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ABSTRACT
Real-time location inference of social media users is the fun-
damental of some spatial applications such as localized search
and event detection. While tweet text is the most commonly
used feature in location estimation, most of the prior works
suffer from either the noise or the sparsity of textual features.
In this paper, we aim to tackle these two problems. We use
topic modeling as a building block to characterize the geo-
graphic topic variation and lexical variation so that “one-hot”
encoding vectors will no longer be directly used. We also
incorporate other features which can be extracted through
the Twitter streaming API to overcome the noise problem.
Experimental results show that our RATE algorithm outper-
forms several benchmark methods, both in the precision of
region classification and the mean distance error of latitude
and longitude regression.

CCS CONCEPTS
• Information systems → Blogs; Social networking sites;
Spatial-temporal systems;
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1 INTRODUCTION
Micro-blogging services such as Twitter, Tumblr and Wei-
bo are regarded as indispensable platforms for information
sharing and social networking. In recent years, estimating
the location information of social media users has become a
popular topic with some important applications. For example,
the ability to select a group of users in the specific spatial
range can enable analysis on real-time disaster information,
localized friendship recommendation or investigations on the
geographic variation in habits.

For Twitter users, while tweet text is the most commonly
used feature in location inference, most of the prior works
suffer from the following two problems of textual features.
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Noise. Due to the length limitation of a tweet, there are
always lots of non-standard usages of the tweeting language
including abbreviations, typos, and emoji.
Sparsity . In contrast with the entire corpus, there is a very
small proportion of words appearing in each short tweet.
Therefore, the “one-hot” encoding vectors of each tweet will
be sparse and hard to deal with.

In this paper, we propose RATE to overcome noise and
sparsity of textual features in ReAl-Time location Estimation.

To tackle the noise problem, we incorporate other infor-
mation available from the retrieved tweet. Figure 1 shows
an example of a tweet with 8 metadata extracted through
the Twitter streaming API [13]. Note that the exact latitude
and longitude can be extracted only if users open their GPS
service. But few users choose to do so for the concern of
privacy. The absence of GPS signals forces us to rely on other
information.1

In Figure 1, user’s residence, name and description are
free-text fields completed during the registration. We can
combine tweet text and some free-text fields into a single
“document”. We name it as textual features. Besides, we also
have several categorical features including time zone, UTC
offset, tweet language and user language.

To tackle the sparsity problem, we use Latent Dirichlet
Allocation [2] as a building block to deal with textual features
so that “one-hot” encoding vectors will no longer be directly
used as input.

Our generative model assumes that each location has differ-
ent distributions over topics, words and categorical features.
Therefore, we can infer the location through the observable
features. Our model can be applied in either region classifica-
tion or latitude and longitude regression, and experimental
results show that RATE outperforms several benchmark meth-
ods in both tasks. As a byproduct, it can also be used to
discover the real-time hot topics and find lexical variation of
different regions.

Related Work. There is a long sequence of studies in loca-
tion estimation of social media users. For more details, please
refer to [7].

Among various approaches used in location inference, find-
ing location indication words is the most common one. For ex-
ample, Cheng et al. [4] propose a local word filtering method.

1In this paper, we adopt the same scenario as [13]. We want to solve
location estimation problem for real-time Twitter stream. In this
scenario, it becomes infeasible to retrieve follower-followee relationships
or to make plenty queries to an access-limited database. Therefore,
we cannot rely on social connections or some third-party information
although it is easy to put them in the model from the technical
perspective.
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Figure 1: Example of a geotagged tweet with 8 metadata [13] Figure 2: Plate diagram of RATE

Eisenstein et al. [6] incorporate Correlated Topic Models
(CTM) [1] to describe the relationships among different local
topics. Chen et al. [3] further add user’s interests into their
topic model.

Another widely used technique relies on social network
relationships, so as to infer a users location from that of
its followers and followees [5, 8, 10]. But in our context, a
classifier needs to deal with the additional challenge of having
to rely only on the information in a single tweet.

Our method is inspired by Zubiaga et al.’s work [13]. They
use tweet metadata to train a Maximum Entropy classifi-
er (i.e., logistic regression). However, they adopt “one-hot”
representation and ignore the sparsity of textual features.

2 MODEL
We use a Bayesian graphical model RATE to characterize the
relationship between tweets, topics and regions. Using plate
notation, Figure 2 illustrates the structure of our model.

