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Given social networks over time, how can we measure network activities across different timesteps with
a limited number of metrics? We propose two classes of dynamic metrics for assessing temporal evolution
patterns of agents in terms of persistency and emergence. For each class of dynamic metrics, we implement
it using three different temporal aggregation models ranging from the most commonly used Average Aggre-
gation Model to more the complex models such as the Exponential Aggregation Model. We argue that the
problem of measuring temporal patterns can be formulated using Recency and Primacy effect, which is a
concept used to characterize human cognitive processes. Experimental results show that the way metrics
model Recency—Primacy effect is closely related to their abilities to measure temporal patterns. Further-
more, our results indicate that future network agent activities can be predicted based on history information
using dynamic metrics. By conducting multiple experiments, we are also able to find an optimal length of
history information that is most relevant to future activities. This optimal length is highly consistent within
a dataset and can be used as an intrinsic metric to evaluate a dynamic social network.
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1. INTRODUCTION

A social network can be modeled mathematically by a graph G = {V, E} which con-
sists of a set of agents V and a set of edges E connecting them. A dynamic social
network consists of a series of observations of social networks at different timesteps
{G1, Go, ..., G,}. A dynamic social network contains not only a set of relationships
between agents, but also information on how these relationships change over time.
Understanding how temporal factors affect the evolutions of network structures is a
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persistent research topic in social network analysis. Recently, there have been many
works focusing on temporal analysis such as link prediction [Dunlavy et al. 2011],
graph evolution [Leskovec et al. 2007; Leskovec et al. 2008], and community evolution
[Lin et al. 2009].

One important issue in the study of dynamic social networks is how to measure net-
work activity patterns across different timesteps. For example, we might be interested
in the message-sending patterns overtime of a particular agent in the social network.
Such analysis can be useful for a number of reasons. (1) Understanding the temporal
patterns of agents, a critical step in abnormality detection. In an online social net-
work, a sharp decrease in network activities indicates potential abnormalities such
as account intrusion or difficulties accessing service. On the other hand, a sudden in-
crease might indicate, for example, the introduction of a bot-spammer. (2) Temporal
activity analysis is a keystone to the problem of network evolution patterns. Future
network activities can be predicted based on temporal patterns learned from the exist-
ing networks. (3) Repeated temporal patterns suggest certain temporal invariants in
the dynamic social network. Those temporal factors are critical to the understanding
of the periodic nature of many dynamic social networks.

In this article, we propose two types of dynamic metrics to assess temporal patterns
in dynamic social networks — Persistence and Emergence. Persistence, which aggre-
gates agents’ activities over time, is a class of metrics to evaluate the extent to which
an agent maintains its level of activity. Emergence, which compares activity in two
adjacent timesteps, is a class of metrics to evaluate the suddenness of change in net-
work activities. Each of these dynamic metrics relies on a specific temporal aggregation
model, which synthesizes a series of temporal network activities into single numerical
representations. Here, the network activities are measured per timestep using static
network metrics such as degree centrality, clustering coefficients, or authority cen-
trality. They will be aggregated through one of the temporal aggregation models and
form either a Persistence or an Emergence metric. Clearly there can be many different
models to aggregate historic data and each has its advantages and disadvantages. In
this article, we evaluate three particular temporal aggregation models: average, linear,
and exponential. The Average Model aggregates temporal information by assigning an
equal weight to each timestep. The Linear Model assigns linearly increased weights,
and the Exponential Model assigns exponentially increased ones to each timestep. We
will see how those aggregation models affect the performance of the models later in the
article.

Since each dynamic metric is an evaluation of temporal patterns, we can use it to
approximate activity patterns in the future. We use a regression model to evaluate
the performance of each metric by using it to predict future network activities. Exper-
imental results show that the performances of the metrics are closely related to the
ways that they replicate Recency—Primacy effects. From a human cognition perspec-
tive, Primacy is the extent to which initial information dominates the perception. In
contrast, Recency is the extent to which the most current information dominates the
perception.

The contributions of this article are threefold. First, we provided two efficient dy-
namic metrics to effectively measure temporal patterns in social networks. Each metric
measures one of two important aspects of temporal patterns. Second, we built a sys-
tematic approach to assess the performance of our metrics. The approach is based on
the fact that dynamic metrics are both a representation of historical activity patterns
and an approximation of future activity. Third, we provide statistical evidences that
dynamic social networks have intrinsic temporal invariants. Activity patterns in social
networks are highly dependent on historical activity information within a specific time
frame.
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2. BACKGROUND
2.1. Evolution of Dynamic Social Networks

Social networks are in a constant state of flux [Palinkas et al. 1998; Romney 1988;
Sampson 1968; Sanil et al. 1995]. Unsurprisingly, then, studies of network dynam-
ics abound. Early studies in this area suggested that social networks are generated
according to random graph models with a fixed probability p that dominates the suc-
cessful rate that new links added to the networks [Erd6s and Rényi 1960]. The fact that
this random graph model does not exhibit clustering behaviors, which are generally
observed in real social network data, resulted in more realistic network models such
as the small world model [Watts and Strogatz 1998] being developed. In a small world
network, the distance between two arbitrary agents is proportional to the logarithm of
the number of agents in the network. Recent findings on large-scale social networks
data [Faloutsos et al. 1999; Newman 2001b, 2004] suggest that the degree distribution
of networks may be fairly accurately modeled as a power law [Albert and Barabasi
2002; Barabasi and Albert 1999; Newman 2005]. A power-law network can be gen-
erated by the process called preferential attachment [Newman 2001a], which models
agent’s ability to attract links as being proportional to the total number of their already
established links. However, in real social networks, links grow and decay leading to the
need for incremental metrics that handle both positive and negative network changes
[Kas et al. 2015]. We design temporal aggregation metrics that account for both tie
growth and atrophication.

2.2. Primacy and Recency Effects

Primacy and Recency are often used to characterize the cognitive process of humans
[Hovland 1957]. The Primacy effect argues that people remember the very first things
better than the later ones [Deese and Kaufman 1957; Murdock Jr, 1962]. The Recency
effect, on the other hand, argues that people recall the latest things better than the
earlier ones [Miller and Campbell 1959]. These concepts are useful in understanding
cognitive processes because they illustrate basic strategies used by humans to measure
temporal impacts. We design temporal aggregation metrics that effectively account for
primacy and recency.

2.3. Network Metrics

Evaluating the performance of network members plays a critical role in understand-
ing the interactive patterns in a network. Numerous agent level metrics exist that
measure the importance of an agent. Commonly used metrics include count-based
centrality metrics such as degree centrality [Freeman 1979] and shortest path-based
metrics such as betweenness centrality [Anthonisse 1971]. Another way to measure
actor performance in a network is to evaluate the impact of node removal or addition.
Borgatti defined the positive key player and negative key player problems by evaluat-
ing how some network level metrics change if a node is added or deleted [Borgatti 2003].
If deleting a node causes significant structural changes (e.g. making the networks to be
disjoint), it will be recognized as a negative network elite. On the other hand, if adding
a node makes positive changes to the network structure, it will score highly on the pos-
itive elite metrics. Carley used similar ideas, but developed metrics to identify elites
by removing them and allowing the network to reconstitute itself [Carley 1990]. Other
methods include the use of propagation models to evaluate network elites [Chen et al.
2003]. We note that all of these approaches are static assessments that are applied on
a single network timestep. In contrast, for dynamic network data incremental versions
of path-based metrics exist such as betweenness and k-betweenness [Kas et al. 2015]
and closeness [Kas et al. 2013]. Similar to the metrics proposed by Kas, the metrics we
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have developed enable the assessment of change over different time periods. However,
in contrast to Kas, our approach accounts for burstiness by supporting an averaging
procedure.

