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ABSTRACT:  There is a need for cognitively bounded implementations of transactive memory for agents.  To do 

this, we use schema theory and tiered social cognition to implement Mead’s Generalized Other (1925). We then 

compared our new implementation, Construct-ML, with a prior implementation of the same simulation, Construct-

O. We were not able to replicate all of the patterns suggested by Construct-O’s results.  However, the pattern 

validity of Construct-ML improves as agents have more cognitive resources, which is suggestive and interesting. 

1. Introduction 

Social cognition is the ability to encode and retrieve 

information about other social entities.  Humans, our 

social agents of interest, frequently find it useful to retain 

knowledge of other actors (social knowledge) as well as 

knowledge about the world (general knowledge). 

Following in the traditions of the Carnegie School (Cyert 

& March, 1963; March & Simon, 1958; Simon, 1957), 

these social agents may not be able to access what they 

know all the time, they may not know what they know, 

and what they know may be wrong.  Similarly, their 

understanding of other actors is error-prone and 

perception-based.  Regardless, humans use what they 

think they know about other actors to inform their 

behavior.  If for example, someone needs medical 

advice, do they consult a doctor or a carpenter?  They 

consult the doctor, naturally, because they have made an 

inference that doctors tend to have, as a group, 

knowledge in the medical field.  But the same actor 

would not always seek out the doctor, or if they did they 

would be ill-served as their house fell down around their 

ears for want of competent advice!  We intend to take 

advantage of not only this important capability of 

humans, but also their inferential mechanisms, in this 

work. 

Construct (Carley, 1990, 1991; Carley, Martin, & 

Hirshman, 2009) is a network-centric agent-based 

simulation of knowledge diffusion within groups.  

Agents communicate information to other agents.  

Agents may forget knowledge they possess.  How 

information diffuses within a group depends on multiple 

factors: the preferences of individual agents, the initial 

knowledge of each agent, and the social ties between 

those agents.   

Agents in Construct, like humans, both have knowledge 

about the world, represented as a knowledge bit array, 

and knowledge about what other agents know, called 

Transactive Memory (Wegner, 1995), represented as a 

per-ego matrix of alters by knowledge.  An alter is a 

potential interaction partner of each individual.  In a fully 

connected system of five actors, there are five (n) 

individuals and twenty-five (n * n) alters; Construct 

agents may interact with themselves.  In earlier iterations 

of Construct, all agents had representations of all other 

possible communication partners. 

Although in this work we use a very small population to 

allow for direct model comparison to prior work. 

Construct has successfully supported hundreds of agents 

existing in a simulation environment at a single time.  

However, even though computer hardware has gotten 



faster and ever more capable, the growth of 

computational expense limits earlier versions of 

Construct from being useful when considering 

simulations of large populations. 

Construct’s computational expense stems from two 

factors: the size of the knowledge array each agent may 

possess, and the size of each agent’s transactive memory.  

Of these two, transactive memory is the dominant term 

for computational expense.  Further, as the size of the 

agent population increases, the cognitive power ascribed 

to each agent becomes less plausible.  Providing hard 

limits on the alter list of each agent is tenable, but tends 

to limit the applicability of the modeling technology to 

situations where spontaneous link formation is unlikely. 

In this paper, we present a method for bounding the cost 

of transactive memory within Construct by implementing 

Mead’s Generalized Other (1925).  This change 

improves agent fidelity while capping the costs of 

transactive memory, allowing many more agents to exist 

simultaneously within a Construct environment.  We 

suggest that other agent technologies which could take 

advantage of transactive memory may find our 

implementation useful and instructive to their own work.  

We also believe that this change may allow Construct to 

model many more phenomena than is currently feasible, 

but we reserve detailed discussion of those possibilities 

for other work (Joseph, Morgan, Martin, & Carley, 

2014). For purposes of clarity to comparisons with older 

forms of Construct, we refer to the bounded transactive 

memory version of Construct as Construct-ML. 

