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Abstract. We introduce a novel centrality metric, the neighbor vector centrality. It is a measurement of
node importance with respect to the degree distribution of the node neighbors. This centrality is explored
in the context of several networks. We use attack vulnerability simulation to compared our approach with
three standard centrality approaches. While for real-world network our method outperforms the other
three metrics, for synthetic networks it shows a slightly weak properties but still a good measure overall.
There is no significant correlation of our method with network size, average degree or assortativity. In
summary, neighbor vector centrality presents a novel measurement of node importance, which has a better
performance to reduce dynamics of real-world complex networks.

1 Introduction

Complex networks can represent various complex systems,
where the main elements of the system are considered
as nodes and interaction between them are presented as
edges. In recent years, we have witnessed an intense re-
search activity on networks by the scientific community.
Many of them are excited and greatly extend our under-
standing of real-world systems. These include the synchro-
nization transition [1], epidemic spreading [2], community
structures [3], topological hierarchy [4] and transmission
of information [5], etc. Among them, the concept of cen-
trality has been discussed for more than 60 years. Many
of the algorithms originated in the field of social network
analysis [6]. These metrics are typically used to measure
how important nodes are in the topology, which is respon-
sible for critical features of real-world networks, such as
robustness against failures/attacks [7], and the absence
of a threshold for percolation [8] and even ranking of
websites [9]. The most commonly used centrality mea-
sures are: degree, betweenness, closeness and eigenvector
centrality [10].

Degree centrality measures importance as those nodes
have the highest number of edges. Betweenness centrality
measures importance from a flow perspective by exam-
ining the number of shortest paths passing through the
node of interest [11]. Eigenvector centrality calculates a
type of relative importance, i.e., important nodes must be
neighbors of other important nodes [12], whereas close-
ness centrality can be defined as the total graph distance
of a node from all the others [13]. On the other hand,
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attack tolerance of complex networks is always an inter-
esting topic scientists concern [7,14]. Intentionally remov-
ing nodes or edges, the impact of certain attack strategy
can be explored. If removals by the descending order of dif-
ferent centrality metrics are used respectively, the damage
they cause is an indicator that how well the measures work
in evaluating node importance.

In this paper, it is our objective to develop a novel
centrality measure. We use attack simulations to test the
proposed neighbor vector centrality. Based on degree cen-
trality, it is more efficient to evaluate node importance and
without the computation complexity like betweenness. By
using an iterated logarithm, we unfold a degree value into
a vector representing the number of neighbors with differ-
ent degree levels. This approach makes node importance
more distinguished. In several real-world networks, attack
strategies based on deleting nodes by the descending or-
der are used to test our method and three traditional ones.
The result shows that our method can easily display the
neighbors degree distribution of a node and measure its
importance. In most of the networks, the strategy based on
neighbor vector centrality has the best performance. In the
tests of breaking down networks, deteriorating transmis-
sion efficiency and decreasing controllability of networks,
neighbor vector centrality scores the most points.

The rest of this paper is organized as follows. In Sec-
tion 2, the definition of neighbor vector centrality is given,
and we also discuss what the definition means and how to
compare nodes by it. In Section 3, to prove the valid-
ity and generality of the method, attack simulations on
several real-world networks are presented. Based on the
test results, we compare our approach with other different
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three centrality metrics. In Section 4, the conclusion is
given.

2 Definition of neighbor vector centrality

There are three major reasons we want to devise a novel
metric, (1) to evaluate node importance by its neighbors
importance and distribution characteristic; (2) to avoid
potential computational complexity; and (3) to find a bet-
ter way to measure topological significance of nodes.

Experiment results show degree centrality is a prefer-
able option in many cases since it is easy to compute and
high efficient to evaluate node importance. However, it
lacks the consideration of neighbors importance, which
is critical in many real-life cases. For example, even if I
have more friends on Facebook than Barack Obama, it
does not mean I am more important than him. By con-
trast, betweenness and other similar metrics in the family
are relatively difficult to compute, but they appropriately
consider the global information of topology. Therefore, to
achieve our goals, we present a method to unfold a sin-
gle degree value into a vector representing the number of
neighbors with different degree levels. We devise our ap-
proach based on degree centrality to inherit its computa-
tional simplicity. With different neighbors divided into dif-
ferent classes, the distinction of neighbors is emphasized.
In general, evaluation of the difference of node neighbors
and a better measurement of node importance are our
focus.