2.4. Linear Regression Models

Given a random variable y € R and a feature vector X € RY, the linear regression
model assumes that y can be represented as a linear function of X, that is y = B¢ +
(B1, ..., Ba)XT . The goal of the regression model is to estimate 8 = (Bo, A1, . .., Bq) based
on a set of training data {(Xi, y1), ..., (X, y,)}. One solution is to use linear least-
squares regression [Hastie et al. 2005]. The linear least-squares regression developed
a closed form to estimate 8 by minimizing the square error. However, in some cases
where Xis singular, the linear least squares regression failed to work. Lasso regression
[Tibshirani 1996] and Ridge regression [Hoerl and Kennard 1970] formulated the
regression problem to be an optimization task and eliminated the restrictions of X
being nonsingular. To avoid overfitting, lasso regression model adds an L.1 norm penalty
term in the objective function while ridge regression adds a more strict L2 norm penalty
term. There is also a technique called elastic net [Zou and Hastie 2005] that produces a
penalty term between L1 and L2 terms. In this article, we choose lasso regression over
ridge regression for our prediction model because lasso provided the benefit of allowing
the coefficients to become zero. In ridge regression, however, the coefficients can only
be either all nonzero or all zeros. This is useful when we have multiple features and
we know some of them are not correlated to the target variable. In that case, lasso
regression will disable the uncorrelated variables by setting the coefficients to zero.

2.5. Window-Based Aggregation Techniques

Window-based techniques are fairly common in research areas where a sequence of
data points needed to be combined into one. There are many reasons to conduct aggre-
gations on a data. For example, when the size of the data beyond the computational
ability of computers, aggregation can significantly reduce those calculations but also
achieve a good approximation. A window-based aggregation technique uses a window
size to determine the amount of data used to generate a single aggregation point.
There are many window-based aggregation methods that have been proposed. Bian
and Butler [1999] analyzed the most popular window-based aggregation methods (i.e.
average, mean, median) and how they affected the mean and standard deviation on a
two-dimensional image dataset. However, we find that classic window-based aggrega-
tion methods cannot meet the requirements of the temporal pattern problem for the
following reasons: (1) Classic window-based aggregation techniques use equal weights
on all data to be weighted. This makes all the temporal data to be equally important,
which is not reasonable when the time frame of the data gets long. (2) Classic window-
based aggregation techniques can only report the magnitude of the data rather than
the changing trends of a dynamic network.

3. DYNAMIC NETWORK METRICS
3.1. Persistence

Persistence is a type of dynamic metric used to evaluate the degree of persistent ac-
tivities over time. Let P;; denote one instance of a Persistence measure for agent i at
time ¢. Persistence is defined in Equation (1) to be the result of a temporal aggregation

function Agg(-) with an input of several activity measures M; = (m; 1, ..., m;;). We will
go through the activity measures and temporal aggregation functions later
Py = Agg(myy, ... ,miy). (1)
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3.2. Emergence

Emergence is a type of metric used to evaluate the changes in activity over time. We
use E;; to denote the Emergence for agent i at time ¢. In Equation (2), the Emergence
is defined in two different cases. At the very beginning timestep where ¢ = 1 or at any
timestep when both P;; and P;;_; are zero, Emergence is equal to 0, which indicates a
neutral change. When ¢ is larger than 1 and max{P,;, P;;_1} # 0, it is defined to be the
normalized change of Persistence at the most recent timesteps. Depending on whether
the Persistence contains negative values, normalization terms are defined differently.
For Persistence that is guaranteed to be positive, N;; = max{P;;, P;;_1}. If the positive

restriction does not hold, the normalization factor N;; = |P;;| + |P;;—1|, which is a
weaker bound of the nominator
0 t=1ormax{P, P 1}=0
Ei;=1{ P:— P fo (2)
N

where N;; = max{P;;, P;;_1} for Persistence that contains only positive values and
N;: = |Pit| + | P;;—1] when Persistence might contain negative values.

To see why the normalization factors make sense, consider Equation (3) as the defini-
tion of E;, which is equivalent to Equation (2) under the assumption that Persistence
is guaranteed to be positive. Here we separated the conditions into three parts and
N;; = max({P,;, P;;_1} is substituted for its corresponding value under each condition.
Emergence is positive when P,; > P;;_; and negative when P;; < P;;_1. It also follows
naturally that if P;; and P;;_; are the same or ¢ = 0, it yields an Emergence value of
0. Because of the normalization, Emergence always ranges from —1 to 1. When Emer-
gence is close to 1, it suggests a radical increase in Persistence over time. This can be
the result of a sudden increase in activity measures from 0 to an arbitrary amount.
When the Emergence is close to —1, it suggests that the agent has a radical decrease
in its Persistence. If an agent remains at a stable amount of activity overtime, it will
have an Emergence of approximately 0, which indicates a neutral emergent pattern,

P,
1- 15;1 P> Py
E:rt — 0 t = 1 or Pi,t = })i,t—1~ (3)
P,
P,-,tfl -1 Py <Py,

When Persistence may contain negative values, we have a slight different definition
of Emergence called E;, in Equation (4). Similar to what we have discussed in the
positive case, the Emergence is positive when P;; > P;; 1 and vice versa. It is also
obvious to notice that |P,; — P,; 1| < |P;¢| + | P;;—1| which makes —1 < E;; < 1,

Pii— P
- - B - B B
[P ¢l + | Pyl it -1
Ei%t = 0 t=1or -Pi,t — Pi,t—l. @)
—(Pii-1— Piy)
|Pitl + | Pyl t -1

To summarize, Equations (3) and (4) are definitions of Emergence under different
assumptions of the data. However, those two definitions can be combined into one using
Equation (2), which is the formation definition of Emergence.
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One thing which makes Emergence different from Persistence is that there is no
magnitude information because of the normalization. We believed that normalization
makes Emergence more useful in illustrating the agents’ temporal patterns overtime.
Consider two agents i and j who have Persistence P,; = f-a and Pj; = y - a at time ¢
and P,; 1 = f-band Pj;_1 = y-bontime¢ — 1. When § and y are significantly different
(e.g. B is significantly larger than y), those two agents exhibit fundamentally different
behaviors in terms of Persistence because of the differences in the magnitudes of activ-
ities. If we assume that those Persistence are positive and a>b, applying Equation (3)
makes the magnitude factor g and y to disappear. In that case, E;; = Ej; = 1 —

In other words, agent i and j have the same Emergence in spite of their d1fference in
magnitude demonstrated in Persistence.

3.3. Activity Measures

At each network snapshot ¢, the activity measure m;; represents the evaluation of
activity of node i. Common activity measures include centrality measures, cluster-
ing coefficients, and eigenvector-based measures [Bonacich 1972; Watts and Strogatz
1998]. Contrary to Persistence and Emergence, which are dynamic network metrics,
the activity measures can only evaluate the activities within a specific timestep. In
some situations, they are referred to as activity metrics.

