

AFRL-IF-RS-TR-2006-89
Final Technical Report
March 2006

SEMANTIC WEB TECHNOLOGIES FOR MOBILE
CONTEXT-AWARE SERVICES

Carnegie Mellon University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J391

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2006-89 has been reviewed and is approved for publication.

APPROVED: /s/

MARK GORNIAK
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES W. CUSACK
Chief, Information Systems Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2006

3. REPORT TYPE AND DATES COVERED
Final Jan 2003 – Jan 2005

4. TITLE AND SUBTITLE
SEMANTIC WEB TECHNOLOGIES FOR MOBILE CONTEXT-AWARE
SERVICES

6. AUTHOR(S)
Norman M. Sadeh

5. FUNDING NUMBERS
C - F30602-03-0025
PE - 62301E
PR - DAML
TA - 00
WU - 21

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ISRI – School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh Pennsylvania 15213

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFSB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2006-89

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Mark Gorniak/IFSB/(315) 330-7724 Mark.Gorniak@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The emergence of Semantic Web Services and automated service discovery, access and composition functionality will
enable higher levels of interoperability and automation across a broad range of contexts (e.g. intra- and inter-
organization collaboration, dynamic virtual enterprises, coalition forces, pervasive computing, etc.). The objective of this
project was to demonstrate, validate and disseminate Semantic Web technologies aimed at reconciling the
interoperability and confidentiality requirements associated with these scenarios, focusing in particular on mobile,
context-aware services. This final performance report provides a comprehensive, cumulative and substantive summary
of the progress and significant accomplishments achieved during the course of this project.

15. NUMBER OF PAGES
95

14. SUBJECT TERMS
Semantic Web, Context Awareness, Web Services, Privacy, Mobility, Rules

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

1 SUMMARY ... 1
2 INTRODUCTION... 2
3 METHODS, ASSUMPTIONS AND PROCEDURES ... 4

3.1 A SEMANTIC WEB ARCHITECTURE FOR CONTEXT-AWARE SERVICE PROVISIONING 4
3.2 ROWL – RULE EXTENSION OF OWL... 9
3.3 SEMANTIC E-WALLETS .. 12

4 RESULTS AND DISCUSSION ... 20
5 CONCLUSIONS ... 22
6 RECOMMENDATIONS.. 23
7 SELECTION OF PROJECT REFERENCES ... 24
8 ADDITIONAL REFERENCES... 25

List of Appendixes
9 APPENDIX A: A MORE IN-DEPTH OVERVIEW OF THE SEMANTIC E-WALLET......... 29

9.1 OVERALL INTRODUCTION .. 29
9.2 PRIOR WORK.. 30
9.3 OVERALL SYSTEM ARCHITECTURE .. 32
9.4 SEMANTIC E-WALLET .. 34
9.5 A THREE-LAYER E-WALLET IMPLEMENTATION... 37
9.6 ADDITIONAL IMPLEMENTATION CONSIDERATIONS .. 38
9.7 STATIC KNOWLEDGE AND DOMAIN SPECIFIC RULES ... 43
9.8 SERVICE LAYER PROCESSING... 44
9.9 CAPTURING USER PREFERENCES.. 46
9.10 EMPIRICAL EVALUATION ... 48
9.11 SUMMARY AND CONCLUDING REMARKS ... 50

10 APPENDIX B: A MORE IN-DEPTH OVERVIEW OF META-CONTROL STRATEGIES TO
INTERLEAVE SEMANTIC WEB REASONING AND SERVICE DISCOVERY............................. 51

ABSTRACT.. 51
10.1 INTRODUCTION... 51
10.2 OVERALL APPROACH AND ARCHITECTURE.. 53

10.2.1 Pervasive Computing as an Application Context... 53
10.2.2 Information Disclosure Agent: An Example of a Policy Enforcing Agent 56

10.3 SAMPLE SCENARIO... 59
10.4 QUERY STATUS MODEL ... 60
10.5 THE SERVICE DISCOVERY MODEL ... 66
10.6 IMPLEMENTATION .. 67
10.7 CONCLUDING REMARKS... 68

11 APPENDIX C: USING SEMANTIC WEB SERVICES FOR PLANNING-ENABLED
CONTEXT-AWARE MOBILE APPLICATIONS ... 69

ABSTRACT.. 69
11.1 INTRODUCTION... 69
11.2 OVERVIEW OF MYCAMPUS .. 69

 ii

11.3 USING WEB SERVICES FOR CONTEXTUAL INFORMATION... 72
11.3.1 Service Invocation Rules.. 73
11.3.2 Semantic Web Services Using OWL-S ... 73

11.4 SERVICE COMPOSITION .. 74
11.4.1 Automatic Operator Extraction and Planning... 75
11.4.2 Scenario ... 76

11.5 CONCLUDING REMARKS... 78
12 APPENDIX D: OVERVIEW OF A MUSEUM TOUR GUIDE APPLICATION 79

ABSTRACT.. 79
12.1 INTRODUCTION... 79
12.2 BRIEF LITERATURE REVIEW... 81
12.3 SYSTEM ARCHITECTURE .. 82
12.4 SEMANTIC WEB TECHNOLOGIES FOR PRIVACY AND SERVICE INVOCATION............................... 83
12.5 ILLUSTRATIVE SCENARIOS ... 87

12.5.1 People Finder Application... 87
12.5.2 Dynamic Recommendation Application... 88

12.6 SUMMARY AND CONCLUDING REMARKS ... 88

iii

List of Figures

FIGURE 1. MYCAMPUS INSTANTIATION OF OUR SEMANTIC WEB ARCHITECTURE
FOR CONTEXT-AWARE SERVICE PROVISIONING... 5
FIGURE 2. MYCAMPUS ARCHITECTURE: USER PERSPECTIVE - SMILEY FACES ARE
AGENTS...6
FIGURE 3. MYCAMPUS SCREENSHOTS, INCLUDING THE E-WALLET (TOP), A
CONTEXT-AWARE RESTAURANT CONCIERGE AGENT (BOTTOM LEFT) AND A
CONTEXT-AWARE MESSAGE FILTERING AGENT (BOTTOM RIGHT) 6
FIGURE 4. MYCAMPUS: ADDITIONAL SCREEN SHOTS .. 7
FIGURE 5. SONAT: CMU’S CONTEXT-AWARE MESSAGE DELIVERY AGENT................ 8
FIGURE 6. ARCHITECTURE OF CONTEXT-AWARE MUSEUM TOUR GUIDE.................. 8
FIGURE 7. RULE EDITOR FOR SEMANTIC WEB CONTEXT-AWARE MESSAGING
APPLICATION INTEGRATED INTO THE AURA SMART OFFICE ENVIRONMENT 9
FIGURE 8. SAMPLE RULE IN ROWL.. 9
FIGURE 9. ROWL SEMANTIC WEB INFERENCE ENGINE ARCHITECTURE.................. 10
FIGURE 10. SAMPLE CONTEXT-SENSITIVE PRIVACY/CONFIDENTIALITY RULE WITH
BOTH ACCESS CONTROL AND OBFUSCATION ELEMENTS)... 10
FIGURE 11. EDITOR FOR CONTEXT-SENSITIVE PRIVACY AND SECURITY POLICIES11
FIGURE 12. EDITOR FOR CONTEXT-SENSITIVE PRIVACY AND SECURITY POLICIES:
FLOW DIAGRAM... 12
FIGURE 13. THREE-LAYER INITIAL ARCHITECTURE .. 13
FIGURE 14. FOUR-LAYER CURRENT ARCHITECTURE... 14
FIGURE 15. HIGH-LEVEL OVERVIEW OF THE SEMANTIC E-WALLET............................ 15
FIGURE 16. FRAGMENT OF QUERY TRANSFORMATION STYLESHEET 16
FIGURE 17. QUERY ISSUED BY THE USER 'NSADEH’ REQUESTING THE LOCATION
OF USER ‘FGANDON’ ... 17
FIGURE 18. MAIN STEPS INVOLVED IN PROCESSING A QUERY SUBMITTED TO AN
EWALLET...18
FIGURE 19. STANDALONE E-WALLET DEVELOPMENT ENVIRONMENT, AS
RELEASED ON SEMWEBCENTRAL. .. 18
FIGURE 20. MYCAMPUS ARCHITECTURE: A USER’S PERSPECTIVE - THE SMILEY
FACES REPRESENT AGENTS... 33
FIGURE 21. MAIN STEPS INVOLVED IN PROCESSING A QUERY SUBMITTED TO AN E-
WALLET. ..37
FIGURE 22. E-WALLET’S 3 LAYER IMPLEMENTATION.. 38
FIGURE 23. HIGH-LEVEL FLOWS AND PROCESSES IN THE E-WALLET 39
FIGURE 24. FRAGMENT OF THE QUERY TRANSFORMATION STYLESHEET 39
FIGURE 25. QUERY ISSUED BY THE USER 'NSADEH’ REQUESTING THE LOCATION
OF USER ‘FGANDON’ ... 40

iv

FIGURE 26. E-WALLET’S OVERALL PROCESSING FLOW.. 41
FIGURE 27. PRIVACY RULE OBFUSCATING THE LOCATION OF THE OWNER............. 42
FIGURE 28. SERVICE RULE FOR ACTIVITY-TRACKING INVOCATION IN WOWL....... 42
FIGURE 29. SERVICE RULE FOR ACTIVITY-TRACKING INVOCATION TRANSLATED
IN CLIPS 43
FIGURE 30. DECLARE PROPERTY EQUIVALENCE AS A SYMMETRIC PROPERTY...... 43
FIGURE 31. RULE FOR FORWARD-CHAINING COMPLETION OF PROPERTY
EQUIVALENCE .. 43
FIGURE 32. RULE DEFINING COLLEAGUES AS MEMBERS OF THE SAME TEAM........ 44
FIGURE 33. SEMANTIC WEB SERVICE FOR LOCATION-TRACKING OVER CMU’S
WIRELESS LAN.. 46
FIGURE 34. GENERIC RULE EDITOR THAT ENABLES USERS TO (A) BROWSE AND (B)
(C) EDIT THEIR OWL-BASED PRIVACY/CONFIDENTIALITY PREFERENCES. 47
FIGURE 35. SCREENSHOTS OF THE E-WALLET (TOP), RESTAURANT
RECOMMENDATION FROM THE RESTAURANT CONCIERGE AGENT (BOTTOM LEFT)
AND REQUEST FOR FEEDBACK FROM THE MESSAGE FILTERING AGENT (BOTTOM
RIGHT)...48
FIGURE 36. MYCAMPUS: ADDITIONAL SCREENSHOTS SHOWCASING ADDITIONAL
AGENTS AND PERVASIVE COMPUTING SCENARIOS.. 49
FIGURE 37. PERVASIVE COMPUTING AS AN APPLICATION DOMAIN............................. 54
FIGURE 38. INFORMATION DISCLOSURE AGENT: LOGICAL ARCHITECTURE 56
FIGURE 39. ILLUSTRATION OF FIRST FEW STEPS INVOLVED IN PROCESSING A
REQUEST FROM BOB TO FIND OUT ABOUT THE ROOM MARY IS IN.................................... 59
FIGURE 40. AN EXAMPLE OF STATUS CHANGES ... 63
FIGURE 41. AN EXAMPLE SERVICE PROFILE IN OWL-S.. 67
FIGURE 42. MYCAMPUS ARCHITECTURE: A USER’S PERSPECTIVE – THE SMILEY
FACES REPRESENT AGENTS... 70
FIGURE 43. THIS RESTAURANT CONCIERGE IS AN EXAMPLE OF A MYCAMPUS
AGENT...72
FIGURE 44. PIZZA DELIVERY OPERATORS. .. 77
FIGURE 45. PLAN FOR ORDERING A PIZZA. .. 78
FIGURE 46. MUSEUM GUIDE ARCHITECTURE.. 82
FIGURE 47. SIMPLIFIED CONCEPT OF MUSEUM EXHIBIT.. 84
FIGURE 48. AN INSTANCE OF A MUSEUM EXHIBIT... 84
FIGURE 49. EXPRESSING VISITOR PREFERENCES AS ROWL RULES. 85
FIGURE 50. EXAMPLE OF A PRIVACY RULE.. 86

 1

1 Summary
With hundreds of millions of Internet-enabled mobile devices, the mobile Internet is
opening the door to a slew of new mobile applications and services that will assist users
as they engage in time-critical, goal-driven tasks. Yet today, these devices and associated
mobile scenarios give rise to particularly challenging usability issues. Overcoming these
challenges will likely require the development of applications that can dynamically
recognize and adapt to the context in which their users operate (e.g. location, activities
and tasks, surrounding environment, organizational or social context, etc.). The objective
of this project was to demonstrate and evaluate the use of semantic web technologies (1)
in facilitating the development and maintenance of context-aware applications and
(2) in capturing and enforcing associated security and privacy/confidentiality
policies. This included demonstrating the relevance of these technologies in the context
of both civilian and DoD-oriented scenarios. In the process, this project also provided a
vehicle to test drive early semantic web languages and contributed to recommendations
for extending these languages in several areas (semantic web services, rules and privacy
and security policies).

The primary findings of this project are:

• Semantic web technologies can play a key role in facilitating the rapid
development and maintenance of context-aware applications, as demonstrated
by the project’s experience in several application domains (e.g. MyCampus
domain aimed at enhancing everyday campus life through an open collection of
context-aware applications, SONAT context-aware message filtering and delivery
application, context-aware museum tour guide applications)

• When extended to support rules, semantic web technologies provide a
particularly powerful framework to capture and enforce rich security and
privacy policies (including context-sensitive policies)

Key additional accomplishments include:

• Extensions of the OWL language to represent rules and development of
associated reasoning functionality

• Public release of two software tools (ROWL engine and Semantic eWallet) on
SemWebCentral (http://www.semwebcentral.org/) – about 1,000 page views and
50 downloads in the first three months

• Demonstrations on both civilian and DoD-oriented scenarios (e.g. MyCampus,
SONAT, CoSAR-TS)

• Contributions to semantic web service architecture working group and
semantic web rules working groups

• Development of a semantic web architecture for context-aware service
provisioning and privacy that is influencing a number of ongoing R&D efforts
in the telecommunications industry (e.g. work at Motorola, Nokia, NTTDoCoMo,
Siemens, etc.)

• Numerous publications, presentations, and other education and dissemination
activities

 2

2 Introduction
The emergence of Semantic Web Services and automated service discovery, access and
composition functionality will enable higher levels of interoperability and automation
across a broad range of contexts (e.g. intra- and inter-organization collaboration,
dynamic virtual enterprises, coalition forces, pervasive computing, etc.). The broad
objective of this project was to demonstrate, validate and disseminate Semantic Web
technologies aimed at reconciling the interoperability and confidentiality
requirements associated with these scenarios, focusing in particular on mobile, context-
aware services.

Specifically, application developers are looking for ways to provide users with added
levels of convenience and ease of use through functionality that is capable of capturing
the context within which they operate. This may involve knowing where the user is
located, the task she is currently engaged in, her eating preferences, who her colleagues
are as well as a variety of other contextual attributes. While there are many sources of
contextual information, they tend to vary from one user to another and also over time.
Different users may rely on different location tracking functionality provided by different
cell phone operators; they may use different calendar systems, etc. Traditionally, context-
aware applications and services have been hardwired to predefined sources of contextual
information (e.g. relying on a particular set of sensors and protocols to track a user’s
locations). As a result, they remain prohibitively expensive to build and maintain and are
few and between. Instead, in our project we have shown that, using Semantic Web
technologies, it is possible to develop significantly more open environments, where
context-aware applications can automatically discover and access a user’s personal
resources such as her calendar or location tracking functionality. This is done by viewing
sources of contextual information (or personal resource) as Semantic Web services that
can automatically be identified (and hence “re-used”) thanks to rich semantic profiles. As
users and organizations start exposing functionality in the form of semantic web services,
it is critical that they also be able to control who has access to this information and under
what conditions. A user may be willing to let her colleagues see where she is or access
her calendar activities between 8am and 5pm on weekdays but not over the weekend.
Similarly, when it comes to sharing sensitive contextual information with allies and
other coalition forces, the DoD needs to be able to enforce rich, context-sensitive
policies that take into account factors such as the nature of each particular alliance
or the relevance of requested information to specific joint missions. Capturing the
requirements associated with these scenarios has led our project to advance the state of
the art in Semantic Web technologies in several areas:

• Extending emerging Semantic Web languages and reasoning technologies to
capture rules (e.g. security and privacy policies, user preferences, service
identification rules, etc.)

• Developing a Semantic Web architecture for context-aware service provisioning

• Developing Semantic Web technologies and tools to enforce rich, context-
sensitive security and privacy policies

 3

The remainder of this report is organized as follows. The following section summarizes
the methods, assumptions and procedures used in our work. Section 4 summarizes and
discusses important project results. Conclusions are presented in Section 5. References
are provided in Section 6. Additional technical details are discussed in an Appendix at the
end of this report.

 4

3 Methods, Assumptions and Procedures

3.1 A Semantic Web Architecture for Context-Aware Service
Provisioning

We have developed a Semantic Web architecture for context-aware service provisioning,
where sources of contextual information are modeled as semantic web services. Entities
such as people, groups or organizations control access to their contextual information via
Semantic e-Wallets that serve a dual role of clearinghouse and gatekeeper to this
information. As users subscribe to or simply access new context-aware applications,
these applications attempt to obtain relevant information by querying their users’ e-
Wallets as well as possibly those of others (e.g. meeting scheduling requires accessing
calendar information for multiple users). During the course of the project, this
architecture was validated in several domains:

• MyCampus: A Semantic Web environment aimed at enhancing everyday campus
life at Carnegie Mellon University through deployment of a growing collection of
context-aware applications that users can access from PDAs and other access
devices over the campus’s 802.11 wireless LAN (see Figure 1, 2, 3 and 4). Over a
dozen context-aware applications have been developed (context-aware restaurant
concierge, meeting scheduler with obfuscation rules, people locator with privacy
preferences, location sensitive services such as movie guide, weather service, etc.,
context-aware message filtering and delivery services, remote slide viewing with
access control rules, P2P context-aware poster application, context-aware
reminder applications, etc.). Detailed evaluation has been conducted with real-
users on campus over periods of several days
[SCV+03,GS03,Sad03,GS04a,SG05]. Extensions of the environment to support
service composition functionality are also discussed in [SSG04].

• The Semantic Operational Net Assessment Tool (SONAT) developed by BBN to
showcase different DAML tools and technologies in a DoD context (Figure 5)

• The Coalition Search and Rescue – Task Support (CoSAR-TS) scenario
developed through a collaboration between AIAI (Edinburgh), the University of
West Florida, BBN and SPAWAR.

• A prototype context-aware Museum tour guide developed for the National
Museum of Natural Science in Taiwan – one of the island’s largest museums with
over 3 million visitors per year (Figure 6) [CHGS05]

• An office environment relying on the Aura context-aware infrastructure (Figure 7)
[MJH+04]

While it is difficult to objectively evaluate reductions in development and maintenance
costs afforded by our Semantic Web framework, especially in the context of early
prototyping efforts, anecdotal evidence collected through the successive development and
refinement of a series of context-aware applications in MyCampus suggests that the gains
are rather significant. Applications that would typically have required a week or more of
development could typically be developed in a matter of a day or two – sometimes less.

 5

These benefits are mainly attributed to the wrapping of sources of contextual information
as web services that can readily be shared across a growing collection of context-
sensitive applications and to the ability of our architecture to quickly capture complex,
context-sensitive privacy/confidentiality policies that can refer to any concept in shared
contextual ontologies.

Our Semantic Web architecture for context-aware service provisioning has influenced
ongoing research efforts at a number of companies in the telecom sector (e.g. Nokia,
Ericsson, Motorola, Siemens, NTTDoCoMo, Lucent, etc.), as acknowledged in their
publications [Mobi].

Figure 1. MyCampus instantiation of our Semantic Web Architecture for

Context-Aware Service Provisioning

 6

Communication toolkit
(http, e-mail, IM, etc.)

