closeness centrality can be
performed by running an all-pair shortest paths algorithm (e.g.
Floyd-Warshall [6]), which results in O(n3

) time complexity.
The algorithmic complexities of Dijkstra and Floyd-

Warshall are sufficiently high that they are very difficult to
invoke at every time step in dynamically changing, large-scale
networks. Hence, this paper proposes the use of incremental
algorithms that avoid the cost of recomputing all of the
shortest paths from scratch every time period.

B.Example Use Cases for Closeness
Closeness centrality is a commonly used social centrality

metric and it can have different uses in different contexts.
Closeness centrality of a social actor describes actor’s
efficiency for information propagation across the entire
network. In other words, social actors with high closeness
centrality values are considered to be efficient at making
contact with others in the network. High closeness centrality is

also regarded as representing high potential for independent
communication.

In the context of technological networks, such as wireless
networks, closeness centrality identifies nodes that have rapid
access to information (e.g. nodes that are close to many other
nodes on average). Since closeness centrality is inversely
proportional to the sum of the distances to all other nodes, it
also provides an estimate of how long it will take information
to spread from a node to all others. Hence, it can also be used
as a performance measure in technological networks [7].

As another example, in [8], the authors discuss the use of
closeness centrality for policy-making networks (e.g. drug
policy making). In the context of policy-making networks, the
actors that have information that is crucial to all other actors in
the network should have high closeness centrality if the
network is to function effectively.

As we mentioned earlier, closeness centrality is one of the
most commonly used metrics in social network analysis.
Hence, it should be understood that there are several other
papers that employ closeness centrality in the research
literature on social network analysis and that the preceding
discussion simply provides a few examples of the applications
of closeness centrality in social network analysis. There exist
other studies that discuss the extensions of closeness centrality
metrics for dynamic, complex networks [9]. There has also
been research on new methods to select top-k nodes in terms
of closeness in large-scale networks [10] and on algorithms
for approximation of closeness [11].

C. Dynamic All-Pairs Shortest Path Computation
To date, several algorithms have been proposed for solving

the all-pairs shortest paths problem dynamically [12], [13],
[14]. However, some of these solutions come with a number
of restrictions and only work for certain conditions. For
instance, [12] requires all edge costs to be integers below a
certain threshold to be able to solve the all-pairs shortest paths
problem dynamically.

In this study, we use the dynamic all-pairs shortest path
algorithm proposed in [13] as our starting point. In general,
Ramalingam and Reps algorithms define a full framework that
works with all non-negative edge weights and its procedural
structure enables distinguishing between the methods required
for each network update type easily (e.g. inserting edges/nodes
versus deleting edges/nodes). Second, Ramalingam and Reps
algorithms are one of the most commonly used dynamic
computation of all-pairs shortest paths algorithms. Third,
Ramalingam and Reps algorithms have been shown to
perform quite well on sparse, real-life networks/graphs.

In terms of computational time and memory requirement,
[14] and [13] usually achieve similar performance. In [14], it
has been discussed that the underlying computational platform
is an important factor in deciding which algorithm performs
better. The authors of [14] state that Ramalingam and Reps’
algorithm is likely to become faster as the number of nodes
increases because it requires less space compared to
Demetrescu & Italiano’s algorithm and exhibits better locality
in the memory access pattern. Real life network experiments
presented in [14] indicate that Ramalingam and Reps have the
lowest or one of the lowest execution times among all
dynamic all-pairs shortest path algorithms compared in that
paper. Hence, we have decided to use Ramalingam and Reps

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

1251

algorithm as a building block in the closeness centrality
algorithms proposed in this paper.

III. INCREMENTAL CLOSENESS ALGORITHM

In order to handle the special needs of very dynamic large-
scale social networks, this paper presents an incremental
algorithm design approach. An incremental algorithm is
different from its static counterpart that performs all
computations from scratch. The application of an incremental
algorithm is as follows. At one point, an initial run is
performed by an algorithm that performs the desired
computation from scratch (e.g. computation of closeness
values in a given network). The incremental algorithm is then
used in subsequent runs to handle various network updates
such as edge cost modifications (in the case of weighted
networks), node/edge insertions, and node/edge deletions. The
incremental algorithm uses information from earlier
computations such that the changes in the network are
reflected on the closeness values as well. The benefit of an
incremental algorithm is that, by being able to build on prior
computations, it is able to perform early-pruning and update
only the affected parts of the network while avoiding
recomputation to a significant extent.

After briefly reviewing the notation we use in this paper, the
pseudocodes are provided for the proposed incremental
closeness algorithms in Section 3.B and Section 3.C.