There are 𝐿 latent areas. Each area 𝑖 has 𝑇 topics 𝜑𝑖,𝑗

(represented by multinomial distributions over the words),
𝐹 categorical features 𝑓𝑢,𝑖 (represented by multinomial dis-

tributions over the categories) and a region distribution 𝑓𝑖.
As normal practice, we suppose that all multinomial dis-
tributions have a Dirichlet prior. We also assume that the
latitude and longitude are extracted from a two-dimensional
Gaussian distribution governed by the area’s geographical
center 𝜇𝑖 and variance 𝜎2

𝑖 . Given the area indicator 𝑝, we use
the distributions of 𝑝 to generate words, categorical features,
the region indicator and coordinates of the tweet.

RATE has three major components: the textual feature com-
ponent, the categorical feature component and the prediction
component, which have been marked in Figure 2.

The textual feature component has a similar structure with
Latent Dirichlet Allocation (LDA) [2]. The only difference
is that in LDA, the word is selected by a per-token hidden
variable 𝑧, while in RATE, the word is selected jointly by a
topic index 𝑧 and a per-tweet area index 𝑝.

In the categorical feature component, features such as user
language, tweet language and time zone are generated by the
multinomial distribution 𝑓𝑢,𝑖.

The prediction component includes the region indicator 𝑐𝑖
and the coordinates 𝑦𝑖 of the tweet. In the training set, they

are the features which help us cluster the tweets and infer
the latent parameters. And in the testing set, they are no
longer observable and are the variables we want to predict.

We conclude our generative story as follows:

Algorithm 1 Generative Process for RATE

1: 1. Sample the distribution over areas 𝜓 ∼ Dir(𝛾)

2: 2. for each area 𝑖 = 1, 2, ..., 𝐿

3: (1) for each topic 𝑗 = 1, 2, ..., 𝑇
4: Sample the distribution over words 𝜑𝑖,𝑗 ∼ Dir(𝛽)

5: (2) for each categorical feature 𝑢 = 1, 2, ..., 𝐹

6: Sample the distribution over categories 𝑓𝑢,𝑖 ∼ Dir(𝛿𝑢)

7: (3) Sample the distribution over regions 𝑓𝑖 ∼ Dir(𝛿𝑖)
8: (4) Sample area center and variance 𝜇𝑖 ∼ 𝑁(𝑎, 𝑏2𝐼),

9: 𝜎2
𝑖 ∼ Γ(𝑐, 𝑑)

10: 3. for each document 𝑘 = 1, 2, ..., 𝐷

11: (1) Sample area indicator 𝑝𝑘 ∼ Mul(𝜓)

12: (2) Sample the distribution over topics 𝜃𝑘 ∼ Dir(𝛼)
13: (3) for each word position 𝑙 = 1, 2, ..., 𝑁𝑘

14: Sample topic indicator 𝑧𝑘,𝑙 ∼ Mul(𝜃𝑘)

15: Sample word 𝑤𝑘,𝑙 ∼ Mul(𝜑𝑧𝑘,𝑙,𝑝𝑘 )

16: (4) for each categorical feature 𝑢 = 1, 2, ..., 𝐹
17: Sample category indicator 𝑥𝑢,𝑘 ∼ Mul(𝑓𝑢,𝑝𝑘 )

18: (5) Sample region indicator 𝑐𝑘 ∼ Mul(𝑓𝑝𝑘 )

19: (6) Sample coordinates 𝑦𝑘 ∼ 𝑁(𝜇𝑝𝑘 , 𝜎
2
𝑝𝑘
𝐼)

As a common sense, different regions may have differen-
t popular topics. Even for the same topic, there exists a
geographic lexical variation [6]. Different regions may also
have distinct distribution of user’s features. For example,
French will be the dominating element of the user language
distribution in France, while it will not cover a considerable
proportion in Germany. Therefore, the observable text and
user features of the tweet are strong spatial indicators.

Inference. We use a Gibbs-EM algorithm [11] to infer the
model parameters. During the E step, we assume that 𝜇 and
𝜎2 are already known as the result of a previous M step. We
then use Collapsed Gibbs Sampling to generate samples for
𝑧 and 𝑝 and use the average of these samples to approximate
the expectation:

Pr(𝑧𝑘𝑙 = 𝑧|¬𝑧𝑘𝑙) ∝ (𝑛
𝑧,*−
𝑘,* + 𝛼𝑧) ·

𝑛
𝑧,𝑝𝑘−
*,𝑟 + 𝛽𝑟∑︀𝑉

𝑟=1(𝑛
𝑧,𝑝𝑘−
*,𝑟 + 𝛽𝑟)