Our Persistence and Emergence metrics can be applied to a wide variety of activ-
ity metrics. In fact, there are no restrictions on the types of activity metrics that our
method can be utilized in conjunction with. If the activity metrics are guaranteed to be
non-negative, the corresponding Persistence will also be non-negative. Some examples
include degree centrality and betweenness centrality. When calculating Emergence, we
can choose the normalization factor as max{P;;, P;;_1} to achieve a tighter bound. If the
activity metrics are not guaranteed to be nonnegative, the corresponding Persistence
may contain negative values. In this case, we have to choose the more relaxed nor-
malization factor | P, ;| + | P,;—1]. Such activity metrics include eigenvector centrality. In
some cases, one can use linear transformation techniques (e.g. to divide by its minimal
values) to convert those metrics into a nonnegative measures [Wei et al. 2011].

4. TEMPORAL AGGREGATION MODELS

Temporal aggregation models are essential components of the dynamic metrics we
defined in Section 3. In this section, we will illustrate three temporal aggregation
models and illustrate how they relate to the dynamic metrics.

4.1. Aggregation Functions

The aggregation function agg(-) takes a variable length vector parameter m as input
and returns a single numeric evaluation of the temporal information contained in m.
The temporal activity of a specific agent i from time 1 to time ¢ is denoted as a vector
= (m1,...,my;). We then apply the aggregation function agg(-) on this vector to
assess Persistence and Emergence. Given the fact that the length of temporal history
varies in the networks, the aggregation function should be adaptable to variable input
length.
For an input vector m € R?, we define the aggregation function to be the linear
combination of input variables, as is defined in Equation (5)

Agg(m)=aim; +agmyp + - - +og_1Mg_1 +@gMg =& - M (%)

with regularization condition ) «; = 1.

From Equation (5), we can see that the aggregation function takes all the values in
the activity vector into account. A regularized vector a, which we call the strength
vector, is used to tune the activity vector mso that only the information in the desired
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timesteps are counted toward the value of the aggregation function. The sum of the
strength vector over the time range of the activity measure must be equal to 1. This is
referred to as the regularization condition of the strength vector. In some cases where
the dimension of m is very large, a good temporal aggregation model will assign large «;
to timesteps which are of the most interest to the analysis of the temporal assessments
and assign small ¢; to the timesteps that are less important. The temporal aggregation
models that we will discuss later define mechanisms to generate the values of strength
vector o according to the length of the activity measure. Note that the values of strength
vector o only depend on the temporal model and the dimension of the input vector d.
Once the temporal model and the dimension of the input vector are determined, the
strength vector will remain fixed regardless of what the exact values of the input vector
m are.
A good temporal aggregation model should satisfy the following requirements:

(1) The model should come up with a scalable algorithm to dynamically calculate the
result of an aggregation function based on input vector m. For applications such as
abnormality detection in large datasets, it might require the algorithm to respond
in real time.

(2) The aggregation models should be temporally informative and meaningful to Per-
sistence and Emergence metrics. They should achieve good generalizations of tem-
poral trends and provide predictive insight.

(3) A tunable model parameter should be provided to switch between Recency and
Primacy effect. When the model parameter favors Recency effect, o; on the most
recent timesteps should be large. On the other hand, when the model parameter
favors the Primacy effect, «; on the distant past should be increased.

4.2. Average Aggregation Model

The main idea of the average model is to aggregate historical temporal information
by simply averaging over it. This simple model is the most widely used temporal
aggregation model. We use a window parameter w so that the model will only aggregate
temporal information in the latest w timesteps. We define the aggregation function on
Average Aggregation Model with window parameter w to be Agg”)(m), which is defined
in Equation (6)

d
m; mg Y, my
e = d<w
Agg"meRH =1 ¢ d d_, Jo (6)
myg—w+1 my Zi:d—w+1 m; zZw
e S
w w w

In Equation (5), the definition of the aggregation function of Average Aggregation
Model is divided into two parts: if the length of the input vector d is smaller than the
window size, it shrinks the window size to fit to the actual dimension of the data. If
otherwise there is too much information, it truncates the early timesteps and considers
the information in the most recent timesteps that fall into the window.

One thing worth noticing is that the window is always aligned with the most recent
timestep. The most recent information is never lost. If the window size w is set to a
small number such as 1, the Average Aggregation Model will degenerate to the model
that only considers the most recent timestep, which is an extreme practice of Recency
effects. On the other hand, if we increase the window size to infinity, it will consider
every single timesteps in the history. This enables the model to represent a stronger
Primacy effect as it takes more past information into consideration.
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We fit the aggregation function into Equations (1) and (2) to get the Persistence and
Emergence for Average Aggregation Model in Equations (7) and (8), respectively:

t
_ Zk:tfmax{t,w}+1 mj k

PA(w) — , @)
nt max{t, w}
— Aw) __ (w)
0 t=1or ;" =P
EX = L Saw) _ paw) : (8)
vt P — PN
) t>1
Ny
where N/ = max{P4"), Pi’t("’)} if Persistence is non-negative and J\f{:‘t(“’) = |PA™)| +

|Pﬁ(’”)| if otherwise.

One of the issues in calculating the metrics is computational complexity. Fortunately,
both the Persistence and Emergence in Average Aggregation Model can be calculated
recursively based on values at the previous timestep. Equation (9) illustrates a recur-
sive method to calculate Persistence at time ¢ based on Persistence at time ¢ — 1 and
the activity measure at time ¢. The basic idea here is that we first get the sum of the

previous activity measures by multiplying Pl‘é(i"l) with its window size. If 1 < ¢ < w, the
window size is ¢ — 1. If ¢ > w, the window size is w. After we get the sum, depending on
how many terms are already in the sum, we might need to subtract the oldest activity
measure from the sum. If¢ > w, we need to subtract the sum by m; ;_,, because this is the
element that is discarded as the window moves one step forward. If 1 < ¢ < w, we donot
need to subtract the sum by anything because the new window will not discard any ele-
ments. If £ = 1, then the calculation of Persistence degenerates into the base case. Only
O(1) modifications are needed to calculate Persistence at the current timestep based on
the result at the previous timestep. The calculation of Emergence can also be done in
O(1) as a byproduct of the Persistence calculation which is illustrated in Equation (8),

m; 1 t=1
| B €=+ m -
Pi,t(w) — ; <t<w (9)
PiAt(iUl) W — MYty + ny ¢
. t>w
w

Algorithm 1 is the pseudocode for calculating Persistence and Emergence recursively
in Average Aggregation Model. The algorithm takes four input variables: the current
timestep ¢, Persistence at time ¢+ — 1, P;_1, activity measure at time ¢, m; and the
window size w. The algorithm returns Persistence and Emergence at time ¢. Based on
the analysis of recursive calculation, the algorithm scales in O(1) in terms of running
time when activity metrics are calculated in advance.

4.3. Linear Aggregation Model

One serious drawback of the Average Aggregation Model is the lack of differences
between timesteps within a window. In the Linear Aggregation Model, we assign dif-
ferent strengths to different values of input vector m based on how close it is to the
most recent timestep.