2. Prior Work 

In this section, we describe the related work that has 

contributed to our approach towards conserving 

computational resources while also improving the model 

fidelity of these agents.  We conclude with a summary of 

the extension’s feature and their implications for our 

modeled individuals. 

2.1 Transactive Memory 

Individuals often find it valuable to retain an idea of the 

state of other individuals.  We use Wegner’s (1995) 

description of a networked file system as our narrative.  

In a networked file system, individual units are assumed 

to have finite storage capacity.  Consequently, 

information is spread across many of these units, as 

capacity and demands allow.  Units in such a system 

need some method of accessing information not stored 

locally in an efficient manner.  One solution is that each 

unit may have information on what other units are likely 

to be able to access. 

It is important, of course, that the depth of knowledge 

about other agents, which should improve the access of 

off-board storage, be balanced with the size constraints 

of that information.  A unit must hold some non-trivial 

amount of local information as well as a representation 

of what other units may know. 

We can think of Transactive Memory’s representation as 

a three element tuple.  Each agent i has for alter j some 

understanding of the amount of knowledge that alter j 

has about information set s.  Previous work has varied 

representations of this ijs tuple.  Palazzolo and his 

collaborators (2006), represented transactive memory as 

a single continuous value representing knowledge of set 

s (which they call topics) for each agent for each alter.  

In an alternative approach, Carley and Ren (2001) 

represented each sub-element of a topic t in each agent’s 

representation of their alters.  Thus, an agent’s 

perception of an alter’s mastery of a particular topic t is a 

proportion of the elements the agent believes the alter 

possesses which makes up t. 

Each of these representations, considered naively, would 

prove onerous for a cognitively limited human agent.  As 

the size of the population increases, the amount of 

information required for maintaining transactive memory 

rapidly dwarfs the amount of direct information present 

in each networked file system.  The principal 

contribution of this work is a flexible mechanism that 

allows agents to make educated assessments of alters 

without needing to store representations of all alters.  

Our mechanism takes advantage of tiered social 

cognition, discussed in the next section. 

2.2 Tiered Social Cognition 

In our discussion of Transactive Memory, we identified 

that information processing units in an information-rich 

world need to either keep explicit state about the state of 

alters or must have the ability to generate useful 

predictions about the state of those alters.  In this section, 

we discuss one way humans, our information processors 

of interest, generate useful predictions about the state of 

alters without needing to keep extensive state on those 



alters.  They generate these predictions through group 

affiliation. 

Our inspiration for this mechanism rests on work in 

ethics and social control by Mead (1925).  Mead posited 

that people can make inferential statements on the nature 

of ethical behavior within their local context of the form, 

“people of type X tend to do thing Y”.  A person can 

evaluate their own behavior by determining that they are 

a person of type X and therefore should consider doing 

Y.  Mead called this aggregate of statements the 

‘generalized other’, and allowed that many of these 

inferential statements could exist concurrently within a 

person’s mind. 

These inferential statements may refer to concepts not 

only of what alters may be able to do, but also to what 

these alters may know or believe.  As Mead (1925, pg. 

275) states, “Social control depends, then, upon the 

degree to which the individuals in society are able to 

assume the attitudes of the others who are involved with 

them in common endeavor.”  Just as some information 

processing units may differ on their chosen 

representations for alters, humans may have more or less 

nuanced constructs of other humans, and these constructs 

may include representations of actions, beliefs, and 

knowledge. 

We focus on the last of these objects, and thus can 

narrow Mead’s statement, to say that “people of type X 

tend to have knowledge Y”.  But how do we define 

types?  Mead suggested that there exists both a large 

common group, called in his work “society”, but also, 

independently and concurrently, inferential statements of 

all groups of which the individual is aware.  Thus, we 

can again transform the structure of the inferential 

statement to this form “People who are members of 

Group X tend to have knowledge Y”. 

Mead’s argument for social perception is supported by 

concepts in schema theory (Rumelhart, 1978, 1980).  A 

schema in schema theory is a data structure for 

representing the generic concepts stored in memory.  In 

schema theory, each individual has a hierarchy of 

schema that may be applicable to any of various 

environmental conditions the individual encounters.   