In Section 3.B, an incremental algorithm for the following
network update types is presented: (i) inserting a new node,
(ii) inserting a new edge, and (iii) decreasing the cost of an
existing edge. The same algorithm can handle these three
update types because inserting a new node can be handled by
invoking insert a new edge for every edge that comes along
with the new node and inserting a new edge corresponds to
decreasing the cost of an edge from infinity to a real value.
We call these update types growing network updates as social
networks usually grow by new people joining a community,
formation of new relationship, and relationships becoming
closer which reflects as a decrease in the cost of
communication.

Section 3.C provides the pseudocodes for the incremental
algorithms for handling the remaining network update types:
(iv) deleting an existing node, (v) deleting an existing edge,
and (vi) increasing the cost of an existing edge. We call this
group of updates shrinking network updates because social
networks shrink by people departing from a community,
ending relationships or by relationships that become more
distant. The algorithms in Section 3.B and Section 3.C focus
on unit updates, handling each edge modification (e.g.
addition/deletion/cost modification) one at a time. Similar to
growing network updates, deletion of a node with several
edges reduces to several invocations of the algorithms
provided in Section 3.C to handle the removal of each edge
emanating from and/or entering into the processed node.

In addition, undirected networks can be represented as
directed networks where the edge {x � y} is represented using
two directed edges {x ��y} and {y ��x}. Binary networks can
be represented as weighted networks where existing edges’
weights/costs are always equal to 1. Therefore, directed,
weighted networks provide the most generalized coverage of

different network types. Thus, the algorithms in Section 3.B
and Section 3.C consider weighted, directed networks.

A.Notation
This section briefly describes the notation we use in this

paper. A directed network G is composed of a set of nodes
V(G) and edges E(G). {x �� y} � E(G) represents an edge

directed from node x to node y. �� is the transpose (reverse) of
network G where all edges in network G are reversed in
direction. Similar to network G, the set of edges, nodes, and

edge costs are defined for network �� as well. Pred(x) is used
to denote the predecessor neighbors of node x that have direct
edges going into node x. Similarly, Succ(x) is used to denote
the successor neighbors of node x that have direct edges
emanating from node x going into the successor nodes.

D(x, y) is used to hold the pairwise shortest path distances
from node x to y while W(x, y) is used to denote the cost of the
edge from x to y. In other words, when the network is
weighted, D(x, y) denotes the sum of the edge costs over all of
the edges along the shortest path(s) from x to y. And, when the
network is binary, D(x, y) gives the shortest path distance from
x to y in terms of number of edges along the shortest path. The
algorithms discussed in this paper are applicable to networks
with non-negative edge costs. The closeness values of nodes
with a vector of length |V(G)| are represented by C�. Finally,
SP(x, y, z) is true if the edge x �� y � E(G) is on a shortest
path from x to z, false otherwise [13].
B. Incremental Closeness Algorithm: Handling Growing
Network Updates

To compute the closeness values incrementally for
streaming, dynamically changing social networks, the
incremental all-pairs shortest-paths algorithm proposed by
Ramalingam and Reps [13] is extended such that closeness
values are incrementally updated in line with the changing
shortest path distances in the network.

Figure 1 - An abstract picture describing how affected sink and source
nodes are selected and how early pruning is done.
Before moving on to low level details of how the shortest path

distances and closeness values are updated, a high level

description of early pruning of shortest paths is provided in

Figure 1. When the edge {X � Y} is inserted to a network G

depicted in Figure 1, the maintenance of the shortest paths

starts with the inserted edge. The edges that are on the shortest

paths are tracked and further processed to ensure propagation

of the shortest path updates as far as needed. In Figure 1, the

set of black nodes gives us the affected sink and source nodes.

The edges drawn with solid lines are the edges on the shortest

paths, and they are considered for subsequent processing later

in the execution. The edges that are drawn with dashed lines

and the gray nodes that are accessible from those edges that

are not on the shortest paths. Such nodes are not affected by

the incoming network update; hence pruned early from

recomputation.
When a growing network update is observed, the

incremental computation of closeness centrality is handled by
two sub-algorithms: INSERTEDGEGROWING and

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

1252

INSERTUPDATEGROWING. The main entry point for execution is
INSERTEDGEGROWING. The INSERTEDGEGROWING (Algorithm-
1) invokes INSERTUPDATEGROWING (Algorithm-2) several
times to ensure identification of all affected source and sink
nodes and to maintain closeness centrality values and the
shortest distances to/from those nodes accurately.
INSERTEDGEGROWING first invokes INSERTUPDATEGROWING to
find the set of AffectedSink and AffectedSource nodes,
passing once the source, once the destination of the inserted
edge as a parameter to it (Lines 2–3 of Algorithm-1). Then,
the INSERTUPDATEGROWING is invoked for each AffectedSink
and AffectedSource (Lines 4–7 of Algorithm-1) to update the
information required for accurate maintenance of closeness
values in line with the newly-discovered, shortest paths (e.g. D
for the shortest distance between each node pair).