In the Linear Aggregation Model, the strengths increase linearly from the distant
timesteps to the recent timesteps. For the Linear Aggregation Model with window size
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ALGORITHM 1: Calculate Persistence and Emergence on Average Aggregation Model

Input: ¢, P, my, w
Output: E;, P,
ift=1
Dr =my
else
if 1 <t < w then
Py - t—D+m

Pt =
t
else
Pt — Pt,1~w—m¢,w—|—m¢
w
end
end
ift=1or P,_; = P, then
Et = 0
else

if P non-negative = True then
E; = (P, — P,_y)/max{P;, P,_;}
else
E, =(P,— P_1/(P| +|P-1])
end
end
Return E;, P,

w, we can get the strength vector « € R¥ = (u, 2t .. (w Du, ww). Using the regular-
ization condition in definition (5), we can solve u = Substituting it back to the

strength vector we find that e = (1,2, ..., w — 1, w) - o Using this strength vector,
we are left with Equation (10), which is the formal definition of the aggregation function
of the Linear Aggregation Model. Similar to the aggregation function of the Average
Aggregation Model, we divide the definition into two cases: If the length of input vector
d is less than the window size, then the window is shrunk into the actual dimension
of the data. Otherwise, the aggregation function will consider the input information
that falls into the window. The window is always aligned with the current timestep and
anything outside the window will be discarded. The model will represent more Recency
effects when the window size is small. When the window size is large, the model will put
more weight on historical information and will better represent more Primacy effects,

2 .
(1+d)d§L'W

(1+w)w
2

Agg"™(m e RY) = (10)

9 d d>w"
= Z iomy
(1 + W)W i=d—w+1
Equations (11) and (12) are the definitions of Persistence and Emergence of Linear
Aggregation Model by substituting the aggregation function. Unfortunately, there
is no recursive method to calculate the dynamic metrics in the Linear Aggregation
Model. The calculation of both Persistence and Emergence must be made directly from
the definition,

9 t
7 {1+ max{d, thmax{(d, t,_ g{‘; wi+ o .
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0 ¢ = 1or P = pUY
L(w)
Ei,t = PiLt(w) _ PLI;(E)I) , (12)
) L(w) ’ t>1
N;;
where th(“’) = max({P"), Pi’t('“)} if Persistence is non-negative and th(w) = |PH™)| +

|Pff’”H if otherwise.

Algorithm 2 is the pseudocode to calculate the dynamic metrics on Linear Aggrega-
tion Model. The computational complexity of this algorithm is O(w), which is propor-
tional to the window size.

ALGORITHM 2: Calculate Persistence and Emergence on Linear Aggregation Model
Input: ¢, m=(mn,...my), w

Output: E;, P,
Pt - 0
Fori =t —max{d,w}+ 1tot do
. 2
Fi=F+i-m (1 + max{d, t})max{d, t}
end
ift=1or P,_; = P, then
Et — O
else

if P nonnegative = True then
E, = (P, — P,_1)/max{F;, P,_1}

else
E, =P, — P_)/(P]| + |P1))
end
end
Return E;, P,

4.4. Exponential Aggregation Model

The Exponential Aggregation Model assigns exponentially increasing weights to the
input vector. Similar to the Linear Aggregation Model, the information at the timesteps
that are closer to the current timestep will be weighted more strongly and thus have
larger values in the strength vector. Instead of increasing the strength vector linearly,
the Exponential Aggregation Model has an exponentially increased strength vector.
Because of this, the importance of temporal information increases rapidly overtime.

The aggregation function of Exponential Aggregation Model is defined in Equa-
tion (13). There is a parameter 8 in the model that ranges from 0 to 1 inclusive, which
we call the transmission parameter. The transmission parameter controls the main
exponential component of the aggregation function

t
AggE(ﬁe[O,l])(m c Rd) — ﬂd—lml + Z(l _ ﬂ)ﬂdijmj. (13)

j=2
Equation (14) is the corresponding strength vector of the aggregation function. One
can easily validate that the sum of the strength vector is always equal to 1, which

meets the regularization condition in Equation (5). The strength on the first timestep
is slightly different from the consequent ones. However, all the values in the strength
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vector are dominated by %/, which is very large at recent timesteps but decays expo-
nentially at earlier timesteps when 8 ranges from 0 to 1. If we change the transmission
parameter to 0, the aggregation function will only consider the information in the most
recent timestep, that is «## (j = 1) = 1,a®? (j # 1) = 0. This means no history in-
formation is transmitted into the dynamic metrics, and is an extreme practice of the
Recency effect. However, if we increase the transmission parameter, we see that some
of the strength of the first timestep is moved to other timesteps. This represents a
blend of the Recency and Primacy effects. If the transmission parameter is set to 1,
then only the information in the first time period will have impacts to the dynamic
metrics, while all other timesteps will have a strength vector of 0. This represents a
pure Primacy effect where only the first information matters,

d_l . .
EB) ;1\ B ifj=1
R {(1 — BB otherwise’ (14)

Equation (15) is the definition of Persistence under the Exponential Aggregation
Model. The Persistence on the first timestep is just the activity measure itself. On the
subsequent timesteps, it is defined recursively based on Persistence at time ¢ — 1 and
the activity measure at time ¢. The transmission parameter g plays an important role
in controlling the exponential components. One can easily validate that the Persistence
defined in Equation (15) has the same aggregation function defined in Equation (13)
as well as the same strength vector defined in Equation (14),

Imi,t ift=1

PE(w) _ .
IBPzE;(—Ml) + (1 —pB)m;; otherwise

it = (15)

Equation (16) is the Emergence of Exponential Aggregation Model. Similar to the
Emergence definitions in other aggregation models, the Emergence is defined based on
the Persistence ont and ¢t — 1,

0 (= 1or PEY = PEW
E(w) _
B =1 B - ey ’ a®
) t>1
Niz
where Nlﬁ(w = max{PE"), P} if Persistence is nonnegative and NEW — | pEw)

|P£(”’)| if otherwise.

Algorithm 3 is the pseudocode to calculate Persistence and Emergence on Exponen-
tial Aggregation Model. The Persistence and Emergence in Exponential Aggregation
Model can be calculated recursively. The computational complexity is O(1) .

One thing worth mentioning is the possibility of converting the transmission pa-
rameter to an equivalent window parameter in the Exponential Aggregation Model.
In our experiment section, we will compare the results across different aggregation
models. For the average and liner model, it is not difficult to compare them because
both of them work on the same parameter, which is the window parameter. For the
exponential model that uses the transmission parameter, however, it is hard to com-
pare it against other models under the same scale. One way to solve this problem
is to use an equivalent variable that can be calculated from transmission parameter
to represent the window size parameter. In Equation (17), we define the Window Pa-
rameter of the transmission parameter 8, A (8, T) to be the shortest distance from a
specific timestep to the current timestep 7' so that the sum of the strength vector from
the current timestep to this specific timestep is larger than 0.99. Since the sum of all
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ALGORITHM 3: Calculate Persistence and Emergence on Exponential Aggregation Model

Input: ¢, m;, 8, P,

Output: Et, Pt

If ¢t =1 then
P=m

Else
P=pP1+1—-pm

End

ift=1or P,_; = P, then
Et — O

else

if P nonnegative = True then
E, = (P, — P,_1)/max{P,, P,_;}

else
E; = (P, — P_)/(P| + |P:-1))
end
end
Return E;, P,

the elements in the strength vector is always 1, this ensures that the majority of the
timesteps that will have impacts to the aggregation function will be selected into the
window parameter,

T T
MB.T) =1kl Y o®P()=099= » ™G, an
j=T—-k Jj=T-k+1

4.5. Relationship to Persistence/Emergence and Activity Measures

Before continuing, we here review the relationships between the aggregation models,
Persistence/Emergence, and activity measures. Persistence and Emergence are high-
level ideas that we construct to measure the temporal patterns of dynamic social net-
works. These two metrics are built on a specific aggregation model. We have proposed
three aggregation models. Each of them can be used in the Persistence/Emergence
evaluations. These three aggregation models represent three different ways of han-
dling temporal information. One can construct his/her own aggregation models and
apply Persistence/Emergence onto it.