User interaction
manager

Platform manager
White & yellow pages

MAS administration toolkit

N
ET

W
O

R
K

knowledge base

API

API

Task-specific
agent Task-specific resources and APIs

e-Wallet
manager

knowledge base

Inference engine
API

Semantic
Web

Semantic Web Ontologies

Semantic Web Annotations

Web Resources

Web Services

Semantic
search

Web services invocation toolkit
API

Service activation rules
Dynamic knowledge about owner
Static knowledge about owner
Loaded ontologies

Security toolkit
API

ee--WWaalllleett
Privacy enforcement rules

Figure 2. MyCampus architecture: user perspective - smiley faces are agents.

Figure 3. MyCampus screenshots, including the e-Wallet (top), a context-aware

Restaurant Concierge Agent (bottom left) and a context-aware Message Filtering
Agent (bottom right)

 7

List of Services People Finder (1) People Finder (2) Loc.-Aw. Movie Guide

Loc.-Aware Weather Meeting Scheduler Slide Browsing (1) Slide Browsing (2)

Figure 4. MyCampus: Additional screen shots

 8

Figure 5. SONAT: CMU’s Context-Aware Message Delivery Agent

Figure 6. Architecture of Context-Aware Museum Tour Guide

 9

Figure 7. Rule Editor for Semantic Web Context-Aware Messaging

Application integrated into the Aura smart office environment

3.2 ROWL – Rule Extension of OWL
Another important part of our work has been the development of extensions of OWL to
capture and exchange rule descriptions. This work resulted in ROWL (“Rule Extension
of OWL”) [GS04a,GS04b]. Rules arise in a variety of contexts (e.g. B2B contracts,
negotiations, security, privacy, workflow management, context-aware computing, etc.).
Rules in ROWL are Horn clauses of the type: Body => Head. They can refer to
ontologies and annotations and contain variables. Rules are defined as an OWL ontology.
A Rule construct includes a Label (used to assign a name to a rule), a Head and a Body
(e.g. Figure 8).

Figure 8. Sample rule in ROWL

ROWL was first released in early 2004 through Carnegie Mellon University’s
MyCampus website and later through SemWebCentral. The release includes (Figure 9):

• RDF/OWL meta-model in CLIPS and more specifically into native JESS code
• XSLT stylesheets to transform OWL ontologies into CLIPS and more

specifically into native JESS code

 10

• XSLT stylesheets to transform RDF instances (annotations) into CLIPS and more
specifically into native JESS code

• XSLT stylesheets to transform ROWL Rules into CLIPS, and more specifically
into native JESS code

• Hooks to upload facts and rules into reasoning engines other than JESS

Figure 9. ROWL Semantic Web Inference Engine Architecture

Figure 10. Sample context-sensitive privacy/confidentiality rule with both

access control and obfuscation elements).

Result
in OWL

Ontology
in CLIPS

Ontology
stylesheet

Ontology
in OWL &

Annotation
in CLIPS

Annotation
stylesheet

Annotation
in OWL &

Rule
in CLIPS

Rule
stylesheet

Rules
in OWL &

Query rules
in CLIPS

Query
stylesheet

Query
in (Q)OWL &

XSLT Engine JESS

OWL Meta-model
in CLIPS

Procedural
attachement
generating OWL
for each pattern
found

 11

This engine was further extended to support the specification of a rich set of context-
sensitive privacy and security policies. This includes context-sensitive access control
policies as well as context-sensitive obfuscation policies that control the (in)accuracies at
which information is released in response to queries. Figure 10 provides an example of
context-sensitive privacy policy that includes both access control and obfuscation
restrictions. The “target” part of the rule refers to the knowledge this privacy rule applies
to (i.e. the location of the e-Wallet’s owner in this case). The “check” element contains
access control restrictions (i.e. the owner has to be in a location that is on campus and the
sender of the query is not the owner of the e-Wallet). The “revision” element contains
obfuscation rules (e.g. only releasing information in terms of whether the owner is on or
off campus or, as suggested with the “’cross-out”, falsifying the owner’s location and
pretending that he is at home

Figure 11. Editor for context-sensitive privacy and security policies

A rule editor was also developed to enable system administrators to rapidly specify/edit
context-sensitive privacy and security policies, as they relate to any shared ontologies
(Figure 11) and a special semantic web reasoning engine, referred to as a “Semantic e-
Wallet” was developed to enforce these policies (see Section 3.3).

 12

Figure 12. Editor for context-sensitive privacy and security policies: Flow

diagram

The rule editor allows users to create new rules as well as edit and delete existing ones.
The editor draws directly on available ontologies (ontologies loaded into the e-Wallet),
enabling users to express any privacy/security rules they want as they relate to concepts
and properties defined in these ontologies. It takes into account the OWL meta-model as
the user edits rules. For instance, it will restrict the instantiation of a given concept to be
within the range of a given property, as specified using the OWL “ObjectProperty”
construct. As shown in Figure 12 editing operations are specified through external XSLT
stylesheets

3.3 Semantic e-Wallets
Semantic e-Wallets are a central element of our Semantic Web architecture for context-
aware service provisioning. They provide a unified front-end to the information and
services of individual users as well as possibly groups of users and organizations. As
such they act both as clearinghouses and gatekeepers to information and services, helping
answer queries that require accessing this information and, in the process, enforcing
relevant privacy and security policies. This includes context-sensitive privacy and
security policies. To enforce these policies, our Semantic e-Wallet uses a multi-layer
reasoning framework that differentiates between different types of triples/facts (Figure
13):

 Core Layer: At the most basic level, the e-Wallet’s knowledge includes an OWL meta-
model – required to interpret OWL statements. In addition, it maintains both static
(context-independent) and dynamic (context-dependent) knowledge about the user i.e.
rules completing the base with additional knowledge. This knowledge is obtained by
loading available annotations about the user along with relevant ontologies and is
currently completed using forward chaining reasoning – to avoid having to infer the
same facts over and over again. Knowledge in this layer is represented using a (core)
triple template:

(predicate, subject, object)TRIPLE

EWalletView.xsl

Edit EWalletForm.xsl

SecurityDisplay.xsl

SecurityEdit.xsl

SecurityExtract.xsl GenerateIDNode.xsl

SecurityUpdate.xsl

SecurityAddPropertyForm.xsl SecurityAddRootConceptForm.xsl

SecurityDeleteRule.xsl

SecurityDeleteNode.xsl

SecurityAddPropertyRangeForm.xsl SecurityAddRootConceptProcess.xsl

SecurityAddPropertyProcess.xsl

 13

 The Service Layer completes the e-Wallet’s core knowledge with invocation rules that
map information retrieval goals about contextual attributes onto external service
invocations. These are modeled as backward chaining rules. Given an information
retrieval goal such as “Give me Fabien’s location”, they help identify and invoke one or
more relevant information resources, each modeled as a Web service. Knowledge in
this layer is represented using a special type of triple called “service triple” denoted:

(predicate, subject, object)SERVICE TRIPLE

Service triples reside in the service layer and are created in either of two ways. They
can result from the migration of a triple from the core layer or from the activation of an
invocation rule (e.g. an assertion about Fabien’s location as returned by a call to a
location tracking service). Migration between the core layer and the service layer is
implemented by rules specifying that any (core) triple can be used to generate an
equivalent service triple.

 The outer layer is referred to as the Privacy Layer, as this is where privacy enforcing
rules are applied. Asssertions in this layer are represented as another special type of
triple called “authorized triple”: (predicate, subject, object)AUTHORIZED TRIPLE
Only authorized triples can be sent in response to queries. Authorized triples are
generated by applying privacy enforcing rules to service triples, thereby ensuring that
information about the user is only disclosed to authorized parties and in accordance
with relevant obfuscation rules. Privacy enforcing rules are encoded as backward
chaining rules. These rules map needs for authorized triples onto needs for service
triples to be post-processed subject to the privacy enforcing rules. Upon receiving an
incoming query, the e-Wallet generates a need for one or more authorized triples. This
need in turn typically triggers needs for service triples and core triples, eventually
resulting in either (a) the generation of authorized triples that can be returned in
response to the query or in (b) an exception, if the query is found to be unallowable
(e.g. an unauthorized party requesting your location or trying to schedule a meeting in
your calendar).

Figure 13. Three-layer initial architecture

Except for the core layer, the other layers are initially empty of facts. The arrival of a
query/request will result in the generation of facts in these layers through backward
chaining.

privacy

service
core

knowled
ge

query

answer

 14

For a while, the e-Wallet’s access control functionality was limited to supporting
resource/service queries and the three layers were sufficient. More recently, we extended
the architecture to also support the updating of static knowledge stored in the e-Wallet.

Figure 14. Four-layer current architecture

The privacy layer is now split into two (Figure 14): (predicate, subject, object)AUTHORIZED

TRIPLE triples are used for query solving and (predicate, subject,
object)UPDATE_REQUEST_TRIPLE triples are used to represent the arrival of requests for
updates. Privacy rules for "Write Access" management handle these (p, s,
o)UPDATE_REQUEST_TRIPLE triples and transform them into (predicate, subject, object)TRIPLE
triples if allowed by the privacy preferences.

The current implementation of our e-Wallet is based on JESS [JESS], a high-performance
Java-based rule engine that supports both forward and backward chaining – the latter by
reifying "needs for facts" as facts themselves, which in turn trigger forward-chaining
rules. In other words, the e-Wallet is implemented as an extension of the ROWL
reasoning engine introduced in Figure 9. The e-Wallet’s knowledge base is initialized
with an OWL Meta-model in CLIPS that contains:
 A model of RDF [RDF] triples as a template for unordered facts,
 A model of specialized triples used in our layers (initial triples, core triples, service
triples and authorized triples) along with associated migration rules between the layers,
and
 The RDFS and OWL Lite meta-model assertions and rules.

We distinguish between four families of rule languages and a very simple query language
(Figure 15):

 The ROWL (Rules in OWL) language is used to encode forward-chaining rules
completing the base with additional knowledge that may be implicit in the current set of
facts e.g. definitions (two persons belonging to the same group are colleagues),
preferences (when in class I don't want to be disturbed), etc.

 The WOWL (Web services in OWL) language is used to encode backward-chaining
rules describing the type of knowledge that can be obtained by calling a service, the
knowledge needed to call that service and the way it should be called.

query

answer

service

 core

privacy

update

outcome

 15

 The SOWL (Security in OWL) language is used to encode backward-chaining rules
describing the privacy preferences of a user i.e. the conditions under which a piece of
knowledge can be accessed or modified.

 The QOWL (Query in OWL) language is used to encode a backward-chaining rule
describing a query. The body of the rule is given by the pattern in QOWL i.e. an OWL
pattern with variables identified by a specific namespace. This language is also used to
encode backward-chaining rules describing an update.

Details on the syntax of these languages are provided in Appendix A.

Figure 15. High-level overview of the Semantic e-Wallet

Knowledge is loaded into the e-Wallet by translating OWL input files into JESS
assertions and rules, using a set of XSLT stylesheets. The OWL input files include
ontologies and annotations that are transformed into (core) triple assertions, forward
chaining rules (used to complete knowledge at the core layer) as well as service
invocation rules and privacy enforcing rules – both represented as backward chaining
rules. The XSLT templates act as meta-rules that generate the body, the head and typing
(e.g. query transformation stylesheet in Figure 16).
(…)
<xsl:template match="/rdf:RDF">
 (defrule query (declare (salience 0))
 <xsl:for-each select="*[not(self::qowl:Query)]">
 <xsl:call-template name="process-class-instance"/>
 </xsl:for-each>
 =>
 (store-result<xsl:call-template name="variable-list"/>)
)
</xsl:template>

<xsl:template name="process-class-instance" >
(authorized_triple
 (predicate "&rdf;#type")

Result
in OWL

Ontology
in CLIPS

Ontology
stylesheet

Ontology
in OWL &

Annotation
in CLIPS

Annotation
stylesheet

Annotation
in OWL &

Rules
in CLIPS

Rule
stylesheet

Rules
in (R)OWL &

Service rules
in CLIPS

Service
stylesheet

Services
in (W)OWL &

Privacy rules
in CLIPS

Privacy
stylesheet

Privacy
in (S)OWL &

Query rules
in CLIPS

Query
stylesheet

Query
in (Q)OWL &

XSLT Engine JESS

OWL Meta-model
in CLIPS

 16

 (subject <xsl:call-template name="local-ID">
 <xsl:with-param name="id">
 <xsl:value-of select="@rdf:about"/>
 </xsl:with-param>
 </xsl:call-template>)
 (object "<xsl:value-of select="concat(namespace-uri(.),local-name(.))"/>")
)
 <xsl:for-each select="*">
 <xsl:call-template name="process-property-instance"/>
 </xsl:for-each>
</xsl:template>

<xsl:template name="process-property-instance" >
 <xsl:choose>
 <xsl:when test='count(*)=1'> <!-- has an element for child -->
 <xsl:call-template name="process-objectproperty-instance"/>
 </xsl:when>
 <xsl:when test='count(text())=1'> <!-- has an text for child -->
 <xsl:call-template name="process-dataproperty-instance"/>
 </xsl:when>
 <xsl:when test='@rdf:resource'> <!-- has a reference -->
 <xsl:call-template name="process-referenceproperty-instance"/>
 </xsl:when>
 </xsl:choose>
</xsl:template>
(…)

Figure 16. Fragment of query transformation stylesheet

Once all this knowledge has been loaded and the forward chaining rules have been
applied to complete the core knowledge base, the e-Wallet is ready to process incoming
queries. A query is transformed into the need for an authorized triple. This in turn triggers
privacy enforcing rules and generates needs for service triples. The service triples are
generated by either migrating core triples or activating service invocation rules or a
combination of both. This is further detailed below:

1. Queries have two components (see Figure 17): (a) an annotation about the query
providing its context (e.g., who the sender of the query is), and (b) the query itself in
the form of a pattern using a special namespace to identify variables. The context of a
query is asserted for the time it takes to process it. We assume that security protocols
(e.g., using digital signatures) are used to verify assertions about the query’s context
(e.g. verifying the identity of the sender). The query itself is transformed into a set of
authorized triples in the privacy layer. These authorized triples form the body of a
backward-chaining rule, whose head is a function that stores the results (in the form of
variable instantiations) each time the rule is triggered and that generates RDF results in
XML syntax (“pretty printing”).

2. The need of the query for authorized triples triggers privacy enforcing rules. As
illustrated in Figure 10, these rules have two roles. First, they check that the sender of
the query has the required access rights. In addition, they also apply obfuscation rules
to triples to ensure that the level of accuracy or inaccuracy provided in answers to
queries is compatible with the user’s privacy preferences. The need for authorized
triples in combination with privacy enforcing rules generates a need for service triples.

3. The need for service triples in turn triggers service rules. First a generic service rule is
applied that checks whether the needed service triple is not already available as a core
triple. If this is the case an equivalent service triple is simply created. If there is no

 17

equivalent core triple, the e-Wallet looks for matching rules that trigger internal
function calls (e.g. getting the current time and date). If that fails too, it looks for
matching (external) Web Services. To support this, we have extended the Jess library
with internal functions (e.g. time) and functions to call external services.

<qowl:Query rdf:about="">
 <qowl:sender rdf:resource="http://cs.cmu.edu/~nsadeh"/>
</qowl:Query>
<mc:Person rdf:about="http://cs.cmu.edu/~fgandon">
 <mc:location rdf:resource="http://sadehlab.cs.cmu.edu/Variable#location" />
</mc:Person>

Figure 17. Query issued by the user 'nsadeh’ requesting the location of user
‘fgandon’

 18

Figure 18. Main steps involved in processing a query submitted to an eWallet.

An illustration of the main steps involved in processing a query submitted to a Semantic
e-Wallet is provided in Figure 18.

Figure 19. Standalone e-Wallet development environment, as released on
SemWebCentral.

Query context
assertion

Asserting elementary
information needs &
authorization need

Pre-check

access rights

Post-check
access rights

Assertion of
authorized knowledge

ee--WWaalllleett
Fetch useful

static knowledge

Application of

obfuscation rules

Query

Result

Call relevant
external services

 19

A standalone version of the e-Wallet has been released on SemWebCentral
(http://www.semwebcentral.org/). It includes a development environment that helps user
debug ontologies, service invocation rules as well as privacy and security rules. The
environment includes support for rollback points, enabling users to generate new facts
when processing a query and later revert to a state that no longer includes those facts (e.g.
to be ready to process the next query). A snapshot of the e-Wallet development
environment is provided in Figure 19.

 20

4 Results and Discussion
In contractual terms, this project was organized along the following tasks:

Task 1: Design, implement and evaluate Semantic Web functionality for the
automated discovery of and access to personal resources: This task has been
successfully completed through the development and evaluation of our Semantic e-Wallet
as detailed in Section 3 (see also Appendix A for additional details)

Task 2: Design, implement and evaluate Semantic Web functionality for the
automated discovery of and access to Web services: This task has been successfully
completed through the development and evaluation of the MyCampus Semantic Web
infrastructure for context-aware service provisioning, as detailed in Section 3.1 (see also
appendix A for additional details)

Task 3: Design, Implement and Evaluate Functionality to Integrate AI planning and
automated service discovery and access (Task 3):

 (Subtask 3.1): Demonstrate and evaluate functionality integrating AI planning and
automated Web service discovery. This subtask has been successfully completed, as
outlined in Section 3.1 and as further detailed in [SSG04].

 (Subtask 3.2): This task has only been completed at 50% due to a funding cut in Year 3.

Task 4: Provide regular contributions to the DAML Experiment (Task 4):
This task has been completed through contributions to the SONAT and CoSAR-TS
demonstrations.

Task 5: Meetings and Reports (Task 5):
This task has been completed through participation in semi-annual DAML meetings,
submission of quarterly reports and submission of the present final report to sponsor.

The following summarizes key findings and results of our project.

Key findings include:

• Semantic web technologies can play a key role in facilitating the rapid
development and maintenance of context-aware applications, as demonstrated
by the project’s experience in several application domains (e.g. MyCampus
domain aimed at enhancing everyday campus life through an open collection of
context-aware applications, SONAT context-aware message filtering and delivery
application, context-aware museum tour guide application)

• When extended to support rules, semantic web technologies provide a
particularly powerful framework to capture and enforce rich security and
privacy policies (including context-sensitive policies). Our efforts to develop
general-purpose editors for such a powerful framework have shown however that
there are significant usability issues that remain to be addressed. It is easy
however to build special purpose editors that take advantage of the generic
infrastructure we have developed

 21

Additional accomplishments include:

• Extensions of the OWL language to represent rules and development of
associated reasoning functionality

• Public release of two software tools (ROWL engine and Semantic eWallet) on
SemWebCentral (http://www.semwebcentral.org/) – about 1,000 page views and
50 downloads in the first three months

• Demonstrations and evaluation on both civilian and DoD-oriented scenarios
(e.g. MyCampus, SONAT, CoSAR-TS)

• Contributions to semantic web service architecture (SWSA) working group and
semantic web rules working groups

• Development of a semantic web architecture for context-aware service
provisioning and privacy that is influencing a number of ongoing R&D efforts
in the telecommunications industry (e.g. work at Motorola, Nokia, NTTDoCoMo,
Siemens, etc.). Extensions of this framework to incorporate AI planning
functionality.

• Other significant accomplishments include:

o Over a dozen publications and a best selling book on Mobile Commerce
that discusses the relevance of Semantic Web technologies,

o Multiple tutorials, keynotes, panels and courses

o Posters and demonstrations at all DAML PI meetings during the course of
the project

o Member of the Joint US/EU Ad-Hoc Agent Markup Language Committee
(“Joint Committee)

o 2005 IBM Best Privacy Faculty Award for work on using Semantic Web
technologies in support of privacy policies (co-recipient with Lorrie
Cranor and Alessandro Acquisti) – selected out of about 20 nominations.

 22

5 Conclusions

In conclusion, we believe that our project has made substantial contributions to the early
development of Semantic Web technologies, helping advance the state of the art through
extensions of languages and reasoning technologies and through early validations in the
context of both civilian and DoD-relevant scenarios. Our work has produced several tools
that we released on SemWebCentral. It has influenced ongoing standardization work (e.g.
semantic web services and rules) and has produced an architecture for context-aware
service provisioning and privacy that is influencing ongoing research efforts in industry.
We believe that our work on interleaving Semantic Web reasoning and service discovery
to enforce rich, context-sensitive security and privacy policies has the potential to provide
for significantly more flexible approaches to decentralized trust management than what is
currently available [SR05a]. While in the past reasoning technologies such as the ones
embedded in Jess were considered too slow to enforce security policies, we believe that
we have now reached a tipping point, where it is possible to enforce significantly richer
policies and rely on significantly less scripted approaches to enforcing these policies. As
both civilian and DoD organizations aim for increasingly tighter integration of their
systems with those of others, demand for such technologies is bound to rapidly grow.