In Algorithm-2, the list Workset holds the set of edges that
should be processed to detect formation of new shortest paths
or existing paths becoming shorter. Since closeness centrality
is computed as the inverse of sum of the distances from a node
to all other nodes in a network, the only information it needs is
the shortest distances between all pairs of nodes (represented
as D). It is not necessary to know the number of shortest paths,
the predecessors on these shortest paths, etc.

Assume that the shortest path distances and closeness
centralities are already computed for a given network. In the
case of a network update, we only need to update the
closeness of a node x if the shortest distance from node x to
any other node in the network changes. We check for the
changes in the shortest distances using the condition given in
Line-6 of Algorithm-2. If this condition holds, it means that
there is now a shorter path from node x to z which passes
through the edge {x�y}, and the distance from x to z (i.e. D(x,
z)) should be updated accordingly (Line-14).

Before the previous value of D(x, z) is overridden with the
new value, Lines 8-13 of Algorithm-2 handle the accurate
maintenance of closeness centrality. To update closeness value
of node x accurately, it is first necessary to check if node z was
previously reachable from node x (e.g. D(x, z) � �). If it was
reachable before, then it means the distance from x to z had a
contribution to the closeness value of node x. In this case, it is
necessary to first subtract the previously known shortest
distance from node x to z (e.g. D(x, z)), and then add the new
shortest distance (e.g. W(x, y) + D(y, z)) to the sum of
distances to all nodes from node x. Otherwise, nothing is
subtracted, only the new shortest distance is added to the sum
of distances from node x. The closeness of node x is obtained
by inverting the total distance (Algorithm - 2, Line 13).

The final part of the INSERTUPDATEGROWING algorithm
(Algorithm-2, Lines 15-17) performs checks for subsequent
processing. In this part of the algorithm, the portions of the

network that are not affected by the changes in the shortest
paths are pruned. For each of the edges to/from the affected
node x, it is checked to see if they are on the inspected shortest
paths. If SP returns true, and if the other end of the edge (node
u) is not in the list of already processed nodes, the edge u ��x
is inserted in the set of edges for subsequent processing.

C. Incremental Closeness Algorithm: Handling Shrinking
Network Updates

In this section, the part of the incremental closeness
algorithm that handles shrinking network updates (e.g.
deletion of a node/edge or edge cost increase) is presented.
The shrinking network updates are handled by two sub-
algorithms: DELETEEDGESHRINKING (Algorithm-3) and
DELETEUPDATESHRINKING (Algorithm-4).

DELETEEDGESHRINKING (Algorithm-3) follows a very
similar logic to that of INSERTEDGEGROWING (Algorithm-1).
After updating the adjacency matrix for the modified/deleted
edge, DELETEUPDATESHRINKING (Algorithm-4) is invoked
several times: first, to identify affected sink and source nodes
and then, to process each sink and source nodes separately.

The DELETEUPDATESHRINKING algorithm (Algorithm-4) has
two distinct phases. The first phase of Algorithm-4 is between
Lines 1-14 while the second phase is between Lines 15-38.
The first phase of the algorithm identifies the set of affected
vertices. In this case, affected vertices are those nodes whose
shortest distances to node z (the third parameter of the
algorithm) have increased. The shortest path distance from
node x to z may only increase if the network update is made
on an edge which used to lie on the shortest paths between
those two nodes and all the available shortest paths pass

Algorithm-3: DELETEEDGESHRINKING (G, src, dest, c)
1. W(src, dest����c; �� (dest, src����c
2. AffectedSinks � DELETEUPDATESHRINKING(��, dest, src, src)

3. AffectedSources�DELETEUPDATESHRINKING(G, src, dest, dest)
4. for s � AffectedSinks

5. DELETEUPDATESHRINKING (G, src, dest, s)

6. for s � AffectedSources

7. DELETEUPDATESHRINKING (��, dest, src, s)

Algorithm-2: INSERTUPDATEGROWING (G, src, dest, z)
1. Workset ��{������	
��};
2. VisitedVertices ��{src};
3. AffectedVertices ���
4. while Workset ���
5. {
����} ��pop (Workset)

6. if W (x, y) + D (y, z) < D (x, z)

7. Add x to AffectedVertices

8. TotDist(x) =
�

��(�)

9. if D (x, z)� �
10. TotDist(x) = TotDist(x) - D (x, z) + W (x, y) + D (y, z)
11. else

12. TotDist(x) = TotDist(x) + W (x, y) + D (y, z)
13. ��(�) =

�

�����!�(�)

14. D (x, z) ����(x, y) + D (y, z)

15. for u � Pred(x)

16. if SP (u, x, src) == 1 && u " VisitedVertices

17. push {����
} into Workset

18. Insert u into VisitedVertices

19. return AffectedVertices

Algorithm-1: INSERTEDGEGROWING (G, src, dest, c)

1. W (src, dest����c; �# (dest, src����c
2. AffectedSinks � INSERTUPDATEGROWING (��, dest, src, src)

3. AffectedSources � INSERTUPDATEGROWING (G, src, dest,
dest)
4. for s � AffectedSinks

5. INSERTUPDATEGROWING (G, src, dest, s)

6. for s � AffectedSources

7. INSERTUPDATEGROWING (��, dest, src, s)

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

1253

through the modified/deleted edge (i.e. when there is no
alternative shortest paths that would still be shorter). The
check for this condition is in Lines 12-13 of Algorithm-4.