The aggregation models and activity measures carry different information that is im-
portant to the evaluation of temporal patterns. Centrality metrics such as betweenness
and degree are such metrics that can represent structural information of a network. The
Aggregation models are meant to carry the temporal information of activity measures
and aggregate them in a meaningful way. The Persistence and Emergence metrics are
used to reorganize the temporal and structural information generated by aggregation
model and activity measure respectively and to generate only the most important two
pieces of information that are relevant to the problem of assessing temporal patterns.

5. DATASET

We use four different datasets to validate the dynamic metrics: the Newcomb fraternity
dataset, the Enron email dataset, the DBLP (i.e. DBLP computer science bibliography
hosted at http:/dblp.uni-trier.de) co-authorship dataset, and the “Arab Spring” twitter
dataset. Each dataset has several snapshots and a set of agents who have a series of
network activities overtime. In the Enron, DBLP and Arab Spring dataset, there are a
significant amount of agents who have very little activities overtime. We applied a data
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Table I.
Dataset Nodes  Snapshots
Newcomb 17 15
Enron 946 34
DBLP 1981 35
Arab Spring 4825 18

processing procedure to eliminate those agents in order to provide enough training
data to the regression model on each timestep. Table I is a summary of these datasets
after the preprocessing procedures.

The Newcomb fraternity dataset was collected by Theodore Newcomb [Newcomb
1961] at the University of Michigan. The dataset recorded the changes of preference of
17 transfer students living in the same apartment who did not know each other when
they moved in. The strengths of the links in the network represent the preferences be-
tween two students. In the original data, 1 represents highest preference (i.e., thisis the
actor’s “best friend”) while 16 represents the lowest preference. We processed the data so
that high preference is consistent with high link strength by subtracting 16 by the origi-
nal link values in the network. After that, 15 will represent highest friendship relation-
ship while 0 will represent lowest friendship. The dataset consists of 16 full snapshots
of network with each representing a survey conducted at the end of a specific week.

The Enron email dataset [Klimt and Yang 2004] contains a set of emails released
by Enron Corporation. The dataset contains users that were mostly senior managers
in the company. We combined all emails that belong to the inbox in the dataset and
build a social network between senders and receivers with each snapshot representing
a single month. We filter out users who contributed less than 1% of the total emails to
network in any snapshot. We also deleted the first seven snapshots of the data in which
we see little network activity. The final dataset contains 946 users with 34 snapshots.

The DBLP dataset [Zaiane et al. 2007] is built from co-authorship relationships in
DBLP database, which is a computer science bibliography website hosted at Universitat
Trier, in Germany. We extracted co-authorship information in each paper and built the
network within a year. If multiple authors were present in the same paper, a pairwise
relationship was recorded as a link in the network. Multiple links were aggregated to
be a single link, the strength of which represents the number of co-authorships. We
dropped authors who had less than 25 co-authors in any snapshots and deleted the
first 30 years of the dataset. After these preprocessing steps, the dataset contained
1981 distinct authors and 49 different snapshots.

The Arab Spring dataset is collected using the Twitter Application Program Interface
(API) from December 2011 to March 2013. The twitter API returns results that contain
10% of all tweets sent out at the time we collect the data. We extracted tweets that have
a latitude/longitude attribute that fell into the Arab Spring countries and conducted
an Latent Dirichlet Allocation (LDA) topic modeling based on all the tweets sent by a
user. We then build the user-to-user network by calculating the similarities between
two users based on their topic score vectors. We bucket the network by month and
generated 16 user-to-user networks.

6. EXPERIMENTAL RESULTS

6.1. Experimental Setup

To compare the performance of dynamic metrics across different models, we need a
criterion to assess whether a specific model is better than another. Since the metrics
measure the temporal activities in the past, it will have statistical correlations to
future activities of an agent. Our criterion to assess temporal aggregation models is
thus based on how strong those correlations are.
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The general idea of the experiment is to first calculate the dynamic metrics and then
use a regression model to find statistical correlations between the dynamic metrics at
time ¢ and the true activity metrics at time ¢ + 1. We use lasso regression, which is a
linear regression model to train the regression model on dynamic metrics and use it
to predict future activity measures. We use a linear regression model instead of more
complicated models for the following reasons: (1) a simpler and less powerful regression
model leaves the complexity of the prediction task to the dynamic metrics, which is the
main focus of our article. If the regression model is simple, we can easily distinguish
between different dynamic metrics. However, if we choose a complicated regression
model, chances are that those dynamic metrics will have virtually little performance
differences because the regression model is powerful enough to generate a model that
fits the input/output features. (2) For the dynamic metrics, we want them to meet the
human expectation of Persistence and Emergence so that when either of those two
metrics changes, people will immediately realize what happened to the network. If
we use a more complicated model, it will likely to pick up an aggregation model that
requires a less intuitive way to interpret Persistence and Emergence, which makes
the metrics less useful in detecting network changes. (3) The lasso regression model is
implemented in most statistical software packages. This increases the repeatability of
our analysis presented in the article. We want to emphasize that the regression models
in the experiments are used for the purpose of comparing different metrics only. They
are only used to illustrate the statistical correlations between the metrics and the
activity measure and should not be considered to be part of the metrics.

To begin with, we first generate activity metrics on each timestep for each agent
in the network. We calculate Persistence and Emergence based on the algorithms we
proposed in Section 4. Each aggregation model will have a different way of calculating
those metrics. We recorded the running time in the process of calculating these dynamic
metrics. After that, we start the training process of the regression models. We build two
versions of the experiments. One uses only Persistence and the other uses both Persis-
tence and Emergence. We complete the same experiments on four different datasets
illustrated in Section 5. Figure 1 illustrates the general procedure of the experiments.
We will not build a regression model using only Emergence because Emergence alone
can only indicate the trend and not the magnitude of the activities. Without the mag-
nitude of the activity, the performance of the regression model will be compromised.
We implemented lasso regression using the R glmnet package.[Friedman et al. 2010].
The lambda parameter is set to 1le—5.

To illustrate the feature variables and target variables of the regression, consider
Figure 2, where data in a dynamic network are organized into a matrix with horizontal
axis that represents time and vertical axis which represents the agents in the network.
We choose a column in the matrix to be the feature variable of the regression model
and choose multiple columns that is one timestep forward to the feature variable to
be target variables. The feature variables are chosen to be the dynamic metrics while
the target variables are the activity measures. The regression analysis is conducted to
find statistical correlations between feature variables and target variables. In Figure 2,
green cells are feature variables and blue cells are target variables. In that situation,
we are trying to predict information that is two timesteps away using the dynamic
metrics. For each experiment, we slide the selection of feature variable throughout the
time frame of the dataset to obtain results of different regression experiments under
similar parameter settings.