The concept can be clarified through examining a 

specific scenario: confronted with someone examining 

our neighbor’s wooden porch, we may ask ourselves, 

“Who is this person?”  They may be a professional 

carpenter repairing the porch, a city inspector checking 

code, a burglar investigating a prospective target, or 

various other possibilities.  We examine the person’s 

actions, their apparent attitude, their appearance, their 

clothes, and use that information, along with relevant 

historical knowledge, to make an educated guess to 

answer our own question.  In the process of making that 

guess, we allow whatever knowledge we have that may 

be applicable to apply.  On a social level, we may apply 

any of three levels of schema to help us answer the 

question.  

- Personal:  We know this specific person. 

- Group:  We don’t know this person, but we can infer 

that they are members of one or more relevant 

groups (to us). 

- Global:  We know this is a person. 

We will use that answer to inform future action.  We 

may confront the individual, we may mention it to our 

neighbor discreetly, or we may do nothing.  Schema that 

help us understand who other people are and what they 

are likely to know are called “Social Schema” (Kuethe, 

1962).  These produced social schema are culturally 

dependent (Little, 1968), but we do not expect that the 

generative mechanism for these social schema to be 

culturally dependent. 

In schema theory, the availability of schema is 

determined by environmental cues.  Schemas are 

available if they are relevant.  Irrelevant schema do not 

occupy the individual’s time.  Schema-like 

representations in cognitive agent systems (Anderson, 

1996) have found that it is possible for agents to have 

many schema (implemented as production rules) 

simultaneously and exhibit human-like cognition as they 

learn to perform tasks by activating the appropriate rule-

sets for the task at hand.  Work by Duong and Reilly 

(1995) used a hierarchy of neural-networks to implement 

schema theory and model Mead’s Symbolic 

Interactionism (Mead, 1922), producing a model of racial 

bias in hiring.   

Anderson and his collaborators (2004) suggest, and give 

empirical evidence, that chunks of our memory are 

“activated” when they are used, and that this activation 

decays over time with non-use.  We can thus associate 

schemas agents have with an “activation score”, allowing 

us to determine their likelihood of use by the agent.  



These activation scores, according to Anderson, 

determine whether or not we are able to recall a chunk or 

not. If the agent cannot recall the chunk, they must do 

without it.   

Our work takes advantage of the computational 

tractability suggested by Anderson’s approach, but 

changes the granularity of the activated chunk.  Rather 

than each chunk representing a single schema-object, of 

which there be many for a single alter, each chunk 

represents an alter or a membership group to which an 

alter can belong. 

Thus, if we consider each interaction with an alter to be 

an “activation”, alters which are frequently contacted 

will have high activation scores, as will groups to which 

those members belong or about which we receive 

information.  Group schemas will tend to be sparser but 

more durable than individual schema.   

3. Implementing Social Cognition via 

Bounded Transactive Memory 

In the previous sections, we have discussed transactive 

memory, schema theory and memory activation and how 

these elements all play a part in an agent’s social 

cognition.  Through tiered social cognition, we can 

implement a computationally efficient and cognitively 

plausible form of transactive memory.  Agents who have 

this capability must be able to be: 

- Form expectations about groups, including the 

Generalized Other 

- Revise these expectations 

- Generalize about others based on group membership 

- Keep track of specific alters of interest 

- Revise their expectations of specific alters 

In this section, we will discuss our implementation 

within Construct (Carley, 1991), a validated simulation 

of information diffusion.  We modify the prior 

transactive memory implementation from Carley and 

Ren (2001) in three important ways: 

- We add transactive memory elements for groups, of 

similar form to those for alters. 

- Transactive memory elements have an activation 

score, which changes over time as agents interact 

- Transactive memory elements may be lost through 

disuse 

- We track the origination time of schemas, which 

allows for differential treatment of groups and 

individuals. 