The second phase of Algorithm-4 determines the new
shortest path distance to node z for all nodes in the set of
affected vertices identified in the first phase of the algorithm.
The maintenance of new distances to node z is handled by
min-key priority queue where the priority of a node
corresponds to its distance to node z. Closeness values are also
updated in the second phase of Algorithm-4. To be more
precise, closeness values are updated whenever a change on a
D value is observed but right before this is change is recorded,
overriding the prior knowledge on previous D value (Lines
18-24 and Lines 28-34). The idea behind closeness updates is
similar to the idea described in Section 3.B. However, in this
case additional checks are performed to avoid updating
closeness values with a distance that was just set to infinity.

D. Comments on Algorithmic Complexity
In this section, the complexities of the proposed incremental

closeness algorithms are discussed. For incremental
algorithms, there are different perspectives on how to evaluate
their complexities. It has been demonstrated that, in the worst
case, no incremental algorithm can perform asymptotically
better than the algorithm that computes everything from
scratch [15]. Hence, worst-case upper bound time complexity
is usually not descriptive enough to explain the performance
difference of an incremental algorithm from an algorithm
solving the same problem from scratch.

For incremental algorithms, a preferred way of discussing
their computational complexity is through the sum of the sizes
of changes in the input (e.g. the modified graph/network) and
output (e.g. modified distance and closeness centrality values).
Next, we discuss the computational complexities of the
INSERTEDGEGROWING and the DELETEEDGESHRINKING
algorithms in terms of the changes in the input and output.

The INSERTEDGEGROWING algorithm calls the
INSERTUPDATEGROWING for every AffectedSink and
AffectedSource node. The INSERTUPDATEGROWING essentially
performs a traversal in the neighborhood of every
AffectedSink and AffectedSource, respectively. Hence, the
complexity of each of these operations is on the order of
O(||Affected||) where ||Affected|| is used to denote the sum of
the number of edges and the nodes in the subgraph formed by
AffectedSource and AffectedSink nodes’ neighborhoods.

Similar complexity analysis can be performed for
DELETEEDGESHRINKING. Similar to the INSERTEDGEGROWING,
DELETEEDGESHRINKING invokes DELETEUPDATESHRINKINGfor
every AffectedSink and AffectedSource node. However,
DELETEUPDATESHRINKING is more complicated than
INSERTUPDATEGROWING. The DELETEUPDATESHRINKING has
two distinct phases with different algorithmic complexities.
Phase-2 makes use of a priority queue, whose time complexity
must be taken into account separately.

Line-13 of Algorithm 4 checks the existence of the shortest
paths between a predecessor (e.g. x) and a successor (e.g. y) of
node u. This makes the time complexity of Phase-1 to be
limited by O(||Affected||2) where the subscript 2 denotes the
size of two hop neighborhood of all affected nodes. The set of
affected nodes is given by (AffectedSink $ AffectedSource).
The complexity of Phase-2 is dominated by the complexity of
priority queue, denoted by O(||Affected|| log ||Affected||).

Since all the changes that are made to compute closeness
centrality are of O(1) time complexity, computing closeness
centrality along with the dynamic maintenance of the shortest
paths does not increase the overall time complexity of
Ramalingam and Reps algorithm. Similar to the Ramalingam
and Reps algorithm, the memory requirement is quadratic.

As one final note, the algorithms presented in this section
are the modified versions of the dynamic shortest path
algorithms proposed in [13] to incorporate the computation of
closeness centrality. Both in Algorithm-2 and Algorithm-4,
closeness centrality of a node x is updated only when the
shortest distance from node x to another node is updated.
Hence, accurate maintenance of closeness values depends on
the accurate maintenance of shortest distances, whose
correctness was proved in [13]. The reader is referred to [13]

Algorithm-4: DELETEUPDATESHRINKING (G, src, dest, z)
1. AffectedVertices ���
2. at_least_one_exists = false;

3. for each x % Succ(src)

4. if (SP(src, x, z) == true)

5. at_least_one_exists = true;

6. break;

7. if (at_least_one_exists == false)