 23

6 Recommendations

From a technical standpoint, our work as well as those of others in the DAML program
(and beyond) has clearly demonstrated the far-reaching potential of the Semantic Web. It
has also helped us better appreciate how much work still remains to be done before this
potential can be fully harvested. This is not to say that existing languages and
technologies can not already be put to good use – there are a number of ongoing efforts
that aim at doing just that. There are however many deep technical challenges that still
require sustained research investments in this area. From the standpoint of our own
particular project, these challenges include issues of expressiveness, scalability and
usability involved in capturing and enforcing rich semantic web service policies and the
continued exploration of Semantic Web technologies for security and privacy (e.g.
computation and communication tradeoffs associated with different policy
configurations, development of meta-control strategies to integrate semantic web
reasoning, service discovery and access, reasoning about conflicts of interest between
entities seeking to gain access to resources and entities involved in helping build proofs
to grant access, detection of deadlocks, real-time reasoning issues that require
differentiating between classical negation and negation as failure, etc.).

Along with these research challenges, the Semantic Web needs more tools and early
applications. Success will also depend on sustained commitment to incrementally
reconciling research advances with ongoing industry-led standardization efforts.

Beyond our own particular project, looking at the DAML initiative as a whole, the past
several years of funding have played a pivotal role in the early development of the
Semantic Web. DAML helped create the necessary momentum (both domestically and
internationally) for early standardization efforts and for the development of early
demonstrators and tools. Over the past several years, the Semantic Web has grown from a
somewhat exotic concept into an already rich collection of technologies and applications
that is generating increasing interest among prospective users in both industry and
government. It is a pity that, with prospective end-users’ expectations so high,
government support for the technology would seem to be dwindling. This situation is
even more worrisome in light of the very substantial investments being made in this area
elsewhere in the world (e.g. European IST program). While such considerations may not
be at the top of the DoD’s agenda, they will likely determine which part(s) of the world
lead in what should ultimately be viewed as a strategic area not just in economical terms
(e.g. e-services, enterprise integration, etc.) but also in terms of national security (e.g.
intelligence, inter-organizational integration, coalition forces, cyber-security).

 24

7 Selection of Project References
[CHGS05] S-C Chou, W-T Hsieh, F. Gandon and N. Sadeh, “Semantic Web Technologies for

Context-Aware Museum Tour Guide Applications”, 2005 International Workshop on
Web and Mobile Information Systems (WAMIS’05), IEEE Computer Society.

[GS03] F. Gandon, and N. Sadeh. “A semantic e-wallet to reconcile privacy and context
awareness”. In Proceedings of the Second International Semantic Web Conference
(ISWC03), Florida, October 2003.

[GS03b] F. Gandon, and N. Sadeh. “Semantic web technologies to reconcile privacy and
context awareness”. Computer Science Technical Report CMU-CS-03-211, Dept. of
Computer Science, Carnegie Mellon University, December 2003. Also available as
CMU-ISRI-03-107.

[GS04a] F. Gandon, and N. Sadeh. “Semantic web technologies to reconcile privacy and
context awareness”. Web Semantics Journal, 1(3), 2004.

[GS04b] F. Gandon, and N. Sadeh. “ROWL: Rule language in OWL and translation engine for
JESS”. Mobile Commerce Laboratory, Carnegie Mellon University, 2004.
http://mycampus.sadehlab.cs.cmu.edu/public_pages/ROWL/ROWL.html Also
available on SemWebCentral.

[MJH+04] N. Miller, G. Judd, U. Hengartner, F. Gandon, P. Steenkiste, I. H. Meng, M. W. Feng,
and Norman Sadeh. “Context-aware computing using a shared contextual information
service”. “Hot Spots”, Pervasive 2004, April 2004, Vienna, Advances in Pervasive
Computing, Austrian Computer Society (OCG), ISBN 3-85403-176-9, edited by Alois
Ferscha, Horst Hoertner and Gabriele Kotsis.

[Sad02] Norman Sadeh, “M-Commerce: Technologies, Services and Business Models”, Wiley,
April, 2002

[Sad03] N. Sadeh. “MyCampus: Enhancing Everyday Campus Life”. Video. October 2003.
http://www-2.cs.cmu.edu/~sadeh/videos/mycampus_smaller.wmv

[SCV+03] N. M. Sadeh, T.C. Chan, L. Van, O. Kwon, and K. Takizawa. “Creating an open agent
environment for context-aware m-commerce”. In Agentcities: Challenges in Open
Agent Environments, ed. by Burg, Dale, Finin, Nakashima, Padgham, Sierra, and
Willmott, LNAI, Springer Verlag, pp.152-158, 2003.

[SG05] N. Sadeh and F. Gandon. “Ambient Intelligence: The MyCampus Experience”.
Submitted for publication as book chapter in “Ambient Intelligence, Wireless
Networking, Ubiquitous Computing”. Artech House, 2005.

[SR05a] N.M. Sadeh and J. Rao, “Interleaving Semantic Web Reasoning and Service
Discovery to Enforce Context-Sensitive Security and Privacy Policies”, Submitted to
2005 AAAI Fall Symposium on Agents and the Semantic Web, May 2005. Longer
version available as Carnegie Mellon University’s School of Computer Science
technical report CMU-ISRI-05-113.

[SSG04] M. Sheshagiri, N. Sadeh and F. Gandon, “Using Semantic Web Services for Context-
Aware Mobile Applications”, MobiSys 2004 Workshop on Context Awareness,
Boston, June 2004.

 25

8 Additional References
[APM04] R. Ashri, T. Payne, D. Marvin, M. Surridge and S. Taylor, Towards a Semantic Web

Security Infrastructure. In Proceedings of Semantic Web Services Symposium, AAAI
2004 Spring Symposium Series, Stanford University, Stanford California.

[BSF02] Lujo Bauer, Michael A. Schneider and Edward W. Felten. "A General and Flexible
Access Control System for the Web", In Proceedings of the 11th USENIX Security
Symposium, August 2002.

[BFL96] Matt Blaze, Joan Feigenbaum, an Jack Lacy. “Decentralized Trust Management”. Proc.
IEEE Conference on Security and Privacy. Oakland, CA. May 1996

[Coop93] Cooper, Jonathan. “Engaging the [Museum] Visitor: Relevance, Participation &
Motivation in Hypermedia Design”. International Conference on Hypermedia and
Interactivity in Museums (ICHIM), Cambridge, England, 1993.
http://www.artgallery.nsw.gov.au/staff/jcooper/museum_education/engaging

[CLM+02] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler Marshall, and J. Reagle. The
platform for privacy preferences 1.0 (P3P1.0) Specification. W3C Recommendation,
April 16, 2002.

[CZC02] Corby, O., Faron-Zucker, C., Corese: A Corporate Semantic Web Engine, Workshop
on Real World RDF and Semantic Web Applications, WWW Conference, Hawaii,
(2002)

[DA99] Dey, A.K., Abowd, G.D.: Toward a Better Understanding of Context and Context-
Awareness, GVU Technical Report GIT-GVU-99-22. College of Computing, Georgia
Institute of Technology, (1999)

[DAML] DAML Joint Committee: DAML+OIL language, 27 March 2001,
http://www.daml.org/2001/03/daml+oil-index.html

[DAMLS] DAML Services Coalition: DAML-S: Web Service Description for the Semantic
Web, First International Semantic Web Conference, ISWC’02, Sardinia, Italy, LNCS
2342, (2002) 348-363

[Der99] Dertouzos, M.: The Future of Computing, Scientific American, August (1999)

[DKF+05] Li Ding, Pranam Kolari , Tim Finin , Anupam Joshi, Yun Peng and Yelena Yesha.
"On Homeland Security and the Semantic Web: A Provenance and Trust Aware
Inference Framework", In Proceedings of the AAAI Spring Symposium on AI
Technologies for Homeland Security, March 2005.

[DSFA00] Dey, A., Salber, D., Futakawa, M., Abowd, G.: An Architecture to Support Context
Aware Computing, Technical Report GIT-GVU-99-23. College Computing, Georgia
Institute of Technology, Nov. (2000)

[EPAL] Schunter, M., Powers, C., The Enterprise Privacy Authorization Language (EPAL 1.1),
IBM Research Laboratory, http://www.zurich.ibm.com/security/enterprise-
privacy/epal/

[FIPA] FIPA, Specifications (2002) http://www.fipa.org/repository/fipa2000.html

[FN71] Fikes, R. E. and Nilsson, N. J., STRIPS: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3-4): pages 189-208, 1971.

 26

 [Fri03] Friedman-Hill, E.: Jess in Action: Java Rule-based Systems, Manning Publications
Com-pany, June 2003, ISBN 1930110898, http://herzberg.ca.sandia.gov/jess/

[GPH03] Golbeck, J.; Parsia, B.; and Hendler, J. 2003. Trust networks on the Semantic Web. In
Proceedings of 7th International Workshop on Cooperative Intelligent Agents, CIA
2003.

[GMM03] Guha, R., McCool, R., Miller E.: Semantic Search, Proceedings of WWW
Conference, Budapest pp. 700-709 (2003)

[Gru93] T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition,
5(2):199-220, 1993

[GSSS02] Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste P.: Project Aura: Towards
Distraction-Free Pervasive Computing, IEEE Pervasive Computing, Special Issue on
Integrated Perva-sive Computing Environments, Vol. 1, Number 2, April-June (2002)
22-31

[Hen01] Hendler, J.: Agents on the Web, IEEE Intelligent Systems, Special Issue on the
Semantic Web, Vol. 16, No. 2, pp. 30-37, March/April, (2001)

[Hill03] Friedman-Hill, E.: Jess in Action: Java Rule-based Systems, Manning Publications
Com-pany, June 2003, ISBN 1930110898, http://herzberg.ca.sandia.gov/jess/

[HKL+04] R. Hull, B. Kumar, D. Lieuwen, P. Patel-Schneider, A. Sahuguet, S. Varadarajan, and
A. Vyas. Enabling context-aware and privacy-conscious user data sharing. In
Proceedings of 2004 IEEE International Conference on Mobile Data Management,
Berkeley, California, January 2004.

[HL01] Hong, J., Llanday, J.: A Context/Communication Information Agent, in Personal and
Ubiquitous Computing Special Issue Situated Interaction and Context-Aware
Computing, Vol. 5(1) (2001) 78-81

 [HS04] U. Hengartner, and P, Steenkiste. Implementing access control to people location
information. In 9th ACM Symposium on Access Control Models and Technologies
(SACMAT'04), Yorktown Heights, June 2004

[HSSK04] T. van der Horst, T. Sundelin, K. E. Seamons, and C. D. Knutson. Mobile Trust
Negotiation: Authentication and Authorization in Dynamic Mobile Networks. Eighth
IFIP Conference on Communications and Multimedia Security, Lake Windermere,
England, September 2004

[JESS] Friedman-Hill, E.: Jess in Action: Java Rule-based Systems, Manning Publications
Company, June 2003, ISBN 1930110898, http://herzberg.ca.sandia.gov/jess/

[KFJ03] L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive computing
environment. In Collection of IEEE 4th International Workshop on Policies for
Distributed Systems and Networks, June 2003

[KPS04] L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. Finin and K. Sycara, Authorization
and Privacy for Semantic Web Services, In Proceedings of Semantic Web Services
Symposium, AAAI 2004 Spring Symposium Series, Stanford University, California,
March 2004.

[LH03] Lei Li and Ian Horrocks. A software framework for matchmaking based on semantic
web technology. In Proc. of the Twelfth International World Wide Web Conference
(WWW 2003), pages 331-339. ACM, 2003.

 27

 [LHL01] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web, Scientific American,
May (2001)

 [LGC+05] L.Bauer, S. Garriss, J. McCune, M.K. Reiter, J. Rouse, and P Rutenbar, “Device-
Enabled Authorization in the Grey System”, Submitted to USENIX Security 2005.
Also available as Technical Report CMU-CS-05-111, Computer Science Department,
Carnegie Mellon University, February 2005.

[LNOS04] T. Leithead, W. Nejdl, D. Olmedilla, K. Seamons, M. Winslett, T. Yu, and C. Zhang,
How to Exploit Ontologies in Trust Negotiation. Workshop on Trust, Security, and
Reputation on the Semantic Web, part of the Third International Semantic Web
Conference, Hiroshima, Japan, November 2004.

[Mobi] MobiLife Project Website, http://www.ist-mobilife.org/, 2005.

[NAICS] North American Industry Classification System ,
http://www.census.gov/epcd/www/naics.html

[OS00] Opermann, R., and Specht, M., A Context-sensitive Nomadic Information System as an
Exhibition Guide. Proc. of 2nd Intl. Symposium on Handheld and Ubiquitous
Computing, Bristol, 2000.

[OWL] W3C: OWL Web Ontology Language Reference, Working Draft 31 March 2003,
http://www.w3.org/TR/owl-ref/

[P3P] W3C: The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, Recommendation
16 April 2002, http://www.w3.org/TR/P3P/

[PKPS02] Paolucci, M., Kawamura, T., Payne, T., and Sycara, K.: Semantic Matching of Web
Service Capabilities, Proceedings of the 1st International Semantic Web Conference,
Eds. I. Horrocks and J. Hendler, LCNS 2342, Springer Verlag, 2002.

[Rao04] J. Rao. "Semantic Web Service Composition via Logic-based Program Synthesis". PhD
Thesis. Department of Computer and Information Science, Norwegian University of
Science and Technology, December 10, 2004.

[RDF] W3C: RDF Vocabulary Description Language 1.0: RDF Schema, Working Draft 23
January (2003) http://www.w3.org/TR/rdf-schema/

[RKM04a] J. Rao, P. Küngas and M. Matskin, "Composition of Semantic Web Services using
Linear Logic Theorem Proving". To appear in Information Systems Journal - Special
Issue on the Semantic Web and Web Services".

[RuleML] Boley, H., Grosof, B., Tabet, S., Wagner, G.: RuleML DTDs, The Rule Markup
Initiative RuleML, http://www.dfki.uni-kl.de/ruleml/indtd0.8.html

[SAML] OASIS: Security Assertion Markup Language (SAML), Technology Reports, April 14
(2003) http://xml.coverpages.org/saml.html

[SAW94] Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. Proc. of the
Workshop on Mobile Computing Systems and Applications, IEEE Computer Society,
Santa Cruz, CA, (1994) 85-90

[Schil94] Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. Proc. of the
Workshop on Mobile Computing Systems and Applications, IEEE Computer Society,
Santa Cruz, CA, (1994) 85-90

[Schil95] Schilit, W.: A System Architecture for Context-Aware Mobile Computing, Ph.D.
Thesis, Columbia University, 1995.

 28

[SEH02] J. O'Sullivan, D. Edmond, and A. T. Hofstede. What's in a service? Towards accurate
description of non-functional service properties. Distributedand Parallel Databases,
12:117.133, 2002.

[She04] Mithun Sheshagiri, Automatic Service Composition and Invocation for Semantic Web
Services, University of Maryland, Baltimore County, May 2004.

[SJF03] Mithun Sheshagiri, Marie desJardins, and Timothy Finin, A Planner for Composing
Services described in DAML-S, Workshop on Planning for Web Services, Trento,
2003

[UBJ04] A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. Tate, J. Dalton and S. Aitken,
Policy and Contract Management for Semantic Web Services. In Proceedings of
Semantic Web Services Symposium, AAAI 2004 Spring Symposium Series, Stanford
University, Stanford California.

[UDDI] OASIS: Universal Description, Discovery and Integration standard,
http://www.uddi.org/

[UPC+03] J. Undercoffer, F. Perich, A .Cedilnik, L. Kagal, and A. Joshi. A secure infrastructure
for service discovery and access in pervasive computing. ACM Monet: Special Issue
on Security in Mobile Computing Environments, October 2003

[OWLS] OWL-S: Semantic Markup for Web Services, W3C Submission Member Submission,
November 2004. http://www.w3.org/Submission/OWL-S

[WHFG92] Want, R., Hopper, A., Falcao, V., Gibbons, J.: The Active Badge Location System,
ACM Transactions on Information Systems 10(1) (1992) 91-102.

[WSDL] W3C: Web Services Description Language (WSDL) 1.1, Note 15 March 2001
http://www.w3.org/TR/wsdl

[WSH+03] Dan Wu, Evren Sirin, James Hendler, Dana Nau & Bijan Parsia, Automatic Web
Service Composition Using SHOP2, Workshop on Planning for Web Services, Trento,
2003

 [XACML] OASIS: Extensible Access Control Markup Language (XACML), Technology
Reports, March 28 (2003) http://xml.coverpages.org/xacml.html

 [XSLT] W3C: XSL Transformations (XSLT) Version 1.0, Recommendation 16 November
1999, http://www.w3.org/TR/xslt

 29

9 Appendix A: A More In-Depth Overview of the
Semantic e-Wallet

This appendix is based on a paper published in April 2004 in the Web Semantics Journal
[GS04a].

9.1 Overall Introduction
Increasingly, application developers are looking for ways to provide users with added
levels of convenience and ease of use through functionality that is capable of capturing
the context within which they operate. This may involve knowing where the user is
located, the task she is currently engaged in, her eating preferences, who her colleagues
are as well as a variety of other contextual attributes. While there are many sources of
contextual information, they tend to vary from one user to another and also over time.
Different users may rely on different location tracking functionality provided by different
cell phone operators; they may use different calendar systems, etc. Traditionally, context-
aware applications and services have been hardwired to predefined sources of contextual
information (e.g. relying on a particular set of sensors and protocols to track a user’s
locations). As a result, they remain prohibitively expensive to build and maintain and are
few and between. We argue that what is needed is a more open environment, where
context-aware applications can automatically discover and access a user’s personal
resources such as her calendar or location tracking functionality. This can be done by
viewing each source of contextual information (or personal resource) as a Web service.
Unfortunately, current Web Services standards such as UDDI [UDDI] or WSDL [WSDL]
are not sufficient when it comes to describing a user’s personal resources and to enabling
automated access to them by context-aware applications. Another challenge, as we move
towards more open platforms for access to a user’s personal information, revolves around
privacy issues. Users should be able to retain control over who has access to their
personal information under different conditions. For instance, I may be willing to let my
colleagues see where I am or access my calendar activities between 8am and 5pm on
weekdays but not over the weekend. In addition, I may want to fine tune the granularity
of the answer provided to a given query, depending on the context of that query. For
instance, I may be willing to disclose the room that I am in to some people but only the
city where I am to others In fact, I may even want to give different answers to different
people, telling my secretary I am off to see my dentist, while telling my customers I am
busy in a meeting.
In this paper, we introduce a Semantic Web architecture aimed at supporting the
automated discovery and access of personal resources in support of a variety of context-
aware applications. Within this architecture, each source of contextual information (e.g. a
calendar, location tracking functionality, collections of relevant user preferences,
organizational databases) is represented as a Semantic Web service. A central element of
our architecture is its semantic e-Wallet, which acts as a directory of contextual resources
for a given user, while enforcing her privacy preferences. Privacy preferences enable
users to specify what information can be provided to whom in different contexts. They
also allow users to specify what we call obfuscation rules, namely rules that control the

 30

accuracy or inaccuracy of the information provided in response to different queries under
different conditions.

We have validated our architecture in the context of myCampus, a context-aware
environment aimed at enhancing everyday campus life at Carnegie Mellon University
(CMU). The environment revolves around a growing collection of task-specific agents
capable of automatically accessing a variety of contextual information about their users
(e.g. context-aware restaurant concierge, context-aware message filtering agent, etc.).
This includes accessing their locations, calendar activities as well as a variety of other
attributes and preferences. Students access the environment from PDAs over the
campus’s 802.11 wireless LAN. Empirical results obtained with a group of students over
a period of several days are briefly summarized at the end of this article. While, in this
paper, we focus on scenarios involving individual users, it should be noted that our
architecture extends to scenarios where users are entire organizations. In this context,
both organizations and individual users could each have one or more Semantic e-Wallets
capable of leveraging a variety of individual or organizational knowledge subject to a
rich set of privacy/confidentiality constraints.