The parameter space varies depending on the aggregation model. For the Average
Aggregation Model and Linear Aggregation Model, the window parameter takes value
from 1 to approximately the same size as the maximum timestep of the data. For
Exponential Aggregation Model, however, we choose transmission parameter to vary
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Data Set
A 4
Activity Metrics

Persistence Emergence
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Train Regression Model Train Regression Model
using Persistence and using only Persistence
Emergence
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Results Results

Fig. 1. Tllustration of the experiment procedure.
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Fig. 2. Illustration of each set of experiments.
evenly: 0.01, 0.02,..., 0.99, 1.00. In some cases, where we want to compare the models

under the same parameterization, we use the equivalent window parameter defined in
Section 4.4 to replace the transmission parameter in Exponential Aggregation Model.
We will also fix the length of the feature variable to be 1 while changing the length
of the target variable to see how many future timesteps can we predict based on the
dynamic metrics. We call the length of the target variable validation size.

6.2. Activity Measures

We choose four different activity measures in our experiment: degree centrality, close-
ness centrality, betweenness centrality, and clustering coefficient. Each of these metrics
will evaluate different aspects of the network. Degree centrality measures the number
of connections of each agent in the network. Closeness centrality measures the average
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Average Linear Exponential

2.79e-06 =
2.786-06 -

5 4005 1.66-05 = 05 - o5k
46-05 40-05 1.66-05 66-05 - 2.776-06 -
1.2e-05 - 1.26-05 — 2.76e-06 =
06 - 2.756-06

30-05 - 8.0e-06 30-05 - 8.00-06 —

of Prediction

40e-06- 11

|
o _o—@ |\ 40-05
2 26-05 - &8 2 \2 2e-05- v ®

e-05 = 1e-05
2e-05 —

0e+00 = 0e+00 =

MSE

Mean Square Error

T T J J T T J T T T
0 10 20 30 [ 10 20 30 0.00 0.25 0.50 0.75 1.00

Dynamic Metrics Parameters

Fig. 3. Comparison of aggregation model performance in DBLP dataset when validation size = 1.

efforts to reach all other agents in the network through shortest paths. Betweenness
centrality measures the importance of an agent by counting what fraction of shortest
paths goes through this particular agent. Finally, clustering coefficient measures to
what extent agents in a network tend to cluster with each other.

6.3. Measuring the Temporal Patterns to Predict Future Activities

To see the performance of dynamic metrics on predicting future activity metrics, first
consider the results on the DBLP dataset illustrated in Figure 3. Here, we use degree
centrality as activity measure and have both Persistence and Emergence enabled in
the regression model to predict activity measures in the next timestep (i.e. validation
size = 1). Each plot represents a different temporal aggregation model. The horizontal
axis is the parameter of each model. For Average and Linear model, the parameter is
a window size ranges from 1 to the temporal size to the dataset. For the Exponential
model, the parameter is the transmission parameter ranging from 0.01 to 1. The vertical
axis is the means square error (MSE) of prediction of the regression model. Each
point in the graph represents the mean of a set of experiments, which have the same
aggregation model and model parameter but with different start point and end point
of the feature and target variable. The shaded area is the confidence interval of MSEs
of different regression analysis.

Figure 3 shows a non-linear pattern of prediction error. Despite fluctuations, all of the
models have a higher prediction error when parameters become large. This is because
when the parameters are large, the aggregation functions assign more weights to the
historical data and the result becomes less relevant to the future activity measures.
By changing the parameters, the prediction accuracies change significantly. The sub
plots in each of the main plot are a close-up view of the region where the minimal
MSE occurs. We see that there exists a specific parameterization that results in a
minimal MSE of the prediction in each aggregation model. We have observed this
phenomenon in all of the experiments that we conducted. This may suggest that there
exist an optimal parameter that we can choose to minimize the prediction error for each
aggregation model. The optimal parameter represents an amount of history activity
measures that are of most relevance to the task of measuring temporal patterns. Using
too much history information will be a detriment to the sensitivity of the analysis, while
too little information will make the metrics insufficient to represent the true dynamic
pattern. We can also see that the Exponential model has a much smoother curve of MSE
over parameters than that of Average and Linear models. This is because the window
parameters can change only in the range of integers while the transmission parameter
can change in real values. This will lead to the differences in the expressiveness of
Recency and Primacy effects, which will affect the sensitivity of the analysis.
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Table II. Result of the Lasso Regression Model

Coefficient Persistence  Coefficient Emergence  Intercept
9.98e—01 1.11e+00 1.26e—05

Table IlI. Visual Comparison of Predicted and Actual Activity Measures

Agent Num. Persistence Emergence Predicted Act. Actual Act. Diff

1 0.5695 —0.1455 0.4065 0.4049 0.0016
2 1.0000 0.0000 0.9982 1.0000 0.0018
3 0.6538 0.1056 0.7702 0.7599 0.0103
4 0.2963 0.0510 0.3526 0.3679 0.0153
5 0.1297 0.0177 0.1492 0.1613 0.0121
6 0.0644 0.0042 0.0690 0.0777 0.0087
7 0.0329 0.0102 0.0442 0.0397 0.0046
8 0.0187 0.0048 0.0240 0.0193 0.0047
9 0.0117 —0.0008 0.0108 0.0105 0.0003
10 0.0063 —0.0019 0.0042 0.0067 0.0025

Table II illustrates the results of the lasso regression. Since lasso is a linear regres-
sion model, the result of the fitting on a two-dimensional input will generate three
estimations. For this specific experiment, we see that both Persistence and Emergence
have a fairly large coefficient while the intercept is relatively small. Emergence has
slightly higher coefficients than Persistence.

In Table III, we illustrate the prediction results of the first 10 agents in the net-
work in one of the experiments. In this specific experiment, we choose the exponential
aggregation model and set transmission parameter to be 0.75. We calculated both Per-
sistence and Emergence on the 15th timestep and ran the regression analysis to predict
the activity measure on the 16th timestep. We can see that the dynamic metrics does
a good job of generalizing the temporal patterns and even a linear regression model
can achieve a good accuracy in the prediction task. We can see that the predicted ac-
tivity measures and actual activity measures are fairly close and the differences are
quite small for all of the agents. Similar experimental results are observed on all other
datasets and timesteps.

The analysis in Figure 3 suggests an interesting way to look at the experimental
results, which is to compare the performance of the models when parameters minimize
the prediction error. Figure 4 and Figure 5 present the analysis using this technique.
Since we have four different datasets and each of them can have four different activity
measures, we have 16 sets of different sets of Persistence and Emergence measures.
For each measure set, we conduct experiments using both Persistence and Emergence
(marked with “x”) and only Persistence (marked without “x”), which makes the total
number of experiments to be 32. In each plot, the vertical axis represents the MSE of
prediction and the horizontal axis represents the validating size of the experiments.
For each validating size, we conducted many sets of regression experiments by varying
the model parameters. The one we report in the graph is the one that minimizes the
mean of MSE. Different colors and shapes of the points represent different aggregation
models.