8. Workset ��{src};
9. while Workset ���
10. u ��pop (Workset)

11. Add u to AffectedVertices

12. for each x � Pred(u) such that SP(x, u, z) == true

13. if (all y � Succ(x) s.t. SP(x, y, z) == true and y �

AffectedVertices)

14. push x into Workset

15. PriorityQueue���
16. for (a � AffectedVertices)

17. min_dist = min ({W(a, b) + D(b, z) | {�����} � E(N) & b "

AffectedVertices}, {�})

18. TotDist(a) =
�

��(&)

19. if D(a, z)� �
20. TotDist(a) = TotDist(a) - D(a, z)

21. D(a, z) ������	���
22. if D(a, z)� �
23. TotDist(a) = TotDist(a) + D(a, z)

24. ��(') =
�

�����!�(&)

25. while PriorityQueue � �

26. ����extractMin(PriorityQueue)

27. for each c � Pred(a) such that W(c, a) + D(a, z) < D(c, z)

28. TotDist(c) =
�

��(�)

29. if D (c, z)� �
30. TotDist(c) = TotDist(c) - D(c, z)

31. D(c, z) � W(c, a) + D(a, z)

32. if D (c, z)� �
33. TotDist(c) = TotDist(c) + D(c, z)

34. ��(%) =
�

�����!�(�)

35. if c � PriorityQueue

36. DecreaseKey (PriorityQueue, c, D(c, z))

37. else

38. Insert (PriorityQueue, c, D(c, z))

39. return AffectedVertices

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

1254

for more details on the proof of correctness regarding the
shortest path updates.

IV. DATASETS AND RESULTS

The goal of this paper is to draw attention to the use of
incremental algorithm design in social network analysis
methods. In particular, in this paper, we show how to design
an incremental algorithm for closeness centrality; and, we
explore how much speedup we obtain due to the use of this
incremental algorithm on different types of synthetic and real-
life networks that are used by social network researchers.
Hence, our performance evaluations primarily show how
much performance improvement can be achieved over the
most commonly used way of computing the all-pairs shortest
paths in a network as well as closeness centralities as a by-
product of it (e.g. Dijsktra’s algorithm).

A. Coding and Computing Environment
The proposed incremental algorithms were coded as an

extension to GraphStream [16]. Performance results were
measured on a machine with a quad-core 3.20 Ghz Intel Xeon
CPU and 256 GB RAM.

B.Performance Results with Synthetic Networks
To understand the performance of the proposed incremental

closeness algorithm, we have designed experiments with
networks that are generated using different graph generation
algorithms and network sizes. To understand the impact of
topology, we ran a number of experiments on synthetic
networks using three different topologies, while keeping the
number of nodes and the average degree fixed. In our
experiments, we use three different topologies: preferential
attachment networks [17], Erdos-Renyi networks [18], and
small-world networks [19]. We use networks with 1000, 3000,
and 5000 nodes and set the average degree to 6. The average
degree of a network is a measure that compares the number of
edges against the number of nodes in the network. It is
computed as 2.|E(G)| / |N(G)| as each edge contributes to the
degree of both nodes it is connecting. For small world
networks, the rewiring probability is 0.5.

To measure the performance of the incremental closeness
algorithm for growing network updates, we generate the
synthetic networks described above with all but 100 edges that
are selected randomly. We insert the last 100 edges
incrementally and get the average update performance in
terms of execution time over the repeated invocations of
Dijkstra’s algorithm. For instance, if it takes 5 seconds to
complete a set of updates using incremental algorithms and 30
seconds to complete the same set using Dijkstra’s algorithm,
we conclude that the incremental algorithm is 6x faster than
Dijkstra’s algorithm on average. The values presented in
Table 1 reflect speedup values obtained this way. Table 2
shows the percentage of total number of nodes that are
affected.

Similar experiments have been designed for measuring the
performance of the proposed incremental closeness algorithm
under shrinking network updates and the respective
performance values are reported in Table 3. In the experiments
performed for shrinking network updates, we start with the
full network and incrementally remove the same set of edges
used in the experiments whose performance values are
reported in Table 1. Hence, we also have a way of comparing

how different types of network updates affect the
performance. The performance values in Table 1 and Table 3
describe the speedup obtained by the incremental closeness
algorithm over computing closeness via repeated invocations
of Dijkstra’s algorithm averaged across 100 updates on the
network. Considering the results presented in Table 1 – 4,
several observations are in order. Firstly, the performance
improvement obtained over traditional computation methods
is less with shrinking network updates than the growing
network updates although the number of affected nodes is
lower on average for the shrinking update types. Since
DELETEUPDATESHRINKING maintains a priority queue while
INSERTUPDATEGROWING does not, the overall algorithmic
complexity and the actual execution time are higher in
shrinking network updates.
Table 1 - Performance improvements obtained on networks with
different topologies/sizes (Using InsertEdgeGrowing and
InsertUpdateGrowing over repeated invocations of Dijkstra’s algorithm).