As in previous work (Carley & Ren, 2001), we represent 

a “schema” as a transactive memory vector – a series of 

K bits, where K represents the number of knowledge 

pieces, or “facts”, in the system.  Each bit represents the 

ego’s perception of the knowledge of the associated alter, 

group or generalized other.  In the previous work, there 

was one transactive memory vector for each alter an 

agent could potentially interact with.  In this work, a 

transactive memory vector may exist for each alter, but 

also may exist for each group.   

These schemas are, as mentioned, arranged 

hierarchically. An agent determines what an alter knows 

by starting at the lowest level of the schema hierarchy – 

the personal level.  If that schema is activated above the 

threshold, then the agent uses this schema to understand 

the knowledge of the alter.  If not, the agent will 

“construct” the knowledge of the alter based on the 

groups he is aware the alter is in.  If the alter belongs to 

no groups, then the agent uses his knowledge of what he 

expects “everyone” to know, which we refer to as his 

transactive memory of the “generalized other”.  

As suggested, our new model still allows agents to 

determine a value their belief that each alter holds any 

knowledge set, and therefore trivially captures all five of 

the behaviors listed that transactive memory systems 

introduce into simulations.  However, our model adds 

significant functionality in each of these categories, as 

described below:  

- Forgetting- Activation equations provide a way for 

us to directly promote the concept of forgetting – at 

some point, we actually forget the knowledge of 

alters and must later reconstruct it   

- Means of Determining Whom to Interact with-the 

new implementation now allows us to compute non-

zero likelihoods of interaction for all agents, as 

opposed to only those we have specific perceptions 

of, by considering them as part of a group or the 

generalized other 

- Specialization – Specialization can now extend to 

groups – a member of the “carpenter” group may 

have the specialized skills of a carpenter, and only 

be remembered as such 

- Hardening of Opinions- In a naïve implementation 

of social cognition, the hardening of opinion was 

based solely on the fact that agents may not receive 



a certain bit when interacting for a long time.  In 

contrast, our implementation allows for a much 

more robust and cognitively plausible notion of the 

hardening of opinions – if I label you as a member 

of group A, it will be difficult for my mind to 

change that you do not hold all of the attributes of 

group A – in this instantiation of the model, until 

you become one of my strong ties.   

- Bounded rationality- Agents now have an even 

more limited perception of the knowledge of others, 

and hence bounded rationality is only increased. 

 

As mentioned, we implement our new model in place of 

a previous naïve implementation of agent social 

cognition in Construct, an empirically validated social 

simulation tool.  This allows us to focus solely on our 

implementation, and avoids a lengthy discussion on the 

full details of the tool or the model used.  For full details 

on the tool itself, we refer the reader to a useful technical 

report (Lanham, Joseph, Morgan, & Carley, 2014). 

4. Docking with Construct 

In this work, we focus on the question of whether 

Construct-ML is able to replicate results of prior versions 

of Construct.  To do this, we are using a docking analysis 

(Axtell, Axelrod, Epstein, & Cohen, 1996) to compare 

Construct-ML with prior versions of Construct.   We are 

choosing to replicate experiments of a previous work that 

focused on group behavior, documented in Carley and 

Hill (2001), and referred to then as Construct-O (O is for 

organizations).  The capabilities Construct-O added were 

later folded back into Construct.  When making 

comparisons, we will refer to the Carley and Hill (2001) 

iteration as Construct-O, and continue to refer to our 

extension as Construct-ML. 

4.1 Virtual Experiment Methodology 

Carley and Hill (2001) introduced to Construct the idea 

of a second driver of human interaction, the desire for 

expertise.  Earlier iterations of Construct focused on the 

homophily preference – where agents preferred to 

interact with people like themselves.  Although the 

homophily drive is more powerful in many social 

situations, the addition of an expertise preference, a 

desire to interact with agents with rare knowledge, 

broadens the applicability of the simulation to include 

ones where work requires new knowledge to be gained 

from interaction. 