The remainder of this article is organized as follows. Section 9.2 provides a brief
overview of the state of the art in context-awareness, privacy, Web Services and the
Semantic Web, emphasizing limitations of the work reported so far in the literature. In
Section 9.3, we provide an overview of our Semantic Web environment for context-
awareness and privacy. Section 9.4 focuses more specifically on the Semantic e-Wallet
and includes a high-level scenario outlining its operation in response to a query about the
current location of a user. Section 9.5 introduces the three layers of knowledge required
to support the e-Wallet functionality. Section 9.6 discusses the e-Wallet’s current
implementation, which is based on OWL Lite [OWL], XSLT transformations [XSLT],
and JESS [JESS]. Sections 9.7 and 9.8 provide further details on the e-Wallet’s three
layers. Section 9.9 discusses the interfaces to the e-Wallet and section 9.10 briefly
describes some of our experiments carried out in our myCampus environment. Finally,
section 9.11 summarizes what we view as the main contributions of our work along with
some concluding remarks.

9.2 Prior Work
Prior efforts to develop context aware applications are many. Early work in context
awareness includes the Active Badge System developed at Olivetti Research Lab to
redirect phone calls based on people’s locations [WHFG92]. The ParcTab system
developed at the Xerox Palo Alto Research Center in the early nineties relied on PDAs to
support a variety of context-aware office applications (e.g. locating nearby resources such
as printers, posting electronic notes in a room, etc.) [Schil94, Schil95]. Other relevant
applications that have emerged over the years range from location-aware tour guides to
context-aware memory aids. More recent research efforts in context awareness include
MIT’s Oxygen [Der99], CMU’s Aura [GSSS02] and several projects at Berkeley’s GUIR
(e.g. [HL01]) to name just a few.

While early context-aware applications relied on ad hoc architectures and
representations, it was quickly recognized that separating the process of acquiring
contextual information from actual context-aware applications was key to facilitating

 31

application development and maintenance. Georgia Tech’s Context Toolkit represents the
most significant effort in this direction [DA99, DSFA00]. In the Context Toolkit, widgets
act as wrappers that provide access to different sets of contextual information (e.g. user
location, identity, time and activity), while insulating applications from context
acquisition concerns. Each user (as well as other relevant entities such as physical objects
or locations) has a context server that contains all the widgets relevant to it. This is
similar to our notion of e-Wallet, which serves as a directory of all personal resources
relevant to a given user (e.g. relevant location tracking functionality, relevant collections
of preferences, access to one or more calendar systems, etc.). Our Semantic e-Wallet
however goes one step beyond Dey’s Context Toolkit. It makes it possible to leverage
much richer models of personal resources - what personal information they give access
to, when to access one rather than the other, how to go about accessing these resources.
In addition, it includes access control and obfuscation functionality to enforce user
privacy preferences. This richer model is key to supporting automated discovery and
access of a user’s personal resources by agents. In other words, while the Context Toolkit
focuses mainly on facilitating the development of context-aware applications through off-
line, re-use and integration of context-aware components (i.e. widgets), our architecture
emphasizes real-time, on-the-fly queries of personal resources by context-aware agents.
These queries are processed through several layers of functionality that support
automated discovery and access of relevant personal resources subject to user-specified
privacy preferences.

The notion of e-Wallet as introduced in systems such as Microsoft’s .NET Passport is not
new. However current implementations have been limited to storing a very small amount
of information and offer very restricted control to the user when it comes to specifying
what information can be made available to different services. For instance, in Passport,
users can specify whether or not they are willing to share parts of their profiles with all
participating sites but cannot distinguish between different participating sites. Our notion
of Semantic e-Wallet lifts these restrictions and allows users to control access to any of
their personal resources. It also allows for multiple sources of similar information (e.g.
multiple calendars or multiple location tracking functionality) and for functionality that
can dynamically select which of these resources to tap based on the context and the
nature of the query at hand (e.g. using your car’s GPS system when you are driving and
your cell phone operator’s location tracking functionality when you are not).

Our notion of semantic e-Wallet extends recent efforts to develop rich languages for
capturing user privacy preferences such as P3P’s APPEL language [P3P]. It does so by
making it possible to leverage any number of domain ontologies and by allowing for
preferences that relate to any number of contextual attributes. In addition, it allows users
to specify obfuscation rules through which they control the level of accuracy (or
inaccuracy) at which their contextual information is disclosed to different parties under
different conditions. This includes telling some people which room you are in, while
simply telling others whether you are at work or not, or whether you are in town or not. It
also includes scenarios where you might want to pretend you are in one place, while you
are really elsewhere.

Last but not least, while the security community has developed powerful languages to
capture access control privileges such as the Security Assertion Markup Language

 32

(SAML) [SAML], the XML Access Control Markup Language (XACML) [XACML]
and the Enterprise Privacy Authorization Language (EPAL) [EPAL], these languages do
not take advantage of Semantic Web concepts. Our work builds directly on recent efforts
aimed at moving the Web from an environment where information is primarily made
available for human consumption to one where it is annotated with semantic markup that
makes it understandable to software applications. These efforts are part of a long-term
vision generally referred to as the Semantic Web [LHL01, Hen01]. They have already
resulted in a succession of semantic markup languages [DAML, OWL] as well as early
efforts to define Web Service ontologies and markup in the context of languages such as
DAML-S [DAMLS]. In our work, we have relied on the use of DAML+OIL [DAML]
and more recently OWL [OWL] to represent contextual information (e.g. location,
calendar activities, social and organizational relationships, etc.) and privacy preferences
and on Semantic Web service concepts to support the automated discovery and access of
personal and public resources.

9.3 Overall System Architecture
We consider an environment where, over time, users purchase (or subscribe to) different
sets of task-specific agents. These agents are each intended to assist them in the context
of different activities (e.g. scheduling meetings with colleagues, reminding them of
purchases they need to make, arranging trips or filtering incoming messages). To
function, each agent needs to access some information about its user as well as possibly
other users. Access to a user’s personal (or contextual) information is controlled by that
user’s e-Wallet subject to privacy (enforcing) rules. The e-Wallet Manager (or simply e-
Wallet) serves as a repository of static knowledge about the user – just like .NET
Passport, except that here knowledge is represented using OWL. In addition, the e-Wallet
contains knowledge about how to access more information about the user by invoking a
variety of resources, each represented as a Web Service. This knowledge is stored in the
form of rules that map different contextual attributes onto one or more possible service
invocations, enabling the e-Wallet to automatically identify and activate the most relevant
resources in response to queries about the user’s context (e.g. accessing the user’s
calendar to find out about her availability, or consulting one or more location tracking
applications in an attempt to find out about her current location). User-specified privacy
rules, also stored in the e-Wallet, ensure that information about the user is only disclosed
to authorized parties, taking into account the context of the query. They further adjust the
accuracy or inaccuracy of the information provided in accordance with the user’s
obfuscation preferences.

 33

Communication toolkit
(http, e-mail, IM, etc.)

User interaction
manager

Platform manager
White & yellow pages

MAS administration toolkit

N
ET

W
O

R
K

knowledge base

API

API

Task-specific
agent Task-specific resources and APIs

e-Wallet
manager

knowledge base

Inference engine
API

Semantic
Web

Semantic Web Ontologies

Semantic Web Annotations

Web Resources

Web Services

Semantic
search

Web services invocation toolkit
API

Service activation rules
Dynamic knowledge about owner
Static knowledge about owner
Loaded ontologies

Security toolkit
API

ee--WWaalllleett
Privacy enforcement rules

Figure 20. myCampus architecture: a user’s perspective - the smiley faces

represent agents.

Figure 20 provides an overview of our Semantic Web environment. It illustrates a
situation where access is from a PDA over a wireless network, as is the case in
myCampus, the environment in which we have instantiated our architecture. However,
our architecture extends to fixed Internet scenarios and more generally to environments
where users can connect to the infrastructure through a number of access channels and
devices – information about the particular access device and channel can actually be
treated as part of the user’s context and be made available through her e-Wallet. As can
be seen in Figure 1, other key elements of our architecture include:

 One or more Platform Managers that build on top of Directory Facilitators and Agent
Management Systems, as defined in FIPA [FIFA]. They manage the agents running at
their sites, and maintain white and yellow page directories of these agents and the
services they provide.

 34

 User Interaction Managers that are responsible for interactions with the user. This
includes managing login sessions as well as interactions with the user’s agents and her
e-Wallet. Because different users interact with different sets of agents, this also includes
the dynamic generation of interfaces for interacting with these agents and the
customization of these interfaces to the current interaction context (e.g. particular access
device). Communication with the User Interaction Manager typically takes place
through a number of APIs, e.g. an Instant Messaging API, an HTTP/HTML API, etc.

Clearly, agents are not limited to accessing information about users in the environment.
Instead, they also typically access public Web Services, Semantic Web annotations,
public ontologies and other public resources. On CMU’s campus, where we have
deployed myCampus, this includes access to a variety of services such as 23 restaurant
web services or a pubic weather forecasting web service.

In the following sections, we focus on the e-Wallet functionality. Additional details on
myCampus and some of the agents we have deployed can be found in [SCV+03].

9.4 Semantic e-Wallet
The e-Wallet is a central element of our Semantic Web architecture for context-
awareness and privacy. It provides a unified and secure semantic interface to all the
user’s personal resources, enabling agents in the system, whether working for the owner
of the e-Wallet or for other users, to access and, when appropriate, modify information
about the user subject to that user’s privacy preferences (e.g. not just determining
whether the user is available between 3 and 4pm but also, possibly, scheduling a meeting
at that time). The e-Wallet is not a static information repository. While it does contain
some static information about the user, it is an agent acting as clearinghouse and
gatekeeper for a user’s personal resources. Its knowledge about the user, her personal
resources and preferences falls into four categories:
1. Static knowledge. This context-independent knowledge typically includes the user’s

name, her email address, employer, home address as well as context-independent
preferences (e.g. “I like spicy vegetarian cuisine”). This knowledge, like all other in the
e-Wallet, can be edited by the user via the User Interaction Manager.

2. Dynamic knowledge. This is context-sensitive knowledge about the user, often
involving a variety of preferences such as “When driving, I don’t want to receive
instant messages”.

3. Service invocation rules. These rules help leverage information resources external to
the e-Wallet – both personal and public. They effectively turn the e-Wallet into a
semantic directory of personal resources that can be automatically discovered and
accessed to process incoming queries. Specifically, service invocation rules provide a
mapping between contextual attributes and personal resources available to access these
attributes, viewing each personal resource as a Semantic Web service. An example of
one such mapping is a rule indicating that a query about the user’s current activity can
be answered by accessing her Microsoft Outlook calendar. We have developed Web
Service wrappers for a variety of personal resources such as Microsoft Outlook
Calendar or location tracking functionality. Service invocation rules are not limited to
providing a one-to-one mapping between contextual attributes and personal resources.
Instead, they can leverage rich ontologies of personal resources, enabling the e-Wallet
to select among a number of possible personal resources based on availability,

 35

accuracy and other relevant considerations. For instance, in response to a query about
the user’s location, the rules can specify that, when the user is driving, the best method
available is the GPS in her car. If she is at work and her wireless-enabled PDA is on,
her location can be obtained using location tracking functionality running over the
enterprise’s wireless LAN. If everything else fails, her calendar might have some
information about her location. Finally, it should be noted that to answer queries about
the user, additional mapping rules that support automated discovery and access of
public services may also be needed. For instance, a query like “Tell me whether Fabien
is in a sunny place right now” will typically require accessing Fabien’s location as well
as a public weather service.

4. Privacy preferences. These preferences encapsulate knowledge about what information
about herself the user is willing to disclose to others under different conditions. These
preferences themselves fall into two categories:
− Access control rules. These rules simply express who has the right to see what

information under different conditions e.g. “My location should only be visible to
members of my team during week days between 8am and 5pm”.

− Obfuscation rules. Often user privacy preferences are not black-and-white but
rather involve different levels of accuracy or inaccuracy: Obfuscation by
abstraction is about abstracting away some details about the user’s current context
such as telling people whether or not you are in town without giving your exact
location. Obfuscation by falsification is about scenarios where the user may not
want to appear as if she is withholding information but would rather provide false
information. For instance, a user may not want to reveal her true email address to a
web service for fear of getting spammed.

All the above knowledge (including rules) is represented in OWL. It can leverage a
number of relevant ontologies (e.g. ontologies about contextual attributes, personal
resources, as well as more specific knowledge such as cuisine types and food preferences
or message types and message filtering preferences).

Before delving deeper into the details of the e-Wallet, a scenario will help illustrate the
key steps it goes through in processing incoming queries (Figure 21). For the sake of
argument, we will assume a query submitted by a user (Norman) to the e-Wallet of a
second user (Fabien) inquiring about that second user’s current location. The main steps
are as follows:
1. Asserting the query’s context: As a first step, facts about the context of the query are

asserted – namely they are loaded into the e-Wallet’s inference engine for possible use
as part of inferences to be made in processing the query. In our example, one such
assertion is that “the sender of the query is Norman”.

2. Asserting elementary information needs and the need to go through an authorization
process: Here the query is translated into an aggregate goal that includes (a) a
combination of elementary information needs – in our example the need to find
“Fabien’s location”, along with (b) a requirement to go through an authorization
process. The authorization process, which is distributed across some of the following
steps, results in the request being either denied or cleared, the latter possibly following
the application of obfuscation rules. In our example, the authorization goal requires
checking that Norman is entitled to having access to Fabien’s location and that the

 36

level of resolution at which the query is answered is compatible with Fabien’s privacy
preferences.

3. Pre-checking whether the query is allowable: A first check is performed to see whether
the query is allowable based on access rights considerations. In our example, the e-
Wallet checks whether Norman is allowed to inquire about Fabien’s location. Fabien’s
e-Wallet might include a privacy preference specifying that his colleagues at work can
see the building that he is in, when he is on campus, but that no one else should be
given access to his location. In this first check, the e-Wallet might be able to determine
that Norman is indeed a colleague of Fabien’s – e.g. based on organizational
knowledge stored in the static knowledge base of Fabien’s e-Wallet. At this stage,
because it has not yet determined whether Fabien is on campus or not, the e-Wallet has
no ground for denying the request. Therefore, it continues processing it, as detailed
below.

4. Checking the e-Wallet’s local knowledge base: Some queries can be answered in whole
or in part, using facts in the e-Wallet’s local knowledge base, which, as we have seen
in Section 3, contains both static (namely, context-independent) and dynamic (namely,
context-sensitive) knowledge about the user. In our particular example, such
knowledge is not particularly helpful and the e-Wallet needs to turn to outside sources
of personal information to answer the query (see next step).

5. Invoking personal resources as Web services: When local knowledge is not sufficient
to answer a query, the e-Wallet turns to its service invocation rules to identify external
resources that might help answer it. This may involve accessing one or more of the
user’s personal resources such as his calendar and/or one or more trusted public
services. In our example, the campus where Fabien works has a wireless LAN that
supports location tracking. This functionality can be invoked by the e-Wallet to obtain
Fabien’s location. The actual invocation takes place through the web service invocation
toolkit already introduced in Figure 1.

6. Post-checking whether the query is allowable: armed with additional knowledge
obtained by invoking one or more external resources, the e-Wallet is now in a better
position to check whether the query is allowable. In our example, colleagues of
Fabien’s are only allowed to see his location when he is on campus. Assuming that
Fabien is on campus, the request is now deemed allowable. This does not mean
however that the authorization process required as part of the goals set in step 2 has
been fully completed. Obfuscation rules may still need to be applied.

7. Application of Obfuscation Rules: suppose that the location tracking functionality used
to answer our query about Fabien’s location returned the specific room he is in, while
Fabien is only willing to disclose the buildings that he is in. This latter requirement is
captured by the e-Wallet in the form of an obfuscation rule that returns the building in
which Fabien is rather than the exact room. Application of this rule will typically
involve accessing ontologies about rooms and buildings as well as annotations about
the campus where Fabien works.

8. The query has now been fully processed and an acceptable answer generated. This
answer (e.g. “Fabien is in Smith Hall”) can be returned to Norman.

 37

Figure 21. Main steps involved in processing a query submitted to an e-
Wallet.

9.5 A Three-Layer e-Wallet Implementation

As shown in Figure 22, we developed a three-layer implementation of our e-Wallet:
 Core Layer: At the most basic level, the e-Wallet’s knowledge includes an OWL meta-
model – required to interpret OWL statements. In addition, it maintains both static
(context-independent) and dynamic (context-dependent) knowledge about the user. This
knowledge is obtained by loading available annotations about the user along with
relevant ontologies and is currently completed using forward-chaining reasoning – to
avoid having to infer the same facts over and over again. Knowledge in this layer is
represented using a (core) triple template:

(predicate, subject, object)TRIPLE

 The Service Layer completes the e-Wallet’s core knowledge with invocation rules that
map information retrieval goals about contextual attributes onto external service
invocations. These are modeled as backward-chaining rules. Given an information
retrieval goal such as “Give me Fabien’s location”, they help identify and invoke one or
more relevant information resources, each modeled as a Web service, as already
discussed in Section 4. Knowledge in this layer is represented using a special type of
triple called “service triple” denoted:

(predicate, subject, object)SERVICE TRIPLE

Service triples reside in the service layer and are created in either of two ways. They can
result from the migration of a triple from the core layer or from the activation of an
invocation rule (e.g. an assertion about Fabien’s location as returned by a call to a
location tracking service). Migration between the core layer and the service layer is
implemented by rules specifying that any (core) triple can be used to generate an
equivalent service triple.
 The outer layer is referred to as the Privacy Layer, as this is where privacy (enforcing)
rules are applied. Assertions in this layer are represented as another special type of triple
called “authorized triple”:

(predicate, subject, object)AUTHORIZED TRIPLE

Query context
assertion

Asserting elementary
information needs &
authorization need

Pre-check

access rights

Post-check
access rights

Assertion of
authorized knowledge

ee--WWaalllleett
Fetch useful

static knowledge

Application of

obfuscation rules

Query

Result

Call relevant
external services

 38

Figure 22. e-Wallet’s 3 layer implementation

Only authorized triples can be sent in response to queries. Authorized triples are
generated by applying privacy enforcing rules to service triples, thereby ensuring that
information about the user is only disclosed to authorized parties and in accordance with
relevant obfuscation rules.
Privacy enforcing rules are encoded as backward-chaining rules. These rules map needs
for authorized triples onto needs for service triples to be post-processed subject to the
privacy enforcing rules. Upon receiving an incoming query, the e-Wallet generates a
need for one or more authorized triples. This need in turn typically triggers needs for
service triples and core triples, eventually resulting either (a) in the generation of
authorized triples that can be returned in response to the query or (b) in an exception, if
the query is found unallowable (e.g. an unauthorized party requesting your location or
trying to schedule a meeting in your calendar). In summary, security in our architecture
is directly enforced through typing.

9.6 Additional Implementation Considerations

The current implementation of our e-Wallet is based on JESS, a high-performance Java-
based rule engine that supports both forward and backward chaining – the latter by
reifying "needs for facts" as facts themselves, which in turn trigger forward-chaining
rules. The e-Wallet’s knowledge base is initialized with: (a) a model of RDF [RDF]
triples as a template for unordered facts, (b) a model of specialized triples used in our
three layers (core triples, service triples and authorized triples) along with associated
migration rules between the layers, and (c) an OWL meta-model.