#(Nodes) Preferential Attachment Erdos-Renyi Small World

1000 900x 123.07 x 288.97 x

3000 16732.48 x 515.35 x 1093.86 x

5000 47738.81 x 890.56 x 2228.91 x

Table 2 - Percentage of affected nodes in incremental network updates:
union of nodes in AffectedSinks and AffectedSources.

#(Nodes) Preferential Attachment Erdos-Renyi Small World

1000 3.79% 60.86% 28.38%
3000 2.13% 69.02% 30.69%

5000 1.33% 70.66% 27.26%

Table 3 - Performance improvements obtained on networks with
different topologies/sizes (Using DeleteEdgeShrinking and
DeleteUpdateShrinking over repeated invocations of Dijkstra’s
algorithm).

#(Nodes) Preferential Attachment Erdos-Renyi Small World

1000 467.70 x 58.37 x 121.75 x
3000 2852.33 x 169.83 x 290.16 x

5000 10150.29 x 304.44 x 586.36 x

Table 4 - Percentage of affected nodes in decremental network updates:
union of nodes in AffectedSinks and AffectedSources.

#(Nodes) PreferentialAttachment Erdos-Renyi Small World

1000 2.93% 43.71% 22.45%
3000 1.51% 41.31% 25.71%

5000 0.97% 41.21% 22.91%

Table 5 - Network statistics. There are additional metrics that are
measured but not listed. For all the networks laid out in this table
Network Fragmentation is 0, and Avg. Deg. is 6.

Topology Size
Min
Deg

Max
Deg

Degree
StdDev

Diam
eter

Avg
Path
Len

Cluste
ring
Coeff

Pref. Attach. 1000 3 89 6.822 10 3.45 0.014

Pref. Attach. 3000 3 233 8.064 14 4.126 0.007

Pref. Attach. 5000 3 212 8.251 16 4.442 0.005

Erdos-Renyi 1000 1 14 2.498 15 6.305 0.003

Erdos-Renyi 3000 2 13 1.572 14 7.086 0.001

Erdos-Renyi 5000 2 11 1.362 14 7.492 0.001

Small World 1000 3 12 1.545 33 7.612 0.044

Small World 3000 3 12 1.526 55 10.333 0.039

Small World 5000 3 4 1.502 71 11.934 0.039

Secondly, incremental closeness algorithm performs best with

networks that are generated following preferential attachment

network generation model both for growing and shrinking

updates. Comparing the speedup obtained on different

networks, speedup obtained using the incremental closeness

algorithm increases with the increased network size. It is also

observed that other parameters shown in Table 5 such as

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

1255

network diameter and characteristic path length are inversely

related with the performance obtained. For instance, in

networks generated using a preferential attachment generation

model, characteristic path length and diameter are lower

compared to other topologies. When the paths in a network are

short, an update on the shortest paths cannot propagate very

far, resulting in quick return from the update and a very

limited number of affected nodes (e.g. less than 5% in the case

of preferential attachment networks). To elaborate, when the

shortest paths in a network are not long, there are fewer nodes

that lie on the shortest paths (i.e. fewer nodes are affected) and

the overall depth of the shortest path tree is shorter, which also

results in fewer updates when there is need for reconstruction

of the shortest paths in the network.

Building Large Networks Incrementally: One important

point about larger networks is that it takes too long for them to

compute measures and cope with the dynamism. And, the

performance improvements that were obtained on networks

with short average/characteristic path length are substantial

(See performance results obtained on preferential attachment

networks presented in Table 3). One key use of incremental

algorithms for larger networks is that they can substitute for

the traditional closeness algorithms for computing centralities

for the very large network even after all the updates in the

network are final. In other words, incremental closeness

algorithms support both on-the-fly computation and faster

computation of the metric on large, static networks.

Figure 2 - Performance of incremental
closeness computation on large
preferential attachment networks. The
Dijkstra’s algorithm executed only once
after all updates completed.

Table 6 - Performance
improvements for the
results in Figure 2.

|N| |E| Perfor
mance

10,000 30,000 14.78

20,000 60,000 24.17

30,000 90,000 26.28

40,000 120,000 29.53

We support this claim by the results presented in Figure 2, in

which traditional closeness centrality computation is executed

only once instead of modeling the growth of the network. In

other words, we pretend to build the network incrementally by

invoking the INSERTEDGEGROWING once for each edge in the

network and compare its performance against computing

closeness centrality by running Dijkstra only once from each

node in the network on the final version of the network. Since

many real-life, large-scale networks exhibit scale-free

behavior and the best performance improvements with

incremental closeness centrality are obtained on preferential

attachment networks. The performance benefits in this case

are primarily governed by the network structure, which

contains relatively short shortest paths compared to other

network topologies. In the results presented in Figure 2 and

Table 6, we use four different preferential attachment networks

where the number of nodes is varied between 10,000 and

40,000 with a step size of 10,000 and we set the average

degree to 6.
C. Performance Results with Real-Life Networks
Next, we evaluate the performance of incremental closeness