From Figure 4, we can see that the Exponential model generally achieves the best
prediction accuracy, followed by Linear and Average model. There are two reasons
which lead to this. First, the Exponential model is more expressive in representing the
Primacy and Recency effects than the other two models. The exponential model uses a
real-valued parameter to control the level of Primacy and Recency effects, while other
models can only use a discrete window-size parameter. The real-valued parameter
gives the dynamic metrics better chance to capture the optimal values for regression
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Fig. 4. Comparison of prediction performance across validation size.

analysis. Second, the Exponential model features a more reasonable strength vector
than that of Linear and Average model. The Exponential component makes the aggre-
gation function focus on the most recent timesteps, which are important to the task of
prediction. Although the Linear model also has a strength vector that increases with
time, it increases too gently to capture the actual evolutionary pattern of the agents.
The Average model, which did not distinguish between the recent and past informa-
tion at all, has the worst prediction accuracy and the worst ability to measure temporal

patterns.

One important observation is that the validation size plays an important role in
the prediction task. With small validation sizes, models generally achieve small errors
since those activities to predict is not far away from the point when dynamic metrics
are generated. With the increase of the validating size, all the models demonstrated
certain degree of decrease in the prediction accuracies. This is because there are certain
temporal variables that are not incorporated into the network information we have.
The regression model achieves better performance in timesteps that are closer to the
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Fig. 5. Comparison of prediction performance across validating size with confidence interval.

feature variable. The larger the validating size is, the worse the performance of the
predictions will be.

Another interesting observation is that the error first starts to decrease and then
increase with the increase of the validation size. This indicates that the models can do
a better job of predicting activity metrics in some distant future than those in the near
future. Datasets that have this phenomenon frequently observed such as the Enron
dataset and the Arab Spring dataset have complex temporal dependencies in network
activity. In those datasets, change in activity measures will see a delay in its effects
to the future activities. In other words, activities that are this distance away in the
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future have the most temporal correlation to the dynamic metrics and thus achieved
the best prediction accuracy. We use the term best validating distance to indicate the
validating size that achieved the best prediction error. For those datasets that have
best validating distance equals to 1, dynamic metrics have an immediate impact to the
activity measures in the next timestep.

Figure 5 is made using exactly the same piece of information as that in Figure 4
but with each aggregation models plotted separately. That makes it possible to show
the confidence intervals of each aggregation models under different dataset/activity
measure/experimental settings. We observe that the Exponential model has both a
lower prediction error and a tighter confidence interval than other models, which again
validated that exponential model performs better than the other two. In addition, we see
that the combined use of Persistence and Emergence makes the confidence intervals
tighter by comparing experiments with and without “+”. The two dynamic metrics
represent two different aspects of the temporal evolution patterns. Using those two
dynamic metrics together achieves a better generalization of the historical information
and hence a better prediction of future activities.

Please note that the results presented in Figure 4 and Figure 5 is asynchronous,
in that each point in the graph represents different experiments using a different pa-
rameter. This is because we report only the results of the model that minimize the
prediction error for each validating size. The parameter to reach the optimal predic-
tion error varies from model to model and from one validation size to another. One
interesting question to ask is how these three aggregation models behave when they
have similar parameters. We use a technique that we introduced in Section 4.4 to con-
vert the transmission parameter into an equivalent window parameter so that we can
compare those three models together under the same window parameter.

Figure 6 and Figure 7 are the experimental results to compare different experi-
mental results under the same window parameters. Figure 6 and Figure 7 use the
same experimental results as in Figure 4 and Figure 5, but are aggregated over the
validation size rather than the parameter space. As a result, those two figures carry
different information than that in Figure 4 and Figure 5. In Figure 6, the horizontal
axis is changed from validating size to the window parameter. Each point in the graph
represents the regression experiment that optimizes the MSE with the same window-
size parameter but different validation size. The real-valued transmission parameter
of the Exponential model is now replaced by a discrete-valued window size by using
technique introduced in Section 4.4. This makes one of the benefits of the Exponential
model, which is the better expressiveness by using a continuously changed transmis-
sion parameter to disappear. However, even when present the results in that way, the
main conclusion we get from previous plots remain the same: the Exponential model
performs better than Linear and Average model across different datasets. Figure 7 is
a similar plot to Figure 6 but shows the confidence intervals. Again, using two metrics
together achieves a better performance in measuring temporal patterns. The reduction
in MSE and subsequent tither confidence interval of the Exponential model is even
more significant when using both metrics together as opposed to only Persistence.

One important observation from Figure 6 and Figure 7 is that the change of the
best model’s prediction error over window parameters for each dataset and activity
measure has different patterns. For some experiments such as degree centrality on
DBLP, the performance remains basically unchanged for different window sizes. For
the case of Arab Spring however, all centrality measure exhibit a pattern that the
prediction errors first increase and then decrease as the window parameter increases.
This illustrates that there are potential long-distance temporal dependencies between
the dynamic metrics and the activity measures in the past. We call this distance the

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 1, Article 9, Publication date: July 2015.



Measuring Temporal Patterns in Dynamic Social Networks

Newcomb_deg Newcomb_deg™ Newcomb_clo Newcomb_clo*
0.006 -
0.0025 - 0.0026 - 4-
i 0.004 -
0.0020 /A/ 0.0024 - 2+
0.0015 = 0.002 -
0.0022 4 0-
1 1 1 1 1 1 i 1
5 10 5 10 5 10 5 10
Newcomb_clu Newcomb_clu* Newcomb_bet Newcomb_bet*
0.008 204
- 0.0020 o 0.004 -
0.006 = 15- 0.0018 :
1.0 = § 0.003 =
e 0.0016 =
0.004 05- oooe __‘% 0.002
1 | 00~ ] 0 ) 1 1 1 1
5 10 5 10 5 10 5 10
Enron_deg Enron_deg* Enron_clo Enron_clo*
0.0025 =
0.0014 ~ 0030 0.050 -
0.0012 000207 0.036 7 040 ]
M 0.0015 - 0033 o
0.0010 = - b
e | 00010 00309 0.030 -
T T T L T T U T U T T T U
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
o
.2 Enron_clu Enron_clu* Enron_bet Enron_bet*
.© 0.0650 0.0036
S 0.0625 0,0225 - 0.0034 4 0.0039 -
@ 0.0600 0.0600 — 0.0032 4 0.0036 -
5 0.0575 0.0575 4 0.0030 - 0.0033 =
{70.0550 0.0550 = - m 0.0030 =
@ 0.0525 i i 00525 - i i [ 000287 | | — 00027 T T 7
§ 0 10 20 30 0 10 20 30 [ 10 20 30 0 10 20 30
§ DBLP_deg DBLP_deg* DBLP_clo DBLP_clo*
L 7-05 1.0e-04 = 0.084
© 66-054 = T S be05 - 0.07-
o - 0.07 4
& 5e-05 4 0,06 -
3 4e-05 - VORPPIPTIIO 5.06-05 7 0064 "
» 3e-05 - 2.5e-05 = 0.05 0.05 =
€ Do0n | m—— I
3 2e-05 T T T 0.0e+00 — T T T T T T T T T
s 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
DBLP_clu DBLP_clu* DBLP_bet DBLP_bet*
0.065 0.075 0.0046 -
0.070 = 0.0044 =
i 0.0044 =
0.080 0.065 - 0.0042 4 0.0042 -
0.055 e 0.0040 = 0.0040 =
0.050 - 0.050 - 0.0038 - 0.0038 -
T T T T T T T T T T T T T T
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
ArabSpring_deg ArabSpring_deg* ArabSpring_clo ArabSpring_clo*
0.028
0.026 0.026 - 0.026 5 0.0267
0.024 0.024 = 0.024 4 0.024 5
0.022 0.022 - 0.022 4 0.022 -
T I | T 0020 1 i 1 1 1 1 T 0020 1 1 1 |
4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16
ArabSpring_clu ArabSpring_clu* ArabSpring_bet ArabSpring_bet*
0.175 4 046 - 0.0045 - 0.0045 -
0.150 -
014 0.0040 - 0.0040 -
0.125 = 012 - 0.0035
T I | 1 T 1 1 T 1 1 T’ 0.0035 1 1 1 |
4 8 12 16 4 8 12 12 16 4 8 12 16

16 4
Window Parameter

Fig. 6. Comparison of prediction performance across window parameter.