Additional knowledge is loaded into the e-Wallet by translating OWL input files into
JESS assertions and rules, using a set of XSLT stylesheets [XSLT] (figure 23). The OWL
input files include ontologies and annotations that are transformed into (core) triple
assertions, forward-chaining rules (used to complete knowledge at the core layer) as well
as service invocation rules and privacy enforcing rules – both represented as backward-
chaining rules. The XSLT templates act as meta-rules that generate the body, the head
and typing used by the JESS rules (e.g. query transformation stylesheet in figure 24).

privacy

service query

Answer

core
knowledge

 39

Figure 23. High-level flows and processes in the e-Wallet

(…)
<xsl:template match="/rdf:RDF">
 (defrule query (declare (salience 0))
 <xsl:for-each select="*[not(self::qowl:Query)]">
 <xsl:call-template name="process-class-instance"/>
 </xsl:for-each>
 =>
 (store-result<xsl:call-template name="variable-list"/>)
)
</xsl:template>

<xsl:template name="process-class-instance" >
(authorized_triple
 (predicate "&rdf;#type")
 (subject <xsl:call-template name="local-ID">
 <xsl:with-param name="id">
 <xsl:value-of select="@rdf:about"/>
 </xsl:with-param>
 </xsl:call-template>)
 (object "<xsl:value-of select="concat(namespace-uri(.),local-name(.))"/>")
)
 <xsl:for-each select="*">
 <xsl:call-template name="process-property-instance"/>
 </xsl:for-each>
</xsl:template>

<xsl:template name="process-property-instance" >
 <xsl:choose>
 <xsl:when test='count(*)=1'> <!-- has an element for child -->
 <xsl:call-template name="process-objectproperty-instance"/>
 </xsl:when>
 <xsl:when test='count(text())=1'> <!-- has an text for child -->
 <xsl:call-template name="process-dataproperty-instance"/>
 </xsl:when>
 <xsl:when test='@rdf:resource'> <!-- has a reference -->
 <xsl:call-template name="process-referenceproperty-instance"/>
 </xsl:when>
 </xsl:choose>
</xsl:template>
(…)

Figure 24. Fragment of the query transformation stylesheet

Result

in OWL

Ontology

in CLIPS

Ontology

stylesheet

Ontology

in OWL
&

Annotation

in CLIPS

Annotation

stylesheet

Annotation

in OWL
&

Rule

in CLIPS

Rule

stylesheet

Rule

in (R)OWL
&

Service rule

in CLIPS

Service

stylesheet

Services

in (W)OWL
&

Security rule

in CLIPS

Security

stylesheet

Security

in (S)OWL
&

Query rules

in CLIPS

Query

stylesheet

Query

in (Q)OWL
&

XSLT Engine JESS

OWL Meta-
model

in CLIPS

 40

<qowl:Query rdf:ID="">
 <qowl:sender rdf:resource="http://cs.cmu.edu/~nsadeh"/>
</qowl:Query>
<mc:Person rdf:about="http://cs.cmu.edu/~fgandon">
 <mc:location rdf:resource="http://sadehlab.cs.cmu.edu/Variable#location" />
</mc:Person>

Figure 25. Query issued by the user 'nsadeh’ requesting the location of user
‘fgandon’

Once all this knowledge has been loaded and the forward-chaining rules have been
applied to complete the core knowledge base, the e-Wallet is ready to process incoming
queries. A query is transformed into the need for an authorized triple. This in turn triggers
privacy enforcing rules and generates needs for service triples. The service triples are
generated by either migrating core triples or activating service invocation rules or a
combination of both. This is further detailed below:

1. Queries have two components (see Figure 25): (a) an annotation about the query
providing its context (e.g., who the sender of the query is), and (b) the query itself in
the form of a pattern using a special namespace to identify variables. The context of a
query is asserted for the time it takes to process it – later, clean up rules take care of
removing all assertions created while processing it. We assume that security protocols
(e.g., using digital signatures) are used to verify assertions about the query’s context
(e.g. verifying the identity of the sender). The query itself is transformed into a set of
authorized triples in the privacy layer. These authorized triples form the body of a
backward-chaining rule, whose head is a function that stores the results each time the
rule is triggered and that generates OWL results in XML syntax (“pretty printing”).

2. The need of the query for authorized triples triggers privacy enforcing rules. As
illustrated in Figure 27, these rules have two roles. First, they check that the sender of
the query has the required access rights. In addition, they also apply obfuscation rules
to triples to ensure that the level of accuracy or inaccuracy provided in answers to
queries is compatible with the user’s privacy preferences. The need for authorized
triples in combination with privacy enforcing rules generates a need for service triples.

3. The need for service triples in turn triggers service rules. First a generic service rule is
applied that checks whether the needed service triple is not already available as a core
triple. If this is the case an equivalent service triple is simply created. If there is no
equivalent core triple, the e-Wallet looks for matching rules that trigger internal
function calls (e.g. getting the current time and date). If that fails too, it looks for
matching (external) Web Services. To support this, we have extended the Jess library
with internal functions (e.g. time) and functions to call external services. An example
of a service invocation rule is given in Figure 28.

Figure 26 uses pseudo-code to depict the e-Wallet’s overall processing flow.
//Load CLIPS model of RDF/S and OWL INITIALIZATION
{∀ triple(Ti) | Ti ∈ OWLmodel } assert (Ti) in JESS
{∀ rule(Ri) | Ri ∈ OWLmodel } defrule (Ri) in JESS
//Load ontologies
{∀ OOWLi | Ontology (OOWLi)}

 41

 OCLIPSi:=Ontology stylesheet (OOWLi) // extract ontology triples
 {∀ triple(Ti) | Ti ∈ OCLIPSi } assert(Ti) in JESS
//Load annotations
{∀ AOWLi | Annotation (AOWLi)}
 ACLIPSi:=Annotation stylesheet (AOWLi) // extract annotation triples
 {∀ triple(Ti) | Ti ∈ ACLIPSi } assert(Ti) in JESS
//Load rules
{∀ RROWLi | Rule (RROWLi)}
 RCLIPSi:=Rule stylesheet (RROWLi) //makes forward rules producing triples
 {∀ rule(Ri) | Ri ∈ RCLIPSi } defrule (Ri) in JESS
//Load service rules
{∀ SWOWLi | service description (SWOWLi)}
 SCLIPSi:=Service stylesheet (SWOWLi)
 //makes backward rules producing dynamic triples
 {∀ rule(Ri) | Ri ∈ SCLIPSi } defrule (Ri) in JESS
//Load privacy rules
{∀ PROWLi | Security rule (PROWLi)}
 PCLIPSi:=Privacy stylesheet (PPOWLi)
 // makes backward rules producing authorized triples
{∀ rule(Ri) | Ri ∈ PCLIPSi } defrule (Ri) in JESS

 QUERY PROCESSING

//Load query
CCLIPSi:=Query stylesheet (AOWLi) // extract context triples e.g.: sender
{∀ triple(Ti) | Ti ∈ CCLIPSi } assert(Ti) in JESS
QCLIPSi := Query stylesheet (QPOWLi)
 // makes one backward rule requiring authorized triples
defrule (QCLIPSi) in JESS
(Run the RETE Algorithm)

Figure 26. e-Wallet’s overall processing flow.

The system has been designed with efficiency in mind. For instance, query processing
stops as soon as an authorization violation is detected. Also, at the service layer, rules
ensure that the system first checks for available core triples before attempting to invoke
external resources.

We currently use RDF-S/OWL to represent rules. In comparison to RuleML [RuleML],
we do not reify the role of the relation and its arguments. We simply use triples to
represent rules and take advantage of the typing mechanism of the XML syntax. We use a
special namespace to identify variables. While we are following ongoing developments in
RuleML [RuleML] and OWL Rules, our current focus is on the use of rules that apply to
OWL assertions. Later we could easily extend our system, for instance using XSLT
stylesheets to translate between our representation of rules in OWL and RuleML
representations.

As shown in Figure 27, privacy enforcing rules are defined using three tags: the content
of the target tag describes the piece of knowledge to which this rule applies; the content
of the check tag describes the conditions under which read access is granted; the content
of the revision tag describes the obfuscation to be applied before migrating triples to the
authorized layer. Note that, at the time of writing, our e-Wallet also supports limited
write access rules.

As shown in Figure 28 the service rules have three child tags: the content of the output
tag describes the piece of knowledge that this rule can produce; the content of the
precondition tag describes the knowledge needed for calling the service; the content of
the call tag describes the function to trigger and its parameters. For reference, the CLIPS

 42

representation of this rule, following the application of our XSLT transformation, is also
provided in Figure 29.

<sowl:ReadAccessRule>
 <rdfs:label>people can only know whether or not I am on campus</rdfs:label>
 <sowl:target>
 <mc:Person rdf:about="&variable;#owner">
 <mc:location rdf:resource="&variable;#location"/>
 </mc:Person>
 </sowl:target>
 <sowl:check>
 <rowl:And>
 <rowl:condition>
 <mc:E-Wallet rdf:about="&variable;#e-Wallet">
 <mc:owner>
 <mc:Person rdf:about="&variable;#owner"/>
 </mc:owner>
 </mc:E-Wallet>
 </rowl:condition>
 <rowl:condition>
 <mc:Place rdf:about="http://www.cmu.edu">
 <mc:include rdf:resource="&variable;#location" />
 </mc:Place>
 </rowl:condition>
 <rowl:not-condition>
 <qowl:Query rdf:about="&variable;#query">
 <qowl:sender rdf:resource="&variable;#owner" />
 </qowl:Query>
 </rowl:not-condition>
 </rowl:And>
 </sowl:check>
 <sowl:revision>
 <mc:Person rdf:about="&variable;#owner">
 <mc:location rdf:resource="http://www.cmu.edu"/>
 </mc:Person>
 </sowl:revision>
</sowl:ReadAccessRule>

Figure 27. Privacy rule obfuscating the location of the owner

<wowl:ServiceRule wowl:salience="50">
 <rdfs:label>provide activity status for a person</rdfs:label>
 <wowl:output>
 <mc:Person rdf:ID="&variable;#person">
 <mc:has_activity rdf:resource="&variable;#activity" />
 </mc:Person>
 </wowl:output>
 <wowl:precondition>
 <mc:Person rdf:ID="&variable;#owner">
 <mc:PDA_endpoint>&variable;#endpoint</mc:PDA_endpoint>
 </mc:Person>
 </wowl:precondition>
 <wowl:call>
 <wowl:Service wowl:name="call-web-service">
 <wowl:qname>http://mycampus/PDAService#</wowl:qname>
 <wowl:endpoint>&variable;#endpoint</wowl:endpoint>
 <wowl:method>GetCurrentWeekAppointments</wowl:method>
 <wowl:user_id>&variable;#owner</wowl:user_id>
 </wowl:Service>
 </wowl:call>
</wowl:ServiceRule>

Figure 28. Service rule for activity-tracking invocation in WOWL

(defrule provide_activity_status_for_a_person (declare (salience 50))
 (need-dynamic_triple
 (predicate "http://mycampus.cs.cmu.edu/ontology#has_activity")
 (subject ?person)
 (object ?activity)
)
 (dynamic_triple
 (predicate "http://www.w3.org/1999/02/22-rdf-syntax-ns#type")
 (subject ?owner)

 43

 (object "http://mycampus.cs.cmu.edu/ontology#Person")
)
 (dynamic_triple
 (predicate "http://mycampus.cs.cmu.edu/ontology#PDA_endpoint")
 (subject ?owner)
 (object ?endpoint)
)
 =>
 (call-web-service qname "http://mycampus/PDAService#"
 endpoint ?endpoint
 method "GetCurrentWeekAppointments"
 user_id ?owner)
)

Figure 29. Service rule for activity-tracking invocation translated in CLIPS

9.7 Static Knowledge and Domain Specific Rules

As indicated earlier, the RDF triple meta-model is defined as a template used in forward
chaining rules. The OWL meta-model is asserted as a list of unordered facts such as the
one shown in Figure 30. The semantics attached to properties is translated into rules as
illustrated in Figure 31.
(triple
 (predicate "http://www.w3.org/1999/02/22-rdf-syntax-ns#type")
 (subject "http://www.w3.org/2002/07/owl#equivalentProperty")
 (object "http://www.w3.org/2002/07/owl#SymmetricProperty")
)

Figure 30. Declare property equivalence as a symmetric property

(defrule equivalent-property (declare (salience 100))
 (triple
 (predicate "http://www.w3.org/2002/07/owl#equivalentProperty")
 (subject ?p1)
 (object ?p2))
 (triple (predicate p1?) (subject ?s) (object ?o))
 (not (triple (predicate p2?) (subject ?s) (object ?o)))
 =>
 (assert (triple (predicate p2?) (subject ?s) (object ?o)))
)

Figure 31. Rule for forward-chaining completion of property equivalence

As far as the OWL meta-model is concerned, we are focusing on those aspects of OWL-
Lite relevant to our application scenarios. More precisely the current system handles:
Resource, Class, Property, type, subClassOf, subPropertyOf,
ObjectProperty, TransitiveProperty, SymmetricProperty,
inverseProperty, equivalentProperty, equivalentClass,
sameIndividualAs, DatatypeProperty, FunctionalProperty,
InverseFunctionalProperty. – the source code and the results obtained by running
our OWL engine on the official OWL test cases are available at
http://mycampus.sadehlab.cs.cmu.edu/public_pages/OWLEngine.html.

Likewise, triples in the ontologies and annotations loaded into the e-Wallet are asserted
as unordered facts. Finally, domain-dependent rules are also loaded in the e-wallet. An
example of one such rule is illustrated in Figure 32. It defines colleagues as members of

 44

the same team. Such rules can help represent and interpret context-sensitive preferences
such as ‘My colleagues can see my location when I am at work’.
 OWL
<rowl:Rule direction="forward">
 <rdfs:label>Members of the same group means colleagues</rdfs:label>
 <rowl:head>
 <mc:Person rdf:about="&variable;#person1">
 <mc:colleague rdf:resource="&variable;#person2"/>
 </mc:Person>
 </rowl:head>
 <rowl:body>
 <mc:Team rdf:ID="&variable;#group">
 <mc:include><mc:Person rdf:about="&variable;#person1"/></mc:include>
 <mc:include><mc:Person rdf:about="&variable;#person2"/></mc:include>
 </mc:Team>
 </rowl:body>
</rowl:Rule>

 CLIPS
(defrule Members_of_the_same_group_means_colleagues
 (triple
 (predicate "http://www.w3.org/1999/02/22-rdf-syntax-ns#type")
 (subject ?group)
 (object "http://mycampus.cs.cmu.edu/ontology#Team")
)
 (triple
 (predicate "http://mycampus.cs.cmu.edu/ontology#include")
 (subject ?group)
 (object ?person1)
)
 (triple
 (predicate "http://www.w3.org/1999/02/22-rdf-syntax-ns#type")
 (subject ?person1)
 (object "http://mycampus.cs.cmu.edu/ontology#Person")
)
 (triple
 (predicate "http://mycampus.cs.cmu.edu/ontology#include")
 (subject ?group)
 (object ?person2)
)
 (triple
 (predicate "http://www.w3.org/1999/02/22-rdf-syntax-ns#type")
 (subject ?person2)
 (object "http://mycampus.cs.cmu.edu/ontology#Person")
)
 =>
 (assert
 (triple
 (predicate "http://www.w3.org/1999/02/22-rdf-syntax-ns#type")
 (subject ?person1)
 (object "http://mycampus.cs.cmu.edu/ontology#Person")
)
)
 (assert
 (triple
 (predicate "http://mycampus.cs.cmu.edu/ontology#colleague")
 (subject ?person1)
 (object ?person2)
)
)
)

Figure 32. Rule defining colleagues as members of the same team

The inference engine is used to complete the base applying all the rules, thus saving time
during the query solving process and providing a rollback point if needed.

9.8 Service Layer Processing
As indicated earlier, needs for service triples can be satisfied by either migrating a
matching core triple or by activating a matching service invocation rule. For obvious
efficiency reasons, it makes sense to always look for core triples first. This can be
enforced by assigning a high priority (also called salience) to rules that look for matching
core triples and lower priority to service invocation rules. Service invocation rules are

X
SL

T

 45

themselves given different priorities, based on the nature of the resource they invoke.
This is further detailed below:
 If the needed service triple can be obtained by invoking an internal function (e.g. getting
the current time), that function will be activated;
 If no internal service can provide the triple (or if internal calls have failed) but there is a
personal service that can possibly provide the needed triple (e.g., obtaining the user’s
current activity from her personal calendar), the corresponding backward invocation
rule is fired, calling that personal resource’s Web Service wrapper;
 If no personal resource can provide the needed triple or if the calls failed, the engine
looks for invocation rules involving public web services. This can include invoking
public Semantic Web search engines (e.g. CORESE [CZC02] or distributed search
architecture such as TAP [GMM03]) or public matchmaking services such as the one in
[PKPS02] – this step is not currently implemented.
 If everything fails, the query is considered to have failed.

In summary, the body of each rule requires a need for a particular piece of information or
triple (e.g. Fabien’s location) along with the availability of a specific set of arguments
(e.g. knowledge of the IP address of Fabien’s PDA). When these conditions are matched,
the rule fires and calls the service (Figure 33 depicts the semantic web service used to
support location-tracking over CMU’s wireless LAN).

Annotation of access points on campus:

<mc:AccessPoint>
 <mc:MAC>00:60:1D:23:C5:AF</mc:MAC>
 <mc:location rdf:resource="http://www.cmu.edu/SmithHall" />
</mc:Entity>

 46

Result of invoking the location-tracking web service:

<mc:Entity rdf:ID="http://cs.cmu.edu/~fgandon">
 <mc:location rdf:resource="http://www.cmu.edu/SmithHall" />
</mc:Entity>

Figure 33. Semantic web service for location-tracking over CMU’s wireless
LAN.

When looking for particular piece of information, rule salience helps determine the order
in which to try and invoke available services (e.g. if multiple sources of location
information are available). In general, we envision having a set of rules, where, should
everything else fail, the e-Wallet reverts to a low salience rule that invokes one or more
semantic search engines and/or one or more public matchmaking services. Clearly, as
users acquire new personal resources (e.g. a new calendar), they will have to register
them with their e-Wallets (e.g. using predefined service profiles that are provided with
the resource itself).

9.9 Capturing User Preferences
As should be clear by now, our Semantic Web technologies are capable of capturing a
wide variety of user preferences that may refer to any relevant set of OWL ontologies.
This is true for message filtering preferences, food preferences, music preferences,
privacy preferences, scheduling preferences, etc. One approach to capturing these
preferences is to develop a variety of special-purpose editing tools that enable users to
specify their preferences with regard to predefined sets of ontologies. For instance, each
time a user subscribes to (or acquires) a new task-specific agent, she might be prompted
by a special-purpose editor to customize a predefined set of preferences. The same could
be done to capture predefined sets of privacy preferences. However, a key objective in
our architecture has been to provide for an open environment, where new sources of
contextual information, new contextual ontologies and new agents can be introduced over
time. Supporting the capture of user privacy preferences in this broader context ideally
requires a general-purpose privacy preference editor that enables users to refer to any
relevant source of contextual information and any relevant contextual ontology. Figure 34
shows screenshots of such a general-purpose privacy preference editor. The editor uses
XSLT stylesheets and allows users to browse (Figure 34-a) and edit their privacy rules
(Figure 34 - b and c).

 47

(a)

(b)

(c)

Figure 34. Generic rule editor that enables users to (a) browse and (b) (c) edit
their OWL-based privacy/confidentiality preferences.

The editor allows users to create new rules as well as edit and delete existing ones. The
editor draws directly on available ontologies (ontologies loaded into the e-Wallet),
enabling users to express any privacy/confidentiality rules they want as they relate to
concepts and properties defined in these ontologies. The editor takes into account the
OWL meta-model as the user edits rules. For instance, it will restrict the instantiation of a
given concept to be within the range of a given property, as specified using the OWL
“ObjectProperty” construct [OWL].

Every single editing operation is specified through an external XSLT stylesheet. The
stylesheets are independent of the domain ontologies and could be refined to support
more specific instantiations of our rule editor. In addition, rule editing is supported
through the definition of high-level functions, namely “creating”, “deleting”,
“extracting”, “updating” a rule, or “adding/deleting concepts”, “adding/deleting
properties”, etc. These high-level functions are instantiated at run time, using XSLT
stylesheets that perform the actual manipulation. In other words, the editor could easily
be adapted to accommodate extensions to our rule syntax. As can also be seen, use of
this general purpose privacy preference editor, in its current form, is best left to system
administrators and advanced users.

 48

9.10 Empirical Evaluation
An early version of our architecture has been validated in myCampus, a context-aware
environment aimed at enhancing everyday campus life at CMU. The environment is
accessible to members of the campus community from their PDAs over the university’s
wireless LAN. An example of a myCampus agent we have developed is a “restaurant
concierge” that gives users suggestions on where to have lunch, depending on their food
preferences, their location on campus and the weather. For instance, when it rains, the
concierge might look for places that do not require walking outside – depending on how
the user sets her preferences. Another task-specific agent that has proved particularly
popular among students is a context-aware message filtering agent. The agent filters
incoming alerts, taking into account a profile of topics a user is interested in as well as
contextual attributes such as the user’s current activities (e.g. “When in class, only show
me emergency alerts” or “When I am busy, delay showing me interesting messages until
my current activity is over”). Screenshots of both agents are shown in Figure 35.