algorithm on a variety of real-life networks that are of
different scale and have different topological features. The
real life networks used in our evaluations in this section are
prepared as weighted networks where the cost of an edge is
inversely proportional to the strength of the relationship it is
modeling. We obtain the edge costs by consolidating multiple
updates for the same pair of nodes in a single edge. For
instance, if a communication or interaction from node x to y
has been recorded twice up to a certain point, then the edge x
� y has the cost of 1/2. When a new, third communication or
interaction is observed from node x to y, then the cost of the
edge x � y is updated to be 1/3.

Next, we report our performance results and explain them in
line with the topological features of the networks described
above. For the real life network, in order to test how the two
algorithms (incremental closeness algorithm vs. traditional
closeness computation using Dijkstra’s algorithm) perform
with the growing network updates, we start with an earlier
version of the network that has all the information expect the
last 100 updates. Similarly, to obtain performance results with
shrinking network updates, we start with the final version of
the network and remove the same set of 100 edges that we
have used in our runs with growing network updates.

Table 7 - Performance improvements of incremental closeness centrality
over computing closeness centrality using Dijkstra's algorithm.
Information on the affected portion of the network is also provided.

Network
Growing
Speedup

Growing
Affected%

Shrinking
Speedup

Shrinking
Affected%

SocioPatterns [20] 10.68 38.57 39.36 5.92

OnlineForum [21] 241.65 13.84 122.34 4.74

P2P [22] 173505.1 0.026 19694.11 0.026

HEPCo-authorship [23] 8101.75 9.99 3133.75 8.41

Table 8 - Topological features of real-life networks. Corresponding
performance results are presented in Table 8.

N E
Avg
Deg

Max
Deg

Std.
Dev.
Deg

Dia
met
er

Avg
Path
Len.

Clus
Coef

SocioPatterns 113 4392 38.8 98 18.3 3 1.656 0.53

OnlineForum 1897 20290 21.4 339 35.6 8 3.196 0.08

HEPCoauthor 7507 38804 5.16 64 6.14 15 5.742 0.45

P2P Comm. 6843 7572 2.21 2185 38.3 3 1.248 0

In general, similar to the results obtained on synthetic
networks, performance benefits of the proposed incremental
closeness algorithm increase with the increasing network size
and the growing network updates return higher benefits than
the corresponding shrinking network updates. However, how
much performance improvement can be obtained is also a
factor of the changes made to the network, the portion of the
network that is affected as well as the structure of the shortest
paths in the network.

For instance, in P2P file transfer network, there are very few
nodes that serve files for download to the other users, and the
majority of the network consist of users that do not share files
and are only there for downloading file that are of interest for
them. Hence, the shortest paths in this network are very short.
The average shortest path length is 1.24, which is slightly
more than a single hop, which reflects as an enormous
speedup that is obtained over the non-incremental algorithm.
So, the majority of the edges are on the shortest paths for the
nodes they are connecting. Hence, the speedup that can be

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

1256

obtained on such a network in the case of shrinking networks
is lower, as it is also shown in Table 7. Because most of the
time we remove an edge {x � y}, we actually make a change
on the shortest paths, and the algorithm probes all other
neighbors of node x to see if it can find another path to y and
which one is the shortest if any. Given that the network has
hubs with very high degree centrality (max degree = 2185),
probing for the new shortest path might take longer when an
edge is removed than it takes when an edge is inserted.

Another interesting observation comes from the
SocioPatterns network. This network is a small network and it
reflects the interactions between the attendees of a conference.
This group of people constitutes a relatively close-knit group,
with high transitivity and a global clustering coefficient of
0.534. Transitivity refers to the probability of two nodes i and
k being connected given that there exist an edge (i, j) and (j,
k), and this is a kind of behavior one would expect to observe
in conference-like environment. When we insert new edges in
the SocioPatterns network a substantial portion of the network
(38.57%) is affected. However, when we start removing
edges, the network starts becoming partitioned into several
disconnected components, and the portion affected by the
shrinking network updates is substantially lower (5.92%).
Therefore, although the DELETEEDGESHRINKING has higher
complexity compared to the INSERTEDGEGROWING algorithm,
the performance improvement obtained on shrinking network
updates becomes higher in the SocioPatterns network.