In the following paragraphs of this section, we exploit
the iterated logarithm function (Def. 1) and unfold a de-
gree value into a vector. The definition of neighbor vector
centrality is given by Definition 2. After a description of
the novel centrality measure, the method how nodes can
be compared with others by neighbor vector centrality is
discussed in Definition 3. We also give a proof that such
a comparison makes the nodes a strict total order set.

Definition 1 (iterated logarithm). In computer science,
the iterated logarithm of n, written as log∗ n, is the number
of times the logarithm function must be interatively applied
before the result is less than or equal to 1:

log∗ n :=
{

0 if n ≤ 1;
1 + log∗(log n) if n > 1.

(1)

In many real-world complex network, such as the Internet,
degree zero and one are usually the less important nodes,
but always with a large number (due to the well-known
power-law distribution of degree). It does make sense to
present the number of nodes with degree zero and one.
Consequently, we use a base-2 iterated logarithm. Under
such condition, the value range of this function is given in
Table 1.

Definition 2 (neighbor vector centrality). For any node
vi in node set V , we have its neighbors set Ni representing
all the nodes connected to vi. And number of nodes in
Ni is ni. Assuming there is a six-dimensional vector xi

for node vi, xi = (xi0, xi1, xi2, xi3, xi4, xi5)T. Each xij in

Table 1. Value range of base-2 iterated logarithm by
Definition 1.

x lg∗(x)

(−∞, 1] 0

(1, 2] 1

(2, 4] 2

(4, 16] 3

(16, 65536] 4

(65536, 265536] 5

vector xi can be calculated by xij =
ni∑

k=1

Cj(log∗(M(vk))),

j = 0, 1, 2, 3, 4, 5, where M(vk) is a value of given metric,
which in our case is degree centrality of node vk, vk ∈ Ni.
Cj(ξ) is a function given as follows:

Cj(ξ) :=
{

0, if ξ �= j;
1, if ξ = j.

(2)

Denote Cd(vi) =
5∑

j=0

xij . Thus, xi is the neighbor vector

of node vi. Let mi = ‖xi‖2 =
√∑5

j=0(xij)2, where ‖ · ‖2

is the 2-norm of a vector. And the number of non-zero
elements of neighbor vector xi can be calculated by the
following equation:

fnz(xij) : =
{

0, if xij = 0;
1, if xij �= 0.

F (xi) =
5∑

j=0

fnz(xij). (3)

By this definition, we have another vector si = (F (xi),
mi)T, and for a node set V there is a corresponding vec-
tor set S = {s1, . . . si, . . . sn}. The importance of nodes is
decided by vector si according to Definition 3.

The basic idea of neighbor vector centrality is that
we like to unfold a single degree value into a vector,
which makes nodes more distinguishable. For each ele-
ment of the vector, a number indicates how many neigh-
bors a node has with a certain degree level. Namely, for
a node vi, xi0 in xi is the sum of 1-degree and 0-degree
neighbors, xi1 is the number of 2-degree neighbors, xi2

presents the sum of 3-degree and 4-degree neighbors, xi3

is the number of neighbors with degree more than 4 but
less than 17, xi4 contains the number of neighbors with
degree between 17 and 65536, and any neighbor of vi has
degree larger than 65 536 is counted by xi5. Therefore,
the neighbors of vi are considered as several classes with
different degree levels. Looking at a neighbor vector xi of
some node vi, immediately we know how many low-degree
nodes xi connected to (xi0 and xi1, etc.), and how many
high-degree neighbors it has (xi4 and xi5).

Additionally, this partition is chosen because we want
to see the difference of degree distribution as clear as
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possible and integer range is preferable for analysis conve-
nience. However, it can be adjusted by using another base
for the iterated logarithm function in Definition 1, such as
any real number greater than 1.

Definition 3. Given two vectors sq ∈ S and sp ∈ S,
and denote ξ = sq − sp = (ξf , ξm)T. Let
ξ∗ = {ξf |ξf �= 0}⋃{ξm|ξf = 0}. A binary relation ≺ is de-
fined as follows. If ξ∗ < 0, then sq ≺ sp, correspond-
ingly the neighbor vector centrality of vector xq is smaller
then xp. Similarly, if ξ∗ > 0, then sp ≺ sq, the neighbor
vector xq is larger then xp. When ξ∗ = 0, xq and xp are
equal, denoted as xq = xp.

Moreover, we need to prove that our approach can be used
to sort all the nodes of target network. Hence, the proof
is given as follows to ensure the strict total order of the
set S.