Figure 35. Screenshots of the e-Wallet (top), restaurant recommendation from

the Restaurant Concierge Agent (bottom left) and request for feedback from
the Message Filtering Agent (bottom right)

Evaluation of the system by 11 users over a period of 3 days has indicated positive
overall user acceptance. Among other things, the experiments required users to configure
their individual preferences and use several context-aware agents, including a context-
aware restaurant concierge agent and a context-aware message filtering agent. The

 49

message filtering agent was used to process a total of 44 messages for each user and the
restaurant concierge was systematically used by students to decide where to eat, selecting
from a total of 23 web services created for restaurants on or near campus. The context-
aware functionality embedded in the agents used in the experiments proved rather
successful with context awareness systematically improving performance over the use of
static user profiles. For instance, detailed feedback from users indicated that over 70
percent of the 484 messages processed by the filtering agents benefited from the use of
contextual information. In other words, the action taken by the message filtering agent
based on contextual information was always at least as good as that taken based on static
user profiles and was actually better in 70 percent of the cases.

Figure 17 displays additional screenshots of the myCampus environment, illustrating
different sets of pervasive computing scenarios. The Directory Facilitator (DF) provides
users with a list of available task-specific agents. The map agent is a user locator that
displays the location of a user on a map, subject to that user’s privacy preferences. Map
(1) corresponds to a request where the user is willing to disclose the particular zipcode
she is in, while map (2) corresponds to a query where she is only willing to disclose her
location at the level of the city she is in. Other similar agents include a location-sensitive
movie recommendation agent and a location-sensitive weather forecast agent. A slide
show agent enables users to access slides that other users have agreed to share with them
subject to preferences specified in their e-Wallets and to display these slides on a nearby
projector.

DF map (1) map (2)

movies

weather meeting

scheduler
slide show (1)

slide show (2)

Figure 36. myCampus: Additional screenshots showcasing additional agents
and pervasive computing scenarios

 50

.

9.11 Summary and Concluding Remarks
In this paper, we have presented a Semantic Web architecture for context-awareness and
privacy. A key element of our architecture is its e-Wallet, which supports the automated
discovery and access of a user’s personal resources subject to user-specified privacy
preferences. Personal and public resources are represented as web services. Service
invocation rules along with service ontologies and service profiles enable the e-Wallet to
dynamically identify the most promising resources available to answer a query. When
one resource is unavailable, service invocation rules can help identify the next most
relevant resource (e.g. using a calendar resource instead of a location tracking resource to
estimate the user’s current location). Public matchmaking services and semantic search
engine functionality can also be leveraged through low salience rules that amount to
reverting to these services when everything else has failed. Another innovation
introduced in our e-Wallet is its support for a rich set of privacy preferences, including
obfuscation rules that enable users to selectively adjust the accuracy or inaccuracy of
responses they provide depending on the context of each query. We have described a
three-layer implementation of our e-Wallet using JESS, OWL-Lite and XSLT stylesheets.
A query to the e-Wallet successively results in the creation of needs for authorization
triples and service triples. The latter can be satisfied through the identification of
matching core triples and/or the activation of service invocation rules.

Experiments with myCampus indicate that different students are interested in different
task-specific agents and that, to be effective, many agents require access to a great variety
of contextual resources. Our experiments also confirmed that users are concerned about
protecting access to their personal information. The need for leveraging a variety of
contextual attributes and the students’ demand for privacy strongly argue for Semantic e-
Wallets such as the one presented here. A key challenge however remains to reconcile the
power of these Semantic environments with all important usability requirements that
demand systems which are flexible, yet easy to configure. We are experimenting with
different approaches to editing and learning user profiles, which we hope will help
alleviate this problem.

 51

10 Appendix B: A More In-Depth Overview of Meta-
Control Strategies to Interleave Semantic Web
Reasoning and Service Discovery

This appendix is based on our article on “Interleaving Semantic Web Reasoning and
Service Discovery to Enforce Context-Sensitive Security and Privacy Policies” [SR05a].

Abstract
In many domains, users and organizations need to protect their information and services
subject to policies that reflect dynamic, context-sensitive considerations. More generally,
enforcing rich policies in open environments will increasingly require the ability to
dynamically identify external sources of information necessary to enforce different policy
elements (e.g. finding an appropriate source of location information to enforce a location-
sensitive access control policy). In this paper, we introduce a semantic web framework
for dynamically interleaving policy reasoning and external service discovery and access.
Within this framework, external sources of information are wrapped as web services with
rich semantic profiles allowing for the dynamic discovery and comparison of relevant
sources of information. Each entity (e.g. user, sensor, application, or organization) relies
on one or more Policy Enforcing Agents responsible for enforcing relevant privacy and
security policies in response to incoming requests. These agents implement meta-control
strategies to dynamically interleave semantic web reasoning and service discovery and
access. This research has been conducted in the context of myCampus, a pervasive
computing environment aimed at enhancing everyday campus life at Carnegie Mellon
University.

10.1 Introduction
The increasing reliance of individuals and organizations on the Web to help mediate a
variety of activities is giving rise to a demand for richer security and privacy policies and
more flexible mechanisms to enforce these policies. Enterprises want to selectively
expose core business functionality and sensitive business information to various partners
based on the evolving nature of their relationships (e.g. disclosing rough product
specifications to prospective suppliers versus disclosing more detailed requirements to
actual suppliers, or giving selective visibility into the company’s inventory positions or
demand forecasts to preferred supply chain partners). Employees in a company may be
willing or required to share information about their whereabouts or about their activities
with some of their team members or their boss but only under some conditions (e.g.
during regular business hours or while on company premises). Coalition forces may need
to selectively share sensitive intelligence information but only to the extent it is relevant
to a specific joint mission. Each of these examples illustrates the need for what we
generically refer to as context-sensitive security and privacy policies, namely policies
whose conditions are not tied to static considerations but rather conditions whose

 52

satisfaction, given the very same actors (or principals), will likely fluctuate over time.
Enforcing such policies in open environments is particularly challenging for several
reasons:

• Sources of information available to enforce these policies may vary from one
principal to another (e.g. different users may have different sources of location
tracking information made available through different cell phone operators)

• Available sources of information for the same principal may vary over time (e.g.
when a user is on company premises her location may be obtained from the wireless
LAN location tracking functionality operated by her company as well as through her
cell phone operator, but when she is not on company premises the cell phone
operator is the only option – subject to relevant privacy policies she may have
specified)

• Available sources of information may not be known ahead of time (e.g. new location
tracking functionality may be installed or the user might roam into a new area)

Accordingly, enforcing context-sensitive policies in these open domains requires the
ability to opportunistically interleave policy reasoning with the dynamic identification,
selection and access of relevant sources of contextual information. This requirement
exceeds the capability of decentralized management infrastructures proposed so far and
calls for privacy and security enforcing mechanisms capable of operating according to
significantly less scripted scenarios than is the case today (e.g.
[BSF02,HSSK04,LGC+05]). It also calls for much richer service profiles than those
found in early web service standards.

In this paper, we introduce a semantic web framework for dynamically interleaving
policy reasoning and external service identification, selection and access. Within this
framework, external sources of information are wrapped as web services with rich
semantic profiles allowing for the dynamic discovery and comparison of relevant sources
of information. Each entity (e.g. user, sensor, application, or organization) relies on one
or more Policy Enforcing Agents responsible for enforcing relevant privacy and security
policies in response to incoming requests. These agents implement meta-control
strategies to opportunistically interleave semantic web reasoning and service discovery
and access. In this paper, we focus on a particular type of Policy Enforcing Agent we
refer to as Information Disclosure Agents. These agents are responsible for enforcing two
types of policies: access control policies and obfuscation policies. The latter are policies
that manipulate the accuracy or inaccuracy with which information is released (e.g.
disclosing whether someone is busy or not rather than disclosing what they are actually
doing). The research reported herein has been conducted in the context of MyCampus, a
pervasive computing environment aimed at enhancing everyday campus life at Carnegie
Mellon University [SCV+03,GS03,GS04a].

The work presented in this paper builds on concepts of decentralized trust management
developed over the past decade [BFL96]. Most recently, a number of researchers have
started to explore opportunities for leveraging the openness and expressive power
associated with Semantic Web and agent frameworks in support of decentralized trust

 53

management (e.g. [UPC+03, KFJ03, KPS04, HKL+04, APM04, UBJ04, DKF+05] to
name just a few). Our own work in this area has involved the development of Semantic
e-Wallets that enforce context-sensitive privacy and security policies in response to
requests from context-aware applications implemented as intelligent agents [GS03,
GS04a]. In this paper, we introduce a significantly more decentralized framework, where
policies can be distributed among any number of agents and web services. Within this
framework, we present a meta-control architecture for interleaving semantic web
reasoning and web service discovery in enforcing context-sensitive privacy and security
policies.

The remainder of this paper is organized as follows. Section 2 introduces an overall
architecture for distributing and enforcing privacy and security policies, using a pervasive
computing context to illustrate how these policies can be deployed in practice. It follows
with an overview of our Information Disclosure Agent, detailing its different modules
and how their operations are opportunistically orchestrated in response to incoming
requests. A motivating example based on the pervasive computing environment
introduced earlier is presented in Section 10.2. Section 10.3 details our query status
model, which serves as a basis to our meta-control strategies. Section 10.4 describes our
service discovery model. Some implementation issues are discussed in Section 10.5.
Concluding remarks are provided in Section 10.6.

10.2 Overall Approach and Architecture

10.2.1 Pervasive Computing as an Application Context

To help put things in perspective, we consider a pervasive computing environment, where
each user interacts with the infrastructure either directly (e.g. walking into a room,
entering the subway system) or indirectly via agents to which they delegate tasks (e.g. a
general-purpose user-agent such as a micro-browser on a PDA or cell phone, policy
evaluation and notification agents, or task-specific agents such as a context-aware
message filtering agent or a meeting scheduler agent). The infrastructure provides a set of
resources generally tied to different geographical areas, such as printers, surveillance
cameras, campus-based location tracking functionality, and so on (see Figure 37). These
resources are all modeled as services that can be automatically discovered based on rich
ontology-based service profiles advertised in service directories and accessed via open
APIs. In general, services can offer functionality and/or serve as sources of contextual
information. A camera service, a calendar system, or a location tracking service are
examples that can offer both. Services can also build on one another, with simple services
providing building blocks for the definition of more complex ones. An example is the
“printer service” in Figure 37, which itself relies on the “find nearest printer service,”
which in turn relies on a “people locator service” to find the location of the user. The
“people locator service” in turn might be able to dynamically select from a number of
possible services available to locate people such as a badge system or a combination of a
system of cameras along with a video analysis service. Each service and agent has an

 54

owner, whether an individual or an organization, who is responsible for setting policies
for the service or agent.

Services that collect information about users may broadcast disclosure messages that
inform target users (or more specifically their agents) about the operation of the service
(e.g. users who enter a smart room or the subway system). Some disclosures are one-way
announcements: they simply inform the user that information is collected about them and
possibly how that information is used.

Other disclosure messages may give the user some options. For example, a location-
tracking service may give the user the choice of opting out. Alternatively, the user may
be able to allow tracking, while limiting the use of his or her location information (e.g.
only for emergency use) or she may require that all requests for her location be cleared
with her own Information Disclosure Agent (enforcing her regular privacy and security
policies). A Policy Disclosure Evaluation Agent may respond to disclosures
automatically, based on the user’s policies (e.g. opting out). The same agent may also be
able to occasionally notify its user of policies that might lead her to modify her behavior,
as well as prompt its user to manually select among possible options when needed.

Figure 37. Pervasive Computing as an Application Domain

 55

Each entity (or principal) in the system (whether an individual, a service, an agent or an
organization) has a set of credentials and a set of policies. These policies can include:

• Access control policies that limit access only to entities that can be proved to satisfy
certain conditions.

• Obfuscation policies that associate different levels of accuracy or inaccuracy to
different sets of credentials.

• Information collection policies (a la P3P [CLM+02], that specify what type of
information is collected by a service, for what purpose, how that information will be
stored, etc.

• Notification Preference Policies specifying under which conditions a user may want
to be alerted about the presence of sensors or other information collection
applications.

Collectively, these policies enable users and organizations to manage their privacy
practices, specifying what information they are willing to disclose (access control) and at
what level of granularity (obfuscation) and notifying users or their agents about the
information they collect and what happens to that information. Policy enforcement is
delegated to different sets of agents (these agents may occasionally request input or
feedback from their users, as already illustrated earlier). For the sake of clarity, in the
remainder of this paper, we focus more specifically on one such type of agent, namely an
Information Disclosure Agent responsible for enforcing both access control and
obfuscation policies. The architecture presented for this agent can however be adapted to
implement a number of other context-sensitive Policy Enforcing Agents such as the ones
illustrated in Figure 37.

 56

10.2.2 Information Disclosure Agent: An Example of a Policy Enforcing
Agent

Figure 38. Information Disclosure Agent: Logical Architecture

An Information Disclosure Agent (IDA) processes incoming requests (e.g. a query about
the location of the agent’s owner or a request to access a service under the owner’s
control) subject to a set of access control and obfuscation polices captured in the form of
rules. As it processes incoming queries, the agent records status information that helps it
monitor its own progress in enforcing its policies and in obtaining the necessary
information. Based on this updated query status information, a meta-control module
(“meta-controller”) dynamically orchestrates the operations of modules it has at its
disposal to process queries (Figure 38). As these modules report on the status of
activities they have been tasked to perform, this information is processed by a
Housekeeping module responsible for updating query status information (e.g. changing
the status of a query from being processed to having been processed). Simply put, the
agent continuously cycles through the following three basic steps:

1. The meta-controller analyzes the latest query status information and invokes one or
more modules to perform particular tasks. As it invokes these modules the meta-
controller also updates relevant query status information (e.g. update the status of a

 57

query from “not yet processed” to “being processed”). All query status information
includes timestamps.

2. Modules complete their tasks (whether successfully or not) and report back to the
Housekeeping module – occasionally modules may also report on their ongoing
progress in handling a task

3. The Housekeeping module updates detailed status information based on information
received from modules and performs additional housekeeping activities (e.g. caching
the results of recent requests to mitigate the effects of possible denial of service
attacks, cleaning up status information that has become irrelevant, etc.)

For obvious efficiency reasons, while an IDA consists of a number of logical modules,
each operating according to a particular set of rules, it is actually implemented as a single
reasoning engine. In our current work we use JESS [Fri03], a high-performance Java-
based rule engine that supports both forward and backward chaining – the latter by
reifying "needs for facts" as facts themselves, which in turn trigger forward-chaining
rules. The following provides a brief description of each of the modules orchestrated by
the IDA’s meta-controller – note that other types of Policy Enforcing Agents typically
entail different sets of modules:

• Query Decomposition Module: This module takes as input a particular query and
breaks it down into elementary needs for information, which can each be thought of
as subgoals or sub-queries. We refer to these as Query Elements.

• Access Control Module is responsible for determining whether a particular query or
sub-query is consistent with relevant access control policies – modeled as access
control rules. While some policies can be checked just based on facts contained in
the agent’s local knowledge base, many policies require obtaining information from
a combination of both local and external services. When this is the case, rather than
immediately deciding whether or not to grant access to a query, the Access Control
Module requests additional facts – also Query Elements. These requests are added to
the agent’s Query Status Information Knowledge Base along with information about
their parent Query or Query Element – namely the Query or Query Element for
which they are needed.

• Obfuscation Module sanitizes information requested in a query according to relevant
obfuscation policies – also modeled as rules. As it evaluates relevant obfuscation
policies, this module too can post request for additional information (Query
Elements) to the Query Status Information Knowledge Base (via the Housekeeping
Module).

• Local Information Reasoner: This reasoner corresponds to “static” domain
knowledge (facts and rules) known locally to the IDA or at least knowledge that
does not change too frequently (e.g. the name and email address of the agent’s
owner, possibly a list of friends and family members, etc.)

• Service Discovery Module: This module helps the IDA identify promising sources of
information to complement its local knowledge. This includes both local services
and external services. Local services can be identified through a local service
directory (e.g. a directory of services under the direct control of the agent’s owner
such as a calendar service running on his desktop or on his smart phone). External
services can be identified through external service directories (whether public or
not). Communication with external service directories takes place via the agent’s

 58

External Communication Gateway. Rather than relying solely on searching service
directories, the service discovery module also allows for the specification of what we
refer to as service identification rules. These rules directly map information needs on
prespecified services (whether local or external). An example of such rule might be:
“when looking for current activity, try first my calendar service”. When available,
such rules can yield significant performance improvements, while allowing the
module to revert to more general service directory searches when they fail. We
assume that all service directories rely on OWL-S to advertise service profiles (see
Section 6).

• Service Invocation Module: This module allows the agent to invoke relevant services,
whether local or external. It is important to note that, in our architecture, each service
can have its own Information Disclosure Agent (IDA). As requests are sent to
services, their IDAs may in turn respond with requests for additional information to
enforce their own policies.

• User Interface Agent: The meta-controller treats its user as just another module who
is modeled both as a potential source of domain knowledge (e.g. to acquire relevant
contextual information) as well as a potential source of meta-control knowledge (e.g.
if a particular query takes too long to process, the user may be requested whether it is
worth expending additional computational resources processing that query or not).

Modules support one or more services that can each be invoked by the meta-controller
along with relevant parameter values. For instance, the meta-controller may invoke the
query decomposition module and request it to decompose a particular query; it may
invoke the access control module and task it to proceed in evaluating access control
policies relevant to a particular query; etc. In addition, meta-control strategies do not
have to be sequential. For instance, it may be advantageous to implement meta-control
strategies that enable the IDA to concurrently request the same or different facts from
several services. These and other issues are further discussed in Section 7.

 59

10.3 Sample Scenario

Figure 39. Illustration of first few steps involved in processing a request from
Bob to find out about the room Mary is in.

The following scenario will help illustrate how IDAs operate. Consider Mary and Bob,
two colleagues who work for company XYZ. Mary and Bob are both field technicians
who constantly visit other companies. Mary’s team changes from one day to the next
depending on the nature of her assignment. Mary relies on an Information Disclosure
Agent to enforce her access control policies. In particular, she has specified that she is
only willing to disclose the room that she is in to members of her team and only when
they are in the same building. Suppose that today Bob and Mary are on the same team
and that Bob is querying Mary’s IDA to find out about her location. For the purpose of
this scenario, we assume that Mary and Bob are visiting Company ABC and are both in
the same building at the time the query is issued. Both Bob and Mary have cell operators
who can provide their location at the level of the building they are in – but not at a finer
level. Upon entering Company ABC, Mary also registered with the company’s location
tracking service, which operates over the wireless LAN and is compatible with her WiFi-
enabled smart phone. As she registered with the service, one of her Policy Enforcing
Agents (her Policy Disclosure Evaluation Agent) negotiated that all requests about her
location be redirected to her IDA. For the purpose of this scenario, we also assume that
Mary’s IDA does not yet know whether Bob is on her team. It therefore needs to identify
a service that can help it determine whether this is the case. A service discovery step
helps identify a service operated by Company XYZ (Bob and Mary’s employer) that

 60

contains up-to-date information about teams of field technicians. This step requires a
directory with rich semantic service profiles, describing what each service does (e.g. type
of information it can provide, level of accuracy or recency, etc.). To be interpretable by
agents such as Mary’s IDAs, these profiles also need to refer to concepts specified in
shared ontologies (e.g. concepts such as projects, teams, days of the week, etc.). Once
Mary’s IDA has determined that Bob is on her team today, it proceeds to determine
whether they are in the same building by asking Bob’s IDA about the building he is in.
Here Bob’s IDA goes through a service discovery step of its own and determines that a
location tracking service offered by his cell phone operator is adequate. Completion of
the scenario involves a few additional steps of the same type. Note that in this scenario
we have assumed that Mary’s IDA trusts the location information returned by Bob’s IDA.
It is easy to imagine scenarios where her IDA would be better off looking for a
completely independent source of information. It is also easy to see that these types of
scenarios can also lead to deadlocks. In later sections, we briefly discuss elements of our
architecture that partially helps mitigate these problems (e.g. query status update
information that keeps track of the origin of requests for information – see Section 5
below).