They also wanted to examine the effect of group size on 

group performance, so their simulations always had two 

groups.  The two groups may be equal or asymmetric 

sizes. 

In short, the Virtual Experiment could be summarized as 

so: 

Table 1.  The Virtual Experiment Design 

Parameter Values # of 

Values 

Population Size 

(PopSize) 
10, 20, 30 3 

Expertise Drive 

Weight* 
0.0, 0.25, 0.5, 0.75, 1.0 5 

Group Size Undifferentiated, 

Differentiated 
2 

Individual 

Memory 

Threshold** 

0, -1, -2 3 

   

Constants 

Knowledge Size 2 x PopSize 1 

Knowledge 

Assignment 
Random 

1 

Groups 2 1 

Group 

Membership 
One group 

1 

   

Total Combinations Original Experiment 30 

Total Combinations This Experiment 90 

  
*In this experiment, Expertise and Homophily preferences sum to 1. 

** This parameter was added to allow variation in cognitive resources 
available to agents. 

 

Population size (PopSize) is the number of actors in the 

simulation.  Expertise Drive Weight indicates the relative 

weighting of homphily and the expertise drive in agents.  

Group Size is whether the groups are of equal or unequal 

sizes.  In the Carley and Hill (2001) experiments, the 

amount of knowledge was always scaled to the 

population size; there were always two groups; each 

agent was a member of only one group; and knowledge 

was randomly assigned. 

We have taken this basic experimental structure and also 

manipulated one parameter related to our new transactive 

memory implementation, individual memory threshold, 

how long individuals and groups remain in memory.  

The range of values provided (0, -1, and -2) suggest a 

wide range of cognitive resources available to agents. 



In this experiment, and sympathetic to what was 

originally done in Carley and Hill (2001), we paid 

attention to the following outcome variables over the 

course of the simulation: 

- Knowledge Diffusion - Of all available information, 

how much has been distributed to all agents.  

Mathematically, the sum of all binarized ties in the 

Agent x Knowledge matrix divided by the total cells 

in this matrix. 

- Task Performance - Each group performs a binary 

classification task 50 times each turn based on a 

random sampling of 50 knowledge bits (note that 

bits may, and often will be, represented multiple 

times in the classification task).  Each member votes 

and majority rules.  Group accuracy is reported and 

averaged for overall performance. 

- Task Consensus - Based on the same binary 

classification task, the number of members that 

agree with the group’s decision for each task is 

recorded and averaged. 

- Triad Count - Given node A,B, and C, a triad exists 

if the probability of interaction between A & B, B & 

C, and A & C, in either direction, is above the 

average probability of interaction calculated across 

all actors. 

These values are calculated at each time-point.   Carley 

and Hill (2001) focused on the length of time required 

for each outcome metric to reach 90% of the achieved 

maximum, as these values are much less sensitive to 

random noise than the time to reach Maximum. 

Carley and Hill (2001)’s results suggested that in 

Construct-O: 

- Small groups reach benchmarks faster 

- That time to reach 90% of maximum tends to follow 

this pattern for outcomes, 1. Diffusion, 2. 

Performance, 3. Consensus, and 4. Triad 

development 

- That increasing the weight of expertise in the agent’s 

drives tends to reduce these times, except when 

expertise weighting is 100% (which vastly increases 

these times) 

We will use these findings to inform a pattern-level 

analysis of Construct-ML, described in the next section. 

4.2 Docking Results 

In these results, we are investigating the relational, or 

pattern, validity of Construct-ML to Construct-O.  Thus, 

although we report the actual metrics, the material at 

interest is the pattern match for each outcome based on 

Construct-O’s findings. 

We have three findings from Construct-O we wanted to 

investigate.  We first explore the issue of group size, 

with our time to reach 90% for each of our four outcome 

variables.  Table 2 includes pattern match values on 

group size and outcome patterns. 