Theorem 1. The above definition of binary relation ≺
over the set S is a strict total order on the set S, i.e., the
binary relation ≺ satisfies:

(1) ∀x, y ∈ S, exactly one of x ≺ y, y ≺ x and x = y is
true (trichotomy);

(2) ∀x, y ∈ S, if x ≺ y, then it is not the case that y ≺ x
(asymmetry);

(3) ∀x, y, z ∈ S, if x ≺ y and y ≺ z, then x ≺ z (transi-
tivity).

The proof is given as follows.
First, for any x, y ∈ S, let ξ = x − y. It is true that

exactly one of ξ∗ < 0, ξ∗ > 0 and ξ∗ = 0 holds. Thus, from
the definition of binary relation ≺, the binary relation ≺
is trichotomous.

Secondly, if x ≺ y, then ξ∗ < 0. Consequently, it is not
the case that ξ∗ > 0 and hence y ≺ x is not true.

Finally, for any x, y, z ∈ S, let α = x − y, β = y − z,
and ξ = α+β. Then, x−z = (x−y)+(y−z) = α+β = ξ.
By the definition of binary relation ≺, if x ≺ y, then either
αf < 0 or αf = 0, αm < 0. Similarly, y ≺ z implies that
either βf < 0 or βf = 0, βm < 0. One can deduce that
either ξf = αf + βf < 0 or ξf = 0, ξm = αm + βm < 0.
Thus, we have ξ∗ = {ξf |ξf �= 0}⋃{ξm|ξf = 0} < 0 and
hence x ≺ z. Therefore, the binary relation ≺ is transitive.

Based on this proof, we know our definition of neigh-
bor vector and binary relation ≺ make the node set a
strict total order. Thus, it can be sorted to weigh node
importance.

Another issue need to be addressed is an ideal cen-
trality metric can be used to distinguish the difference
between every pair of nodes while evaluating node impor-
tance. It would be the best if every node has a different
value of the metric. Based on this idea, we define repeat
rate and discrimination rate as follows.

Definition 4. For a centrality measurement, if the met-
ric value for a node is identical with any other node, it is a
repeated metric value. Theoretically, the two nodes cannot
be distinguished from each other. In a n-node network, re-
peat rate of a given metric can be defined as RR = r

n ,
where r is the number of repeated metric values. Likewise,
discrimination rate of the metric is DR = n−r

n .

Table 2. Value range of discrimination rate of four centrality
measurements in nine complex networks. The DR of proposed
method is not the highest, but it is close to other metrics and
much better than degree centrality.

Centrality type Max(DR) Min(DR) Average(DR)

Our method 52.94% 0.15% 20.36%

Degree 54.35% 0.00% 9.66%

Closeness 60.00% 0.02% 28.09%

Betweenness 99.99% 1.30% 46.22%

Eigenvector 100.00% 5.7% 50.96%

If the discrimination rate (DR) of a centrality measure-
ment is higher, nodes in the network are more distinguish-
able. In Table 2, it shows that DR of five centrality mea-
sures in the 9 networks used in this paper. We can see
average DR of degree centrality is the smallest (9.66%),
and proposed neighbor vector increases DR to 20.36%,
which is very close to other standard metrics.

3 Attack vulnerability of complex networks

To measure the effectiveness of neighbor vector central-
ity, simulations of attack vulnerability are presented in
this section. Degree centrality (DC), betweenness central-
ity (BC), eigenvector centrality (EC) and neighbor vec-
tor centrality (V C) are compared in the simulation. The
experiment is designed as follows. (1) We compute all cen-
trality measurements of the initial networks; (2) then se-
lect the highest top-n nodes in the network by a metric;
(3) we intentionally remove them and their edges; (4) and
evaluate the impact of such an attack on the network.
(5) Gradually, we increase n from 0.1% to 20% and re-
peat the process.

To prove the validity and generality of the proposed
method, this section includes six real-life directed net-
works and three directed synthetic networks. The syn-
thetic networks includes a generated Barabási-Albert
(BA) model [15], a small-world (SW) model [16] and an
Erdös-Rényi (ER) [17] random graph. We use the neural
network of Elegans [16] to test biological networks. For
social networks, we use Zachary’s karate club [18], coau-
thors in network science [19], network of characters in the
novel Les Miserables [20] and a consulting network [21]. A
data set representing Internet IPv6 topology is also added
to test large-scale physical network. The details of those
networks are in Table 3.

For BA model, an edge is established by selecting a
source node and then choosing a preferred high-degree
node (preferential attachment). In this paper, the direc-
tion of the edge is set as from the source to the preferential
node. In the ER and SW models, the direction is decided
in a similar fashion, i.e., the edge points to the subsequent
selected node. On the other hand, the edge direction in the
coauthor network is decided by the author order in papers.
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Table 3. Basic information of networks used in this paper. nD
is controllability measurement (explained in Sect. 3.3), 〈k〉 is
average degree and r is assortativity.