10.4 Query Status Model
The IDA’s Meta Controller relies on meta-control rules to analyze query status
information and determine which module(s) to activate next. Meta-control rules are
currently modeled in CLIPS. In other words, each meta-control rule is an if-then clause
with a LHS (left hand side) specifying its premises and a RHS (right hand side) its
conclusions. More specifically, LHS elements of meta-control rules refer to query status
information, while RHS ones contain facts that result in module activations. While both
LHS and RHS are expressed in CLIPS they refer to queries received by the IDA and to
query elements generated while processing these queries. A query element is a need for
elementary information required to fully process a query (e.g. finding someone’s location
or calendar activity to help answer a more complex query). Queries themselves are
expressed in an extension of OWL (see [GS04a]). Query status information in the LHS
relies on a taxonomy of predicates that helps the agent keep track of queries and query
elements - e.g., whether a query has been or is being processed, what individual query
elements it has given rise to, whether these elements have been cleared by relevant access
control policies and sanitized according to relevant obfuscation control policies. Query
status information helps keep track of how far along the IDA is in obtaining the
information required by each query element, whether the agent’s local knowledge base
has been consulted, whether local or external services have been identified and consulted,
etc. It also enables the agent to keep track of dependencies between queries and query
elements. This information can help identify potential deadlocks. All query status
information is time stamped, enabling the meta-controller to also implement rules that
take into account how much time has already been spent trying to process a query,
clearing access control policies or waiting for an external service to respond. A sample of
query status information predicates is provided in Table 1. This list is just illustrative and
will be used to revisit the scenario introduced in Section 4. Clearly, different taxonomies
of predicates can lead to more or less sophisticated meta-control strategies. For the sake
of clarity, status predicates in Table 1 are organized in six categories: 1) communication;

 61

2) query; 3) query elements; 4) access control; 5) obfuscation and 6) information
collection. Status information is represented in CLIPS with status predicates and a
number of slots detailing particular pieces of status information. Typical slots include:
− A query ID or query element ID to which the predicate refers
− A parent query ID or parent query element ID to help keep track of dependencies

(e.g. a query element may be needed to help check whether another query element is
consistent with a context-sensitive access control policy). These dependencies, if
passed between IDA agents, can also help detect deadlocks (e.g. two IDA agents each
waiting for information from the other to enforce their policies)

− A time stamp that describes when the status information was generated or updated.
This information is critical when it comes to determining how much time has elapsed
since a particular module or external service was invoked. It can help the agent look for
alternative external services or decide when to prompt the user (e.g. to decide whether
to wait any longer).

 Sample Status
Predicates

Description

Query-Received Query received. A related queries slot helps determine the
query’s context and identify potential deadlocks.

Sending-Response Response to a query is being sent

Response-Sent Response has been successfully sent

1)

Response-Failed Response failed (e.g. message bounced back)

Processing Query Query is being processed

Query Decomposed Query has been decomposed (into primitive query elements)

All-Elements-
Available

All query elements are available (i.e. the information they
require is available)

All-Elements-Cleared All query elements have been cleared by relevant access
control policies

Clearance-Failed Failed to clear one or more access control policies

All-Elements-
Sanitized

All query elements have been sanitized according to relevant
obfuscation policies

2)

Sanitization-Failed Failed to pass one or more obfuscation policies

Element-Needed A query element is needed. Query elements may result from
the decomposition of a query or may be needed to enforce
policies. The query element’s origin helps distinguish between
these different cases

Processing-Element A need for a query element is being processed

 Element-Available Query element is available

 62

Element-Cleared Query element has been cleared by relevant access control
policies

Clearance-Failed Failed to pass one or more access control policies

Element-Sanitized Query element has been sanitized according to relevant
obfuscation policies

3)

Sanitization-Failed Failed to pass one or more obfuscation policies

4) Clearance-Needed A query or query element needs to be cleared by relevant
access control rules

5) Sanitization-Needed Query or query element has to be sanitized subject to relevant
obfuscation policies

Check-Condition Check whether a condition is satisfied. Special type of query
element.

Element-not-locally-
available

The value of a query element can not be obtained from the
local knowledge base

Element-need-service A query element requires the identification of a relevant
service

No-service-for-
Element

No service could be identified to help answer a query element.
This predicate can be refined to differentiate between different
types of services (e.g. local versus external)

Service-identified One or more relevant services have been identified to help
answer a query element

Waiting-for-service-
response

A query element is waiting for a response to a query sent to a
service (e.g. query sent to a location tracking service to help
answer a query element corresponding to a user’s location)

Failed-service-
response

A service failed to provide a response. Again this predicate
could be refined to distinguish between different types of
failure (e.g. service down, access denied, etc.)

6)

service-response-
available

A response has been returned by the service. This will typically
result in the creation of an “Element-Available” status update.

Table 1. Sample list of status information predicates.

Query status information updates are asserted as new facts (with old information being
cleaned up by the IDA’s housekeeping module – Figure 38). As query updates come in,
they trigger one or more meta-control rules, which in turn result in additional query status
information updates and the eventual activation of one or more of the IDA’s modules. An
example of a simple meta-control rule to activate the service discovery module if
information about the room that Mary could not be obtained locally (from the local
information reasoner) can be expressed as follows:

 63

Figure 40. An example of status changes

 64

(element-needed (parent-id ?x) (elem-id ?y) (room Mary ?z))

(element-not-locally-available (elem-id ?y) (room Mary ?z1))

=>

(assert (module service-discovery) (element-need-service (elem-id ?y) (output (room
Mary ?z))))

In practice, meta-control rules are typically more general than this (i.e. they don’t just
refer to the room Mary is in).

Example
The following illustrates the processing of a query by an IDA, using the scenario
introduced in Figure 39. Figure 40 depicts some of the main steps involved in processing
a request from Bob about the room Mary is in, highlighting some of the main query status
information updates. Specifically, Bob’s query about the room Mary is in isprocessed by
the IDA’s Communication Gateway, resulting in a query information status update
indicating that a new query has been received:

(query-received (queryid 1) (sender Bob) (ask (room-no Mary ?X)))

The meta-controller proceeds by invoking the Query Decomposition Module, resulting in
the creation of two query elements – for the sake of simplicity we omit Mary’s
obfuscation policy: one to establish whether this request is compatible with Mary’s
access control polcies and the other to obtain the room she is in:

(clearance-needed (parent-id 1) (elem-id 1.1) (User Bob) (element (room-no Mary
?x)))

(element-needed (parent-id 1) (elem-id 1.2) (room-no Mary ?X))

The meta-controller decides to first focus on the “clearance-needed” query element and
invokes the Access Control Module. This module determines that two conditions need to
be checked and accordingly creates two new query elements (“check-conditions”):

(check-condition (parent-id 1.1) (elem-id 1.1.1) (same-team Bob Mary))

(check-condition (parent-id 1.1) (elem-id 1.1.1) (same-building Mary Bob))

 65

The first condition requires checking whether Bob and Mary are on the same team, while
the second one is to determine whether Bob is in the same building as Mary. Each
condition requires a series of information collection steps that are orchestrated by the
meta-control rules in Mary’s IDA. In this example, we assume that the IDA’s local KB
contains a semantic reasoning rule:

(team ?p1 ?t)

(team ?p2 ?t)

=>

(same-team ?p1 ?p2)

We also assume that the IDA knows Mary’s team but not Bob’s. According the following
query status information update is generated:

(element-not-locally-available (parent-id 1.1.1) (elem-id 1.1.1.1) (team Bob ?t))

Mary’s IDA has a meta-control rule to initiate service discovery when a query element
can not be found locally. The rule is of the form:

(element-needed (elem-id ?x) ?y)

(element-not-locally-available (elem-id ?x) ?y)

=>

(assert (module discover) (element-need-service (parent-id ?x) (elem-id ?z) ?y))

Thanks to this rule, the Service Discovery Module is now activated. A service to find
Bob’s team is identified (e.g. a service operated by company XYZ). This results in a
Query Status Information update of the type “service-identified”. If there are multiple
matching services, they may be ranked and the top service is invoked (multiple services
could also be invoked concurrently).

(service-identified (elem-id ?e) (service-id ?s1) (rank ?r1) (endpoint ?e1) ?x)

(not (service-identified (elem-id ?e) (service-id ?s2) (rank ?r2) (endpoint ?e2) ?x))

(leq ?r1 ?r2)

=>

(assert (module invocation) (invoke-service (parent-id ?e) (elem-id ?ee) (service-id
?s1) (endpoint ?r1) ?x))

 66

We assume that the service returns the team that Bob is in. The Housekeeping module
updates the necessary Query Status Information, indicating among other things that
information about Bob’s team has been found (“element-available”) and cleaning old
status information. This is done using a rule of the type:

?n <-(element-needed (elem-id ?e) ?y)

(service-response-available (parent-id ?e) (elem-id ?ee) (service-id ?s) ?a)

=>

(retract ?n)

(assert (module meta) (element-available (parent-id ?ee) (elem-id ?eee) ?a))

The scenario continues through a number of similar steps.

10.5 The Service Discovery Model
A central element of our architecture is the ability of IDA agents to dynamically discover
sources of information (whether local or external) to help obtain the information needed
by Query Elements. Sources of information are modeled as Semantic Web Services and
may operate subject to their own access control and obfuscation policies enforced by
their own IDA agents. Accordingly service invocation is itself implemented in the form
of queries sent to a service’s IDA agent. .

Service Model
Each service (or source of information) is described by a ServiceProfile in OWL-S
[OWLS]. ServiceProfiles consist of three parts: (1) information about the provider of the
service, (2) information about the service’s functionality and (3) information about non-
functional attributes [SEH02]. Functional attributes include the service's inputs, outputs,
preconditions and effects. Non-functional attributes are other properties such as accuracy,
quality of service, price, location, etc. An example of a location tracking service operated
on the premises of Company ABC is described in Figure 41.

<profileHierarchy:InformationService

 rdf:ID="PositioningService ">

 <!-- reference to the service specification -->

<service:presentedBy

 rdf:resource="&Service;#PositioningService"/>

 <profile:has_process rdf:resource="&Process;#PositionProc"/>

<profile:serviceName>Positioning_Service_in_ABC

</profile:serviceName>

 67

 <!-- specification of quality rating for profile -->

 <profile:qualityRating>

 <profile:QualityRating rdf:ID="SERVQUAL">

 <profile:ratingName>SERVQUAL</profile:ratingName>

 <profile:rating rdf:resource="&servqual;#Good"/>

 </profile:QualityRating>

 </profile:qualityRating>

 <profile:hasPrecondition

 rdf:resource="&Process;#LocInABC"/>

<profile:hasOutput

 rdf:resource="&Process;#RoomNoOutput"/>

</profileHierarchy:InformationService>

Figure 41. An example service profile in OWL-S

Because in our architecture service invocation is done by submitting queries to a
service’s IDA, our service profiles currently do not include inputs. Instead, services
obtain their input parameters by submitting queries back to the requester. In practice, this
process can become somewhat inefficient and we plan to also investigate more
sophisticated discovery models that examine required service input requirements in light
of the IDA’s access control and obfuscation policies.

Service outputs are represented as OWL classes, which play the role of typing
mechanism for concepts and resources. Using OWL also allows for some measure of
semantic inference as part of the service discovery process. If an agent requires a service
that produces a contextual attribute of a specific type as output, then all services that
output the value of that attribute as a subtype are potential matches.

Service preconditions and effects are also used for service matching. For instance., the
positioning service in Figure 41 has a precondition specifying that it is only available on
company ABC’s premises.

10.6 Implementation
Our policy enforcing agents are based on JESS, a high-performance rule-based engine
implemented in Java. Domain knowledge, including service profiles, queries, access
control policies and obfuscation policies are expressed in either in OWL or in extensions
of OWL [GS04a]. XSLT transformations are used to translate OWL facts and extensions
of OWL (to model rules and queries) into CLIPS (Figure 15). Query status information
and meta-control rules are directly expressed in CLIPS. Agent modules are organized as
JESS modules. Rules in a JESS module only fire when that module has the focus and

 68

only one module can be in focus at a time. Currently all information exchange between
agents is done in the clear and without digital signatures. In the future, we plan to use
SSL or some equivalent protocol for all information exchange..

10.7 Concluding Remarks
In many domains, users and organizations need to protect their information and services
subject to policies that reflect dynamic, context-sensitive considerations. More generally,
enforcing rich policies in open environments will increasingly require the ability to
dynamically identify external sources of information necessary to enforce different policy
elements. In this paper, we presented a semantic web framework for dynamically
interleaving policy reasoning and external service discovery and access. Within this
framework, external sources of information are wrapped as web services with rich
semantic profiles allowing for the dynamic discovery and comparison of relevant sources
of information. Each entity (e.g. user, sensor, application, or organization) relies on one
or more Policy Enforcing Agents responsible for enforcing relevant privacy and security
policies in response to incoming requests. These agents implement meta-control
strategies to dynamically interleave semantic web reasoning and service discovery and
access.

The Information Disclosure Agent presented in this paper is just one instantiation of our
more general concept of Policy Enforcing Agents. Other policies (e.g. information
collection policies, notification preference policies) will typically rely on slightly
different sets of modules and different meta-control strategies, yet they could all be
implemented using the same type of architecture and many of the same principles
presented in this paper. Our Policy Enforcing Agents rely on a taxonomy of query
information status predicates to monitor their own progress in processing incoming
queries and enforcing relevant security and privacy policies. They use meta-control rules
to decide which action to take next (e.g. decomposing queries, seeking local or external
information, etc.). This work is conducted in the context of myCampus, a context-aware
environment aimed at enhancing everyday campus life at Carnegie Mellon University
[SCV+03,GS04a]. Experiments with an early implementation of our framework seem
promising. At the same time, it is easy to see that the generality of our framework also
gives rise to a number of challenging issues. Future work will focus on testing the
scalability of our framework, evaluating tradeoffs between the expressiveness of privacy
and security policies we allow and associated computational and communication
requirements. Other issues of particular interest include studying opportunities for
concurrency (e.g. simultaneously accessing multiple web services), dealing with real-time
meta-control issues (e.g. deciding when to give up or when to look for additional sources
of information/web services), and breaking deadlocks [LNOS04].

 69

11 Appendix C: Using Semantic Web Services for
Planning-Enabled Context-Aware Mobile Applications

This appendix is based on our article on “Using Semantic Web Services for Context-
Aware Mobile Applications” [SSG04]. It includes a discussion of AI planning
functionality that takes advantage of semantic web service discovery, access and
composition.

Abstract
One way of overcoming the challenges associated with mobile and pervasive computing
environments involves providing users with higher levels of automation. This in turn
requires capturing the context within which the user operates. In this paper, we describe
ongoing research aimed leveraging Semantic Web Services in support of context
awareness. This includes modeling sources of contextual information as web services that
can be automatically discovered and accessed by agents that assist the user with different
sets of tasks. By automatically discovering and accessing a variety of external web
services, these agents can automatically develop and execute simple plans to assist the
user (e.g. ordering a pizza, organizing an evening out, etc.). This research is being
conducted in the context of myCampus, a prototype semantic web environment to
enhance everyday campus life at Carnegie Mellon University.

11.1 Introduction
With hundreds of Internet-enabled mobile devices, the mobile Internet is opening the
door to a slew of new mobile applications and services that will assist users as they
engage in time-critical, goal-driven tasks [Sad02]. Yet today, the mobile commerce
landscape is dominated by relatively simple infotainment services. Moving beyond these
simple services requires overcoming the inherent input/output limitations of mobile
devices through higher degrees of automation and the development of services that
understand the context within which their users operate – e.g. their locations, the
activities they are engaged in, who their friends and colleagues are as well as a number of
other contextual attributes and preferences. In this paper we look at ways of using
contextual information using web services and automatically chaining together multiple
services to achieve complex tasks using planning. Our usage of web services is discussed
in the context of myCampus-a context-aware environment aimed at enhancing everyday
campus life.

11.2 Overview of MyCampus
In myCampus, users can acquire (or subscribe) to different sets of task-specific agents
that help them with different tasks. To properly operate these agents require knowledge
of one or more contextual attributes about their users as well as possibly other users.
These attributes can potentially be acquired from a number of possible resources, which
typically vary from one user to another (e.g. not everyone uses Microsoft Outlook as their

 70

calendar) and may even vary over time for the same user. To overcome this challenge,
sources of contextual information in myCampus are modeled as Semantic Web Services
that can automatically be discovered and accessed by agents. Access to a user’s
contextual resource is controlled according to user-specified privacy preferences
(including context-sensitive preferences such as colleagues have access to my location
only if they have a meeting with me in the next hour).

Figure 42. myCampus architecture: a user’s perspective – the smiley faces

represent agents.

The e-Wallet Manager (or simply e-Wallet) serves as a repository of static knowledge
about the user – just like.NET Passport, except that here knowledge is represented using
OWL [OWL]. In addition, the e-Wallet contains knowledge about how to access more
information about the user by invoking a variety of resources, each represented as a Web
Service. This knowledge is stored in the form of rules that map different contextual
attributes onto one or more possible service invocations, enabling the e-Wallet to
automatically identify and activate the most relevant resources in response to queries
about the user’s context (e.g. accessing the user’s calendar to find out about her
availability, or consulting one or more location tracking applications in an attempt to find
out about her current location). User-specified privacy rules, also stored in the e-Wallet,
ensure that information about the user is only disclosed to authorized parties, taking into

 71

account the context of the query. They further adjust the accuracy of the information
provided in accordance with the user’s obfuscation preferences rules. (For example, I am
willing to disclose my location in the building to Bob but I only want to reveal the city
information to Mary).

Figure 42 provides an overview of myCampus. It illustrates a situation where access is
from a PDA over a wireless network. However, our architecture extends to fixed Internet
scenarios and more generally to environments where users can connect to the
infrastructure through a number of access channels and devices – information about the
particular access device and channel can actually be treated as part of the user’s context
and be made available through her e-Wallet.

Clearly, agents are not limited to accessing information about users in the environment.
Instead, they also typically access public Web Services, Semantic Web annotations,
public ontologies and other public resources. On CMU’s campus, where we have
deployed myCampus, this includes access to a variety of services such as 23 restaurant
web services or a pubic weather forecasting web service.

In the following sections, we focus on the use of web services in our system. Additional
details on myCampus and some of the agents we have deployed can be found in [GS03,
GS04a, SCV+03].

 72

Figure 43. This Restaurant Concierge is an example of a myCampus agent.

11.3 Using Web Services for Contextual Information
This section discusses in detail, how web services are used as sources of contextual
information. As explained in an earlier section, contextual attributes can potentially be
acquired from a number of possible resources, which typically vary from one user to
another and may even vary over time for the same user. In myCampus, sources of
contextual information are wrapped as Semantic Web Services [DAMLS]. This means
that each source of contextual information is described by a profile that describes its
functional properties in relation to one or more ontologies [Gru93]. For instance,
Microsoft Outlook Calendar is an instance of a resource that provides both calendar
activity information and user location information. Service descriptions also include
details about how to invoke a service (e.g. input, output and preconditions). Thanks to
these profiles, relevant sources of contextual information can be automatically discovered
and accessed.

 73

11.3.1 Service Invocation Rules
One particularly efficient way of identifying a service that can provide information about
a given contextual attribute (e.g. user’s location) is by using a set of rules. Service
invocation rules provide a mapping between contextual attributes and personal resources
available to access these attributes, viewing each personal resource as a Semantic Web
Service. For instance, the location of the user is provided from a service wrapped around
the user’s Microsoft Outlook calendar. Service invocation rules are not limited to
providing a one-to-one mapping between contextual attributes and personal resources.
Instead, they can leverage rich ontologies of personal resources, enabling the e-Wallet to
select among a number of possible personal resources based on availability, accuracy and
other relevant considerations. For instance, in response to a query about the user’s
location, the rules can specify that, when the user is driving, the best method available is
the GPS in her car. If she is at work and her wireless-enabled PDA is on, her location can
be obtained using location tracking functionality running over the enterprise’s wireless
LAN. If everything else fails, her calendar might have some information about her
location.