Table 2.  Population and Outcome Metrics 

Threshold = 0 

Pop. Size 10 20 30 

Group Size 

Pattern Match 

Diffusion 94 153 210 3/3 

Performance 40 31 27 0/3 

Consensus 20 72 101 3/3 

Triad 122 113 162 2/3 

Outcome 

Pattern 

Match 

3/6 3/6 3/6 17/30 

Threshold = -1 

Pop. Size 10 20 30 

Group Size 

Pattern Match 

Diffusion 80 160 236 3/3 

Performance 34 32 28 0/3 

Consensus 19 80 107 3/3 

Triad 269 137 162 1/3 

Outcome 

Pattern 

Match 

3/6 3/6 3/6 16/30 

Threshold = -2 

Pop. Size 10 20 30 

Group Size 

Pattern Match 

Diffusion 76 170 256 3/3 

Performance 33 39 32 1/3 

Consensus 19 84 126 3/3 

Triad 273 286 326 3/3 

Outcome 

Pattern 

Match 

3/6 4/6 4/6 21/30 

 

We represent this table graphically in Figure 1, next 

page. 



 

Figure 1.  Average Turns to reach 90% of Maximum for 

each Outcome Metric.  Lines colored by Threshold, 

Group Size along the X-Axis.  

Note that Construct-ML agents have more cognitive 

bounds than Construct-O agents.  Pattern validity to 

Construct-O, in general, improves as the agents’ social 

space and cognitive resources increases. 

Our simulation with the settings as given here matches 

Construct-O’s outcome pattern in relationship to size for 

the outcomes of Diffusion and Consensus Formation, but 

not for Performance and Triadic closure.   

For performance, this may be because of the implicit 

parameters built into the task performance evaluation (50 

tasks, with a task of size 50) do not well match the 

original settings, which are not given in the original 

work.  We will investigate the impact of task size on the 

performance outcome in future work. 

The triad outcome is more interesting in that it does not 

appear to be obviously arbitrary in relation to settings 

given.  We are still investigating the implications behind 

this triad stability pattern. 

Because knowledge informs the stereotypes developed 

for each group, it’s possible the random nature of 

knowledge assignment affects these simulations in ways 

that the prior implementation did not.  If pattern validity 

improves with group-based knowledge assignment, then 

that will suggest that the model has, in one sense, 

improved, as random knowledge assignment is not very 

realistic! 

The final outcome we wanted to compare against 

Construct-O was the impact of interaction drive. 

Table 3.  Expertise and Outcome Variables, averaged 

across threshold settings 

Expertise 0 0.25 0.5 0.75 1 

Diffusion 170 165 160 164 123 

Performance 37 36 34 37 18 

Consensus 77 75 75 79 30 

Triad 231 224 199 210 153 

 

Again, we do not see full pattern validity to Construct-O.  

Although we find in Construct-ML, as we did in 

Construct-O, that more expertise drive weight tends to 

decrease times to reach stability, we do not find, as 

Construct-O did, that agents who are only concerned 

with expertise perform less effectively, instead there is 

often a large drop in the amount of time required to get 

to the 90% benchmark.  This may be due to an 

interaction of drive-weight and the transactive memory 

of groups that was not previously modeled. 

Although these results suggest that Construct-ML will 

not predict similar group outcomes as Construct-O – it 

does not say that these new outcomes may not be, in 

practice, more realistic.  Comparison to human small-

group data is clearly indicated. 

5. Conclusions and Future Work 

In this paper we have discussed the need for a 

cognitively bounded implementation of transactive 

memory for agents.  We have described the theory 

behind our approach, and have discussed the 

requirements of such a system.  We then compared the 

findings of our model with an earlier iteration of 

Construct-O, and we were not able to replicate all of the 

patterns suggested by Construct-O’s results.  However, 

the pattern validity of Construct-ML improves as agents 

have more cognitive resources, which is suggestive and 

interesting. 

Further work will involve systematic exploration of the 

robustness of these findings using other, more realistic, 

knowledge assignment procedures, and also changing the 

size of the binary classification task vector. 



We are happy to discuss implementation details of the 

transactive memory system described in this work, but 

have refrained for reasons of space.  
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