,



Dataset Europe UK France

Method Precision MDE(km) Time(ms) Precision MDE(km) Precision MDE(km)

NB 0.8770 427.0 0.20 0.3842 215.0 0.5218 284.6
SVM 0.8796 426.3 3.56 0.4188 205.8 0.5395 275.8
GeoTM 0.7973 529.8 16.5 0.4260 195.6 0.5414 277.9
LR-Text 0.7229 726.9 2.48 0.3983 224.6 0.5316 310.9
LR-Full 0.8890 429.2 2.46 0.4207 214.6 0.5413 285.4

RATE 0.8922 372.8 17.5 0.4325 194.8 0.5586 284.9

Table 1: Location prediction results.

and

Pr(𝑝𝑘 = 𝑝|¬𝑝𝑘) ∝
1

𝜎2
𝑝

exp(−
||𝑦𝑘 − 𝜇𝑝||22

2𝜎2
𝑝

) ·
𝑁𝑘−1∏︁
𝑙=0

(𝑛
*,𝑝−
*,* + 𝛾𝑝 + 𝑙)·

∏︁
𝑗,𝑟:𝑛

𝑗,*
𝑘,𝑟

>0

∏︀𝑛
𝑗,*
𝑘,𝑟

−1

𝑙=0
(𝑛

𝑗,𝑝−
*,𝑟 + 𝛽𝑟 + 𝑙)

∏︀𝑛
𝑗,*
𝑘,*−1

𝑙=0
(
∑︀𝑉

𝑟=1(𝑛
𝑗,𝑝−
*,𝑟 + 𝛽𝑟) + 𝑙)

·
𝐹+1∏︁
𝑢=1

𝑚
𝑝,𝑥𝑘𝑢−
*,𝑢 + 𝛿𝑢,𝑥𝑘𝑢∑︀𝐶𝑢

𝑣=1(𝑚
𝑝,𝑣−
*,𝑢 + 𝛿𝑢,𝑣)

.

Here 𝑛𝑗,𝑖
𝑘,𝑟 denotes the number of times that a document 𝑘

has a word 𝑟 that falls into topic 𝑗 in area 𝑖, and 𝑚𝑖,𝑣
𝑘,𝑢 is the

number of times that a feature 𝑢 of document 𝑘 falls into
category 𝑣 of area 𝑖. Note that 𝑐𝑖 and 𝑦𝑖 are observable in
the training set. Therefore, we regard 𝑐𝑖 as the (𝐹 + 1)-th
categorical feature of tweet 𝑖.

In the M step, we estimate 𝜇 and 𝜎2 by maximizing the
likelihood function, which is defined as the average over all
samples drawn from the E step:

𝑄(𝜇, 𝜎
2
) =

1

𝑆

𝑆∑︁
𝑠=1

log(Pr(𝑂,Ω
(𝑠)|𝜇, 𝜎

2
)) −

1

2
𝜆||𝜎||22.

By solving the equations 𝜕𝑄
𝜕𝜇𝑝

= 0 and 𝜕𝑄
𝜕𝜎𝑝

= 0, we acquire

an MLE estimation for the center and variance of each region:

𝜇𝑝 =

∑︀𝑆
𝑠=1

∑︀
𝑘:𝑝

(𝑠)
𝑘

=𝑝
𝑦𝑘

∑︀𝑆
𝑠=1

∑︀
𝑘:𝑝

(𝑠)
𝑘

=𝑝
1

,

and
𝑆∑︁

𝑠=1

∑︁
𝑘:𝑝

(𝑠)
𝑘

=𝑝

(𝜆𝜎
4
𝑝 + 𝜎

2
𝑝 −

1

3
||𝑦𝑘 − 𝜇𝑝||22) = 0.

3 EXPERIMENTS
Dataset. We extract a Twitter dataset within the geographi-
cal boundary of Europe from October 2015 to December 2015.
The boundary is defined by the (latitude, longitude) point
(-13.97, 33.81) in the lower left corner and (41.40, 58.73) in
the upper right corner. We remove the users who posted less
than 10 tweets during these 3 months and get 376,356 users
left. To avoid bias in the dataset, we randomly select one
tweet for each user. We name this dataset as Europe.

In Europe, we select all the tweets from UK/France to
form another 2 datasets. After the filtering, we have 77,852
and 36,451 tweets in UK and France respectively.