9:21

Model

—=— Average
—— Linear

—=— Exponential

best training distance, which is the difference between two window sizes that achieve
the best prediction accuracies. Regression models can achieve good performance when
the window size is small but the same prediction error can also be observed again
when the window size is large enough. The concept of best training distance is simi-
lar to that of the best validating distance since they both demonstrated long distance
temporal dependencies between activity measures on different timesteps. However,
the best training distance is the distance from the dynamic metrics to the past activ-
ity measures, while the best validating distance is the distance from dynamic metrics
to the future activity measures. In addition, we observe that those experiments first
saw significant increase and then decrease pattern in Figure 6 and Figure 7 are those
experiments that have best validating distance large than 1. This indicated that exper-
iments that showed long-distance dependencies in the past also demonstrated similar
long-distance dependencies to the future.
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Fig. 7. Comparison of prediction performance across window parameter with confidence interval.

6.4. Measuring Temporal Invariants of Dynamic Social Networks

Results from the previous sections suggested the existent of an inherent long distance
temporal dependency exist in the dynamic social network. However, those analyses
only show results for a specific parameter/validation size setting. In this section, we
want to figure out whether the long-distance temporal dependencies exist regardless
of the validating size.

Figure 8 illustrates a comparison of the window parameter across different tem-
poral aggregation models. Here, for each validating size ranging from 1 to the maxi-
mum possible value, we record the optimal parameter to achieve the minimal MSE of
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Fig. 8. Mean and confidence intervals of window parameters that achieves optimal performance.

prediction. We then calculate the mean and confidence intervals of those optimal pa-
rameters of experiments conducted in each dataset. We call the average window pa-
rameter to optimize prediction error the reference window. The mean and standard
deviations of reference window is reported in Figure 8 as well. We see that most of
the experiments have a relatively stable reference window size with a small standard
deviation. This illustrates an internal long-distance dependency within a dataset that
is independent of the prediction task. Another observation is that exponential model
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usually requires more data to achieve the optimal prediction error and always has a
small confidence interval. This is due to the flexibility of the model itself and its ability
to take more information in the distant past into account. For example, the Newcomb
dataset has a reference window of three-to-five weeks, which is a reasonable cycle for
a real social network. For Arab Spring dataset, the reference window size is something
between three and five months. These analyses suggested the existence of temporal
invariants in the dynamic social network.

6.5. Running Time Analysis

One of the key considerations in practice is the running time of the metrics. As earlier
theoretical analysis suggests, both Average and Exponential models can be calculated
recursively and the execution time is in constant complexity. However, since there are
no recursive solutions to the Linear model, its complexity is proportional to the length
of the input activity measures. We recorded the execution time of dynamic metrics
on each of the three temporal aggregation models. In order to compare models with
different running time, we again use the technique introduced in Section 4.4 to convert
the transmission parameter of the Exponential model into the window-size parameter.
We reported the mean and confidence interval of the running time in each group. The
running time only includes the execution time of calculating dynamic metrics, which
is illustrated in Algorithms 1, 2, and 3. The running time of regression models, which
is used to evaluate our metrics, is not included.

Figure 9 is a comparison of the running time of different models in each of the
datasets we used in the experiments. The horizontal axis is the window parameter and
the vertical axis is the actual running time. Each point in the graph represents the
mean execution time of several sets of experiments with the same aggregation model
and parameter. Confidence intervals are also plotted for each window size. We see that
the Average and Exponential model basically follow a constant complexity of running
time when model parameter changes.

7. FUTURE WORK

This research lays the groundwork for many additional developments. One thing that
deserves further exploration is how to make the model parameters adaptable with the
network data. In our analysis, the mode parameters are fixed prior to the analysis
and stay unchanged later on. Future work should consider building a dynamic model
that tweaks the parameters to fit the changes of incoming data adaptively. Such an
application would be particularly useful in contexts where network externalities are
changing network dynamics. Second, we choose activity measures that are used to
characterize network structure. There are many other activity measures that are not
related to network structures. Future research should consider what kind of activity
metrics could yield the most meaningful results in a dynamic setting. Third, in the
definition of Emergence we use two different ways to normalize the Emergence to make
it become an indicator that is independent of the magnitude of network changes. More
analysis might be necessary to understand the impacts of those normalizations and
compare the normalized and non-normalized versions of Emergence. Finally, further
empirical work on the temporal dimension of social network data is critical including
an evaluation of what additional features, beyond Persistence and Emergence, are
necessary in understanding network dynamics.

8. CONCLUSIONS AND LIMITATIONS

In this article, we explored the problem of measuring temporal patterns in dynamic
social networks. We argued that the patterns of evolution could be modeled in a man-
ner similar to that of the human cognitive process using the principles of Recency
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and Primacy. We built two classes of dynamic metrics and implemented those metrics
with three different temporal aggregation models. We found that the extents to which
we model Recency and Primacy effects are closely related to the performance of these
metrics in terms of the ability to predict future network activities. In particular, the
Exponential aggregation model has the best practice of Recency—Primacy effect and
achieves the best performance. We also found that there exist intrinsic temporal invari-
ants in dynamic social networks. These temporal invariants remain similar for each
agent over time and reflect the temporal dependencies of activities between the recent
and the past. We conclude that the activities of agents in the social network are highly
predictable given the retrospective information within a fixed temporal length, which
patterns can be measured using our dynamic metrics.

There are several limitations to this work. For example, the work presented in
the article is based on the consistency assumption of human behavior. Although our
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experiment results support this consistency, it is still possible that sporadic human
behavior might invalidate the basic model assumption in some situation.

There are many applications of this research. First, the dynamic metrics proposed
in this research can be used in anomaly detection. Using Persistence and Emergence,
we can easily identify agents who show sharp increases in network activities. In on-
line social network websites, those accounts that have abnormal activities might be
spammers or robots. The metrics proposed in this research provided a scalable method
to detect those abnormalities in large dynamic social networks. Second, the fact that
our metrics have statistical correlations to future activities suggests the possibility of
estimating agent level activities in dynamic social networks. Although our approach
cannot be used to predict the exact link changes, we can use the metrics to predict the
activity measures on those link changes. This makes our metrics useful in forecasting
the future importance of agents within a network according to the activity measures
used without knowing the exact network representations. Understanding the changes
in the activity measures such as centralities is key to many problems such as rec-
ommendation systems and user impact estimations. Finally, our metrics can be used
to study the periodicity of network changes. The temporal invariants can be used to
support the studies of periodicity such as the life cycles of fashions, gossips and how
they impact the evolution of social networks.
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