Finally, the experiments are run separately for the growing
and shrinking network updates to measure the performance
across different update types and to quantitatively measure the
performance differences. However, the algorithms cover the
most generic case where network updates can be issued in any
order.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes incremental algorithms for computing
closeness centrality in dynamic social networks. In general,
the incremental algorithm proposed in this paper increases the
speed with which closeness centrality can be calculated for all
nodes in a network. The performance gain increases with the
size of the network. The ability to calculate closeness
centrality incrementally means that we can use these metrics
to quickly identify over-time change and to set up alerts. A
second use of this metric is to use it on a large static network.
By “pretending” that the network is being built incrementally
we can apply this algorithm and calculate closeness more
quickly than we can using the non-incremental algorithm. In
conclusion, incremental algorithm design offers the potential
to allow dynamic social network analysis to be applied to real
time data, and to much larger datasets than would have been
possible using traditional centrality metric computations.

VI. ACKNOWLEDGEMENTS

This work is supported in part by the Defense Threat
Reduction Agency (HDTRA11010102), and by the center for
Computational Analysis of Social and Organizational Systems
(CASOS). The views and conclusions contained in this
document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied by the DTRA or the U.S. government.

VII. REFERENCES

[1] P. Bonacich, "Power and centrality: A family of measures," American
Journal of Sociology, vol. 92, no. 5, pp. 1170--1182, March 1987.

[2] G. Sabidussi, "The centrality index of a graph," Psychometrika, vol. 31,

no. 4, pp. 581--603, 1966.

[3] L. C. Freeman, "A Set of Measures of Centrality based on Betweenness,"

Sociometry, pp. 35-41, 1977.

[4] E. Dijkstra, "A note on two problems in connexion with graphs,"

Numerische mathematik, vol. 1, no. 1, pp. 269--271, 11 June 1959.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to

Algorithms, 2nd Edition ed., Cambridge, MA: MIT Press, 2001, pp. 595-

601.

[6] R. Floyd, "Algorithm 97: Shortest path," Communications of the ACM,
vol. 5, no. 6, p. 345, June 1962.

[7] S. Nanda and D. Kotz, "Social Network Analysis Plugin (SNAP) for

Mesh Networks," in Wireless Communications and Networking
Conference (WCNC), 2011.

[8] U. Brandes, P. Kenis and D. Wagner, "Communicating Centrality in

Policy Network Drawings," Transactions on Visualization and Computer
Graphics, vol. 9, no. 2, pp. 241-253, 2003.

[9] R. Yang and L. Zhuhadar, "Extensions of closeness centrality?," in

Proceedings of the 49th Annual Southeast Regional Conference,

Kennesaw, GA, 2011.

[10] K. Okamoto, W. Chen and X. Y. Li, "Ranking of closeness centrality for

large-scale social networks," in Proceedings of the 2nd International
Frontiers of Algorithmics Workshop (FAW), Changsha, China, 2008.

[11] D. Eppstein and J. Wang, "Fast approximation of centrality," in

Proceedings of the twelfth annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), Washington, D.C., United States, 2001.

[12] V. King, "Fully Dynamic Algorithms for Maintaining All-Pairs Shortest

Paths and Transitive Closure in Digraphs," in 40th Annual Symposium on
Foundations of Computer Science, 1999.

[13] G. Ramalingam and T. Reps, "On the Computational Complexity of

Incremental Algorithms," Madison, 1991.

[14] C. Demetrescu and G. F. Italiano, "Experimental Analysis of Dynamic

All Pairs Shortest Path Algorithms," ACM Transactions on Algorithms
(TALG), vol. 2, no. 4, pp. 578 - 601, 2006.

[15] S. Even and H. Gazit, "Updating distances in dynamic graphs," Methods
of Operations Research, vol. 49, pp. 371--387, 1985.

[16] GraphStream Team, "GraphStream," 2010. [Online]. Available:

http://graphstream-project.org/. [Accessed 3 February 2012].

[17] A. Barabasi and R. Albert, "Emergence of Scaling in Random Networks,"

Science, vol. 286, no. 5439, pp. 509-512, 1999.

[18] A. Renyi and P. Erdos, "On Random Graphs," Publicationes
Mathematicae, vol. 6, 1959.

[19] D. W. a. S. Strogatz, "Collective Dynamics of ‘Small-World’ Networks,"

Nature, vol. 393, 1998.

[20] SocioPattern Project, "Hypertext 2009 Dynamic Contact Network

Dataset," 2009. [Online]. Available:

http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-

network/.

[21] T. Opsahl and P. Panzarasa, "Clustering in weighted networks," Social
Networks , vol. 31, no. 2, pp. 155-163, 2009.

[22] UMass Amherst, "Dataset: Can-o-sleep," 21 May 2003. [Online].

Available: http://kdl.cs.umass.edu/proximity/index.html. [Accessed 21

April 2012].

[23] M. Kas, K. M. Carley and L. R. Carley, "Trends in science networks:

understanding structures and statistics of scientific networks," Social
Network Analysis and Mining (SNAM), vol. 2, no. 2, pp. 169-187, 2012.

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

1257

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

1258