In all of the 3 datasets, we use 60% of tweets for training,
20% for tuning the parameters, and the remaining 20% for
final testing. For the tweet text, we remove URLs and the
words that occur less than 10 times in the whole corpus. But
we retain mentions (“@username”), hashtags (“#topic”) and

stop words. After the preprocessing, we have a vocabulary of
approximately 30K words.

For each tweet, we combine tweet text and user’s profile
location into a single “document”. It is our textual feature.
Besides, we use user language, time zone and tweet language
as categorical features.

Evaluation Metrics. For the region classification task, we
use precision to evaluate the performance, which is defined as
the percent of tweets which are predicted in the same region
where they are published. Note that in Europe, we directly
conduct country-level classification. In UK and France, we
divide each country into 4 regions according to the result of
K-means.

For the coordinates regression task, we use mean distance
error (MDE) as our metric. It is the average error distance (on
the sphere) between predicted location and actual location.

Effectiveness. We select the following benchmark methods,
which are also applicable in the real-time scenario, to compare
with our approach.

(1) Naive Bayes (NB) is a basic classification method using
only categorical features.

(2) SVM trains a linear Support Vector Machine with both
categorical features and textual features.

(3) LR-Text [13] trains a Logistic Regression classifier using
only textual features with “one-hot” representation.

(4) LR-Full [13] is similar to LR-Text, but it incorporates
both categorical features and textual features. According to
the original paper, this combination performs the best.

(5) RATE is the method proposed in this paper.2

(6) GeoTM is a simplification of RATE, using only textual
features. It is also similar with the method in [6]. The only
difference is that Eisenstein et al. use CTM, while we use
LDA.

Table 1 shows the location prediction results of the methods
mentioned above. As expected, RATE significantly outperforms
all the benchmark methods, both in region classification and
coordinates regression.

Methods only using textual features, such as GeoTM and
LR-Text, perform not so well in country-level classification
because categorical features do help a lot in dealing with
the noise problem in coarse-grained tasks. However, textual
features show their power in fine-grained tasks. We can see
that GeoTM performs the second best in UK and France. where

2The code as well as the dataset is available at
https://github.com/yuzhimanhua/Location-Inference/.



categorical features may have less contribution in location
estimation. Therefore, if we want to balance the performances
of our algorithm in both coarse-grained tasks and fine-grained
ones, it will be effective to incorporate both textual features
and categorical features into our model. Moreover, we should
note that RATE adopts a better way than SVM and LR-Full

in dealing with the sparsity of textual features.

Efficiency. Table 1 also shows the running time each algo-
rithm spends on each tweet in Europe. Note that we only
calculate testing time and do not take the training phase into
account. We can observe that RATE, SVM and LR-Full are
almost at the same order of magnitude in efficiency. Since we
only adopt the original Collapsed Gibbs Sampling method in
RATE, we believe that RATE can be even faster with the help
of some acceleration strategies of sampling [9].

Parameter Study. As common practice, we set 𝛼 to be
50/(𝐿𝑇 ) and other Dirichlet priors to be 0.01.

Figure 3 shows the MDE of RATE in Europe with different
numbers of regions (𝐿) and topics (𝑇 ). We can observe that
for each fixed 𝐿, the model always performs the best in the
case 𝑇 = 1. Therefore we no longer need to sample 𝜃 and
𝑧, and the structure of 𝛽, 𝜑, 𝑤, 𝑝, 𝜓 and 𝛾 will be identical
to the DMM model [12], which has proved to be effective in
dealing with short text like tweets [12].

The “best” 𝐿 is 30 in Europe, which approximately equals
to the number of countries.

Words and Topics. As a byproduct in the training process
of RATE, we show the top 8 words in the top 5 regions in
Europe in Table 2. The top words can be divided into four
categories: temporal words (e.g., “today” and “october”),
location names (e.g., “paris” and “spain”), local characteristic
words (e.g., “rain” and “wind” in Britain and “love” in
France) and hashtags. These four kinds of words correspond
to time, locations, topics and events respectively.

4 CONCLUSION
In this paper, we propose a Bayesian graphical model to
overcome the noise and sparsity problems in real-time loca-
tion estimation on Twitter. The key ideas of our model are
that: (1) we use the combination of text information and
user profile information to tackle the noise problem. (2) we
use topic modeling characterizing the geographic lexical vari-
ation to tackle the sparsity problem. Quantitative analysis
justifies our model on several Twitter datasets by showing
that our approach outperforms several benchmark methods.
Qualitative analysis shows that our model is also useful in
extracting location-relevant topics.
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