Network Nodes Edges nD 〈k〉 r

Coauthors 1589 2742 0.402 1.73 0.46

Internet 12746 29119 0.41 2.28 –0.029

Consulting 46 879 0.065 19.10 –0.749

Les Miserables 60 237 0.25 3.95 –0.1258

C. Elegans 306 2345 0.268 7.66 –0.1520

Club 34 78 0.588 2.29 –0.4756

BA 5000 4999 0.664 0.99 –0.0691

SW 2000 8000 0.0165 4 –0.0362

ER 1000 2000 0.409 2 –0.0132
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Fig. 1. Largest connected component during attack simulation
on Internet. Red square line indicates the strategy based on
neighbor vector.

And the routing order determines the direction of edge in
the Internet.

3.1 Network connectivity

During the attack simulation, networks are damaged and
broken into components. The number of components in-
dicates the degree of such a break-down. The largest con-
nected component is also considered, since it presents the
connectivity of the left-over networks. Some of the results
are shown in Figures 1 and 2. As we can see, neighbor vec-
tor centrality is the best choice in breaking the Internet
topology into components, but it is very similar to degree
centrality when removed nodes is less than 12%.

Since we only care about which centrality measure-
ment has the best performance during the attack, to quan-
tify the result, one point is assigned to the centrality that
performs the best in an attack simulation step. If two cen-
trality measures are tied for the first place, they both
get 1 point. Thus, DC gets 20 points in Figure 1 while
V C gains 8 points. On the other hand, V C gets 23 points
in Figure 2 as DC has 5 points. We will discuss the to-
tal scores in the final section. In this section, only scores

0

500

1000

1500

2000

2500

3000

3500

4000

0.
0%

0.
1%

0.
5%

1.
0%

1.
5%

2.
0%

2.
5%

3.
0%

3.
5%

4.
0%

4.
5%

5.
0%

6.
0%

7.
0%

8.
0%

9.
0%

10
.0
%

11
.0
%

12
.0
%

13
.0
%

14
.0
%

15
.0
%

16
.0
%

17
.0
%

18
.0
%

19
.0
%

20
.0
%

N
um

be
r o

f C
om

po
nn

et
s 

Percentage of Removed Nodes 

DC

VC

BC

EC

Fig. 2. Total component number during attack simulation on
Internet. In most of the time, the proposed V C is better than
the other three metrics, since it creates more components.
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Fig. 3. Points centrality metrics scored from cutting largest
connected components (LCC). V C is the best strategy in the
attack on first four networks.
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Fig. 4. Points centrality metrics scored from increasing compo-
nents. V C outperforms the other methods except in BA model.

on the sub-item test are presented. Based on this idea,
points scored by the different centrality metrics in de-
stroying largest connected components and increasing the
number of components are shown in Figures 3 and 4, re-
spectively. For the Internet, the result is consistent with
Figures 1 and 2.

According to our observation, neighbor vector central-
ity is not the best choice to reduce the connectivity of BA
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Fig. 5. Average path length l of Internet during the attack sim-
ulation. Since EC fails to break down Internet, V C increases l
the largest for most of the time.
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Fig. 6. Points centrality measures scored from reducing trans-
mission efficiency.

model network. DC or EC is a better approach. Mean-
while, although DC reduces the LCC of Internet power-
fully, V C is still the first option due to a better perfor-
mance to break up the whole Internet topology. In other
newtworks, V C is the second to none in reducing the net-
work connectivity.

3.2 Transmission efficiency

Unusually, average path length l [22] indicates transmis-
sion efficiency. The smaller l is, the best transmission effi-
ciency is. Assuming that a node fails if it is disconnected
from the largest connected component [7], we like to ex-
plore transmission efficiency in the functional part of net-
works during attack. So we compare l of LCC from dif-
ferent results based on different metrics when they are
comparable (i.e. LCCs have similar size). For example, in
Figure 5, DC and V C are comparable since LCCs of them
have similar size (shown in Fig. 1). And the LCCs of EC
and BC are much larger. On this basis, DC gets 8 points
and V C gets 20 points in reducing the transmission effi-
ciency of Internet. We have the score list in Figure 6.

Apparently, we need a further explanation for Figure 6.
As we previously stated, it is rational to compare central-
ity methods which break down network to the same level.
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Fig. 7. Points centrality measures scored from nD.

For the consulting network and the C. Elegans network,
the attack method based on V C outperforms others in re-
ducing the network connectivity. There is no comparable
metrics in the two networks so that all centrality measures
score 0 point.

In summary, the proposed V C is quite a great method
in reduce the transmission efficiency of networks. In the
BA network, it has similar performance like DC. DC is
better in Les Miserables, and DC and V C tie up in the
Club network.

3.3 Assortativity and controllability

In a recent paper [23], Liu et al. propose a method to
measure the controllability of directed complex networks,
namely nD. It is a percentage indicating how many nodes
are needed to fully control the whole network. The greater
nD is, the more nodes are needed. Table 3 is consistent
with Liu’s results. The Consulting network has the small-
est nD and BA model has the largest one. It means the
Consulting network only need few input signals (actually
three) to fully control the network status, whereas BA
model needs independent signals for 62 percents of its
nodes to gain the same controllability. During our attack
simulation, every network becomes more uncontrollable.
The scores of four centrality metrics in disturbing the con-
trollability of the sample networks are shown in Figure 7.
The V C preforms well in the simulation. Even in some
networks V C fails the first place, such as BA and C. Ele-
gans, we have to mention that the results are quite close
(shown in Fig. 8).

On the other hand, Newman devised assortativity [24]
to measure the connection tendency of nodes in networks.
As Figures 9 and 10 show, there are two types of re-
sponds to the attack. Some networks increases assorta-
tivity during the attack, such as the Coauthors network,
Internet, Consulting network, Les Miserables, the Club
network and C. Elegans. Others decrease their assortativ-
ity like BA model. We speculate that the reason networks
respond in this way is related to their original assortativ-
ity value and topological characteristics. Except in the BA
model, our approach has a strong tendency to boost the
assortativity like in Figure 9. The phenomenon is caused
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Fig. 8. nD of C. Elegans Network during the attack simula-
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Fig. 9. Assortativity of Internet during the attack simulation.
There is a clear increase trend.

by Definition 3. It requires high-degree node must have a
neighbors degree range as wide as possible. Without those
nodes, assortativity of network usually increases. However,
there is no significant correlation of our method with net-
work size, average degree or assortativity.

Moreover, since assortativity is a characteristic of net-
work, it cannot be evaluated by large or small. We will
not calculate the scores the centrality metrics get from it.
In Table 3, we can see that C. Elegans network and BA
model have nearly the same r indicating their assortativity
values are the same. But V C shows totally different per-
formance in the two networks. It infers that our centrality
method does not depend on assortativity. Furthermore,
the final scores for the four centrality measurements in
this network attack game are in Figure 11. It is clear that
V C as an enhanced centrality measurement based on de-
gree has the best performance to reduce the dynamics of
most complex networks.

When we look back on the effectiveness of V C, one
may ask why it can perform better than the others in most
of the cases. The key is the consideration of the neighbors
difference. We compare nodes by their non-zero elements
of V C first, then consider the norm of V C. It guarantees
that the node we select must have a wide connection range,
some small degree nodes, some medium degree nodes and
some bigger ones. When a node with well-connected neigh-
bors is removed as EC usually does, its neighbors are
hardly affected due to their great connectivity in the
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Fig. 10. Assortativity of BA during the attack simulation.
There is a clear decrease trend.
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Fig. 11. Final scores for four centrality metrics. Generally, V C
has the highest scores and the best performance.

topology. It is the reason EC fails behind in most of
the tests. By contrast, when a high-degree node with low-
degree neighbors is removed (DC, V C), those low-degree
neighbors may have no other optional path to connect to
the main topology. After the high-degree node is removed,
its low-degree neighbors will be isolated and the whole
topology breaks down. That is why DC and V C usually
are very competitive. As V C tends to choose nodes with
a dispersive neighbors degree distribution, it is efficient to
cut connection between high-degree nodes and low-degree
nodes in networks. It is the reason V C outraces DC. As
to BC, there is no guarantee that the node BC selected is
the only way its leaf nodes communicate with other nodes.
The nodes are on the shortest paths indeed, but most of
the time substitute paths can be found.

4 Conclusion

In this paper, our contribution is the demonstration of
a novel centrality metric called neighbor vector central-
ity. It has an impressive performance to break down real-
world complex networks. Comparing with other three tra-
ditional centrality measures, it is easy to compute and
highly efficient in measuring node importance. Except
the BA model network, neighbor vector centrality out-
performs others in the simulation. As no obvious depen-
dency on assortativity is observed, our approach does show
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merits. Moreover, the method that unfold a single value
into a vector is open-end idea. It is also can be used in
other metric enhancement, such as betweenness central-
ity, etc.
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