11.3.2 Semantic Web Services Using OWL-S
Binding contextual attributes to services through rules is a very efficient mechanism,
especially for time critical applications. However, this is not always practical, especially
considering that, over time, users may acquire new task-specific agents and new sources
of contextual information. Maintaining detailed service invocation rules that cover all
possible situations is simply impractical. Instead, a more flexible (albeit more
computationally demanding) approach involves relying on automated service discovery.
In general, contextual information about a given user is obtained by sending a query to
her eWallet. As detailed in the following subsections, the eWallet then relies on a
combination of local service identification rules and local and global service discovery
mechanisms to identify one or more relevant sources of contextual information. In the
process, it also ensures that the request is compatible with the user's privacy rules,
as detailed in [FN71]. Service discovery is done as follows. Services are registered in
directories along with profiles that describe their various relevant capabilities and
characteristics. Unfortunately, current Web Services standards for discovery such as
UDDI [UDDI] are not sufficient. UDDI does not describe a service in terms of the
functionalities it offers but provides information about the entity that owns it and
provides mechanisms to classify the service in terms of standard taxonomies such as
North American Industry Classification System (NAICS) [NAICS]. Moreover it supports
only syntactic matching. A directory that advertises the functional attributes of the
service is a far better alternative. Moreover if these descriptions are represented in
Semantic Web Languages then subsumption-based reasoning can be used for semantic
matching of service functionalities. The OWL ontology for services (OWL-S) [OWLS]
framework can be used to build directories that contain service descriptions (functional
attributes expressed in Semantic Web Languages). More information on semantic
discovery of services can be found in [LH03]. Information in the eWallet is stored as
semantic annotations, therefore; the eWallet can readily make use of OWL-S (see
appendix) based semantic service discovery. To further clarify the need for semantic

 74

discovery let us use the example of a service that provides a list of Italian restaurants
using zip code as input. The user of the eWallet could be looking for an food:eatery using
a popular ontology called food. Let us assume that OWL-S is used to represent the
service as an atomic service with loc:zipcode as the input and food:ItalianRestaurant as
the output. Also, assume that the food ontology categorizes ItalianRestaurant as a
subclassOf of eatery. By using semantic inferencing one can conclude that all instances
of ItalianRestaurant are instances of eatery and therefore the service in question is
returned as a match to the query. This kind of matching is not possible in UDDI because
firstly, inputs and outputs are not specified and secondly, the UDDI framework is not
capable of semantic reasoning which we used to make match in the above example.

11.4 Service Composition
Composition is defined as the task of putting together atomic/basic services to perform
complex tasks. To start the discussion on composition, let us first consider an example.
When a user wants to find about the local weather forecast, the system needs to first find
the current location of the user before it invokes the weather service. The location of the
user is in turn obtained by the eWallet of the user which actually invokes a web service to
obtain this information. This in itself is a primitive form of composition where the
weather service requires the invocation of the location service. This composition was
possible using input and output “type” matching. One could think of a sequence of two
invocations in which the second service can be invoked only when the invocation of the
first operator produce a particular “value”. Such cases cannot be handled by type
matching. To capture this ordering constraint we make use of preconditions.
Preconditions are interpreted as: when a precondition is associated with a service, the
service can be invoked only when the precondition is satisfied. A precondition is satisfied
based on the value of output with which it is associated. We use both, type and value
matching for composition.

Services are described using inputs, outputs and preconditions (IOPs). We model services
in our system using the OWL-S process ontology. More specifically, all services are
described using OWL-S atomic processes. We also propose the addition of a new
construct - realizedBy which connects preconditions to outputs. Whether the output
actually realizes the precondition can be found out only during service invocation. We
use this construct to first compose and invoke the services involved later. This technique
of disconnecting composition and invocation enables us to find out whether the existing
set of services can satisfy the user’ goal before we invoke a single service. If one were to
implement simultaneous composition and invocation, the search for operators would have
to be in the forward direction i.e., from the initial state to the goal. The main problem
with forward-chaining arises due to high branching factor which leads to a huge search
space. This also leads to other complications. One has to invoke services to move towards
the goal. In the end, if the goal cannot be achieved, the service invocations achieved
nothing but the waste of computation and network bandwidth. The situation is potentially
worse if some of these services are non-idempotent. Thus our approach of first using

 75

backward-chaining to build the plan and then invoking the services is efficient and
avoids the complications caused by non-idempotent services.

11.4.1 Automatic Operator Extraction and Planning
The composition of atomic services into complex services can be viewed as planning.
This is done by mapping atomic services into planning operators and running a planning
algorithm to link these operators. The plan generated using these operators constitutes a
complex service. As mentioned before, myCampus environment has various specific
agents. Some of these perform simple tasks like providing weather information to the
user whereas others can do more complex tasks like ordering food. Some of these
complex agents make use of the planner. The user specifies the goal using an interface
designed for each task-specific agent. On receiving the goal, the task-specific agent
checks whether the information resides in the eWallet of the user or if it can be provided
by services known to the agent. If both these checks fail, the discovery phase is initiated.
If an appropriate service(s) is found, the task of converting atomic services into planning
operators is done as follows. A service description consists of one or more atomic
processes. The service descriptions are first transformed into Predicate-Subject-Object
(PSO). For each atomic service, we build STRIPS-style [FN71] planning operators by
querying the triples. The actual composition is done by a simple backward-chaining
planning algorithm.

The composition problem can be transformed into a planning problem given by the tuple
<Op, G> where Op is the set of operators obtained from service descriptions and G is the
user’s goal(s). Composition is done using the following algorithm:

Compose (Goals G, Operators Op)

 0. If G is empty

 a. Return Success

 1. Search Op for operators

 that satisfy all the goals G.
 2. IF no operator is found

 a. Return Fail

 3. ELSE

 a. Delete G

b. Add unavailable inputs of operator to G’

c. Add unavailable outputs (using realizedBy)

d. Compose(G’, Op)

 76

The first call to the Compose routine consists of all available operators and the user’s
goal. The algorithm looks for services that satisfy the goal. If no such service is found,
composition fails and discovery can be re-initiated to look for more operators. If on the
other hand, all goals in G are satisfied by operator(s), then the system checks to find if
inputs to these operators are available. All unavailable inputs are transformed into goals
for the next iteration. A similar availability check is run on outputs associated to
preconditions via the realizedBy construct. All unavailable outputs are added as goals for
the next iteration. A recursive call is made to the compose algorithm with the new set of
goals. Composition is successful if all goals are satisfied. Composition fails if the system
is unable to find services that achieve some goal. Use of planning for composition has
been discussed in detail in [WSH+03, SJF03, She04].

It is possible that the composer finds multiple operators/services that achieve the same
goals/sub-goals. These are taken into account as contingencies. If the first choice fails to
produce the intended result, the alternative services are tried. The first choice is
determined using the user’s preference (for example, the user prefers services that accept
debit cards) or her context (for example, the user would prefer the fastest pizza delivery
service when she is at work).

To further clarify our ideas, we illustrate the use of composition using a scenarios
described below.

11.4.2 Scenario
The scenario involves finding a pizza delivery service and ordering a pizza. To explain
the discovery process let us assume that the semantic directory uses an ontology based on
the NAICS. We query the main directory using Pizza_Delivery_Shops.
Pizza_Delivery_Shops is a subClassOf Limited_Service_Restaurants in the NAICS based
ontology. The directory returns a large number of ranked matches. Services classified as
Pizza_Delivery_Shops get a higher ranking compared to services classified as
Limited_Service_Restaurants. Options are further narrowed down using the user’s
context (in this case the location) ascertained from the eWallet. Assume that agent finds a
single pizza delivery shop near its current location.

The main service description returned by the directory look-up, points to the Process that
contains the atomic processes. We synthesize planning operators from these descriptions
and try to build a plan that will enable the user to order a pizza and get it delivered to his
current location. Figure 44 shows the operators for the pizza delivery service.

The LocationCheck service ensures that the pizza service delivers to the use’s location.
CreditCardInfo service validates the credit card. DeliveryAdd service obtains the user’s
street address. Finally, the PizzaBuy service lets the user buy the pizza.

 77

The user request for getting the pizza delivered is transformed into a goal- PizzaBought.
The PizzaBuy service achieves this goal and is therefore included in the plan. The
PizzaBuy service has two preconditions and an input. The preconditions are associated to
the corresponding ouputs using the realizedBy predicate. These outputs along with the
single input- PizzaType are made the goals for the next iteration. Other operators are
included in the plan in a similar fashion. In the end, all goals are checked against the
user’s eWallet. Missing information like PizzaType is captured by prompting the user.

Figure 44. Pizza delivery operators.

Figure 45. shows the plan generated by the planner. Once all the information is available,
the plan can be invoked by accessing the WSDL descriptions via the OWL-S grounding.

;Pizza Delivery Service

; s: service name

; i: input

; o: ouput

; p: precondition

(s LocationCheck

(i pin)

(o RangeCheck))

(s CreditCardInfo

(i CreditCardNumber)

(i CreditCardType)

(i CreditCardExpDate)

(o CreditCardStatus))

(s PizzaBuy

(p CCAuth)

(p DeliveryAddReq)

(i PizzaType)

(o PizzaBought))

(s DeliveryAdd

(p InRange)

 78

Figure 45. Plan for ordering a pizza.

11.5 Concluding Remarks
In this paper, we provided an overview of myCampus, a semantic web environment
aimed at enhancing everyday campus life. Within myCampus, users over time acquire or
subscribe to a variety of task-specific agents that assist them in the context of different
tasks (e.g. scheduling meetings, sharing documents, organizing evenings out, filtering
and routing incoming messages, etc.). Many of these agents require knowledge of the
context within which their user operates as well as possibly information about the context
of other users. In myCampus, sources of contextual information (e.g. calendar, location
tracking functionality, organizational information, etc.) are represented as Semantic Web
Services. These are described by profiles that can refer to any number of relevant
ontologies. Service descriptions also include information about how to invoke a service.
The end result is an environment, where relevant sources of contextual information about
a user can automatically be discovered and accessed in support of different queries. This
approach makes it possible to accommodate users that rely on different sets of contextual
resources (e.g. different calendar systems, different sources of location information, etc.),
and to adapt to situations where sources of contextual information for a user may change
over time (e.g. different location tracking services depending on where the user is).
Queries about a given user's context are submitted to that user's e-Wallet, which acts as a
gatekeeper and a clearinghouse for the user's personal information, enforcing user-
specified privacy rules. As users subscribe to or acquire new task-specific agents, these
agents can find relevant contextual information about users by querying their e-Wallets.

myCampus agents can range from simple agents that rely on one or more sources of
contextual information about their users to more complex agents that are capable of
dynamically building plans in response to requests from their users. In this paper,
we detailed how Semantic Web Services in myCampus can be used to support:
(1) The dynamic discovery and access of contextual sources of information about a user
via her e-Wallet (2) The automated generation of plans by task-specific agents through
the discovery of services modeled as planning operators that can be dynamically
composed to satisfy one or more user-goals.

DeliveryAdd

LocationCheck

CreditCardInfo

PizzaBuy

 79

12 Appendix D: Overview of a Museum Tour Guide
Application

This appendix is based on our article on “Semantic Web Technologies for Context-Aware
Museum Tour Guide Applications” [CHGS05].

Abstract
Traditionally, visitors to museums have been left having to choose between finding their
way around exhibits on their own or taking a standardized group tour with a guide. In this
paper, we describe a context-aware museum tour guide that adjusts its recommendations
to the interests and contexts of individual visitors and enables them to selectively share
their experience with others. The tour guide is built around an innovative Semantic Web
framework that minimizes the development and maintenance costs associated with the
introduction of new exhibits, new visitor-oriented services and new sources of contextual
information. In particular, it features a semantic web rule reasoning engine that enables
visitor-oriented services to identify relevant sources of contextual information and to
enforce user-specified privacy preferences about what information they are willing to
share with others (e.g. “Only members of my group can see my current location”, or
“Only my friends can see how I rate exhibits”). While still in prototype stage, the tour
guide’s target environment is the National Museum of Natural Science, one of Taiwan’s
largest museums with over 3 million visitors per year.

12.1 Introduction

The traditional museum visitor experience has been characterized by having to choose
between a limited number of predefined guided tours and the challenge of visiting on
one’s own. In this paper, we detail work on a knowledge-rich, context-aware museum
tour environment aimed at providing visitors with a more engaging and more
personalized experience [Coop93]. The environment revolves around a Semantic Web
framework built to capture and exploit knowledge about the museum’s exhibits, its layout
as well as contextual information about visitors (e.g. their interests, their locations, how
much time they have available, whether they are visiting as part of a group, etc.) and
relevant privacy preferences. We discuss key features of our architecture, focusing on
how they improve over prior efforts to develop context-aware museum tour guides and
how they also extend earlier Semantic Web research. In particular, our use of Semantic
Web technologies facilitates the development and refinement of new domain ontologies,
whether to describe new exhibits, visitor interests or new sources of contextual
information. Our reasoning technology allows for the definition of rules that refer to these
ontologies, whether to specify application-specific preferences (e.g. “If I have some
extra-time, please tell me about places where I can eat at the museum”) or privacy
preferences (e.g. “Only show my location to my teacher”).

 80

As they enter the museum, visitors are given a PDA that they carry with them for the
duration of their tour. As a first step, the PDA asks them a few simple questions to
understand their interests and relevant preferences, including some privacy preferences.
This process has been kept as light as possible – to minimize burden on the user. It only
takes a couple of minutes. Based on this information, which includes information about
the user’s interests, age, and how much time he or she has available, the guide builds an
initial tour. This tour is used to give directions to the visitor and is adjusted, as needed, as
the tour progresses. For instance, if the visitor falls behind, the tour guide will tell him so
and may recommend dropping one or more exhibits from the current tour. On the other
hand, if the visitor has extra time, the guide may suggest additional exhibits or possibly
offer the user to take a break for a snack at a nearby restaurant.

Our museum tour guide is not built as a single monolithic application. Instead, it is an
environment aimed to support a growing collection of applications that share access to
information about the visitor’s interests and context subject to individual privacy
preferences. This includes both pull and push applications. An example of a push
application can come in the form of suggestions sent to a visitor recommending that he or
she takes a look at a nearby exhibit. An example of an equivalent pull application is one
where the visitor can ask for a similar recommendation. The environment also supports
peer-to-peer interactions between users, enabling them to find one another and share
comments and ratings about different exhibits.

Within our architecture, each user has an eWallet that serves as a clearinghouse and
gatekeeper to resources available for that user. This includes both information resources
about his interests, contextual attributes and exhibition ratings/comments as well as
communication resources such as a display for push messages. Applications that seek to
access any of this information submit queries to the visitor’s eWallet. The eWallet checks
the user’s privacy preferences to determine whether the query is compatible with the
user’s preferences and, if it is, returns an answer or activates a service (e.g. displaying a
push message). Privacy preferences currently supported by the eWallet include access
control preferences (e.g. “Only members of my class can see my location”), obfuscation
preferences (e.g. “Members of my group can see the exhibit I am at but other visitors can
only see the building I am in”). They can also include disruption preferences (e.g.
“Don’t send me promotional messages about items for sale at the museum store”).

Museum tour guide applications as well as visitor eWallets are implemented on top of a
Semantic Web Rule Engine (SWRE) that generalizes some of our earlier work in
MyCampus, a semantic web environment aimed at enhancing everyday campus life with
context-aware applications [GS04a]. This architecture would make it possible to
eventually extend the current museum tour guide environment to other tourism, education
or sightseeing applications, enabling these different applications to leverage a common
set of contextual resources and user preferences.

 81

The remainder of this article is organized as follows. Section 2 provides a brief literature
review. Section 3 outlines the architecture of our Semantic Web environment for context-
aware museum tour guide applications. Section 4 briefly outlines relevant ontologies and
rules and describes our Semantic Web Rule Engine. Section 5 outlines scenarios aimed at
illustrating the operation of our environment. Section 6 provides a summary along with
some concluding remarks.

12.2 Brief Literature Review
Prior efforts to develop context aware applications are many. Early work in context
awareness includes the Active Badge System developed at Olivetti Research Lab to
redirect phone calls based on people’s locations [WHFG92]. The ParcTab system
developed at the Xerox Palo Alto Research Center in the early nineties relied on PDAs to
support a variety of context-aware office applications (e.g. locating nearby resources such
as printers, posting electronic notes in a room, etc.) [Schil95, Schil94]. Other relevant
applications that have emerged over the years range from location-aware tour guides (e.g.
HIPS [OS00]) to context-aware memory aids. More recent research efforts in context
awareness include MIT’s Oxygen [Der99], CMU’s Aura [GSSS02] and several projects
at Berkeley’s GUIR (e.g. [HL01]) to name just a few.
While early context-aware applications relied on ad hoc architectures and
representations, it was quickly recognized that separating the process of acquiring
contextual information from actual context-aware applications was key to facilitating
application development and maintenance. Georgia Tech’s Context Toolkit represents the
most significant effort in this direction [DA99, DSFA00]. In the Context Toolkit, widgets
act as wrappers that provide access to different sets of contextual information (e.g. user
location, identity, time and activity), while insulating applications from context
acquisition concerns. Each user (as well as other relevant entities such as physical objects
or locations) has a context server that contains all the widgets relevant to it. This is
similar to our notion of e-Wallet, which serves as a directory of all personal resources
relevant to a given user (e.g. relevant location tracking functionality, relevant collections
of preferences, access to one or more calendar systems, etc.). Our Semantic e-Wallet
however goes one step beyond Dey’s Context Toolkit. It makes it possible to leverage
much richer models of personal resources - what personal information they give access
to, when to access one rather than the other, how to go about accessing these resources.
In addition, it includes access control and obfuscation functionality to enforce user
privacy preferences.

This richer model was first demonstrated in MyCampus, a Semantic Web environment
for enhancing everyday campus life through an open collection of context-aware
applications [SCV+03, GS04a]. Our notion of Semantic eWallet also extends current
eWallet technologies by providing a unified privacy front-end to all the resources
available for a given user. It also extends work on languages such as P3P/APPEL [P3P],
EPAL [EPAL], SAML) [SAML], or XACML [XACML] by allowing for the definition
of policies that refer to an open collection of ontologies and by allowing for context-
sensitive policies, including obfuscation policies.

 82

12.3 System Architecture

Figure 46. Museum Guide Architecture

Each user interacts with an open collection of applications via a PDA he receives upon
entering the museum. As a first step, the user is asked a few questions aimed at
identifying his interests as well as relevant preferences, including privacy preferences.
This information is stored in a visitor profile (Figure 46). Applications available to the
user include both pull and push applications. An example of a pull application is a
recommendation service to suggest additional exhibits to the user, based on his interests,
exhibits he has already seen, his current location, and how much time he still has
available. Other examples include a service to provide users with directions on how to go
to a particular exhibit, a people finder to locate other visitors, a rating application that
enables visitors to share ratings and comments about exhibits. Examples of push
applications include public announcement messages (e.g. shop closing times, movie start
times, museum closing times, etc.) and possibly ads/promotions (e.g. telling a visitor that
a book about an exhibit he is visiting is available at the museum store). Requests to send
push messages to the user or requests to access information about the user (e.g. his
preferences or one or more of his contextual attributes such as his location) are directed
to a Semantic eWallet. The Semantic eWallet, which is described in more detail in
Section 4 and 5, is a reasoning engine that enforces the user’s privacy preferences. This
includes enforcing preferences about who/what application has the right to access what
information about the user (and at what level of granularity) and what types of push

 83

messages the visitor is willing to accept. The visitor’s interests and his preferences,
including privacy preferences, are expressed in relation to concepts defined in OWL
domain ontologies [OWL]. The visitor’s profile, his push display application as well as
the infrastructure used to monitor the user’s context are represented as web services that
can be invoked by the Semantic eWallet. As such the Semantic eWallet serves as a
unified front-end to resources available for the visitor, acting both as a clearinghouse
and a gatekeeper to these resources.

Details about the infrastructure used to monitor and access contextual information are
provided in [MJH+04]. It revolves around an SQL query interface to an open collection
of sensor services. Current sensor services include RFID tags and readers used for people
location tracking. Motion detectors are used to monitor visitor streams. The infrastructure
also supports higher level services such as services to compute the distance from a
visitor’s current location to a particular exhibit.

12.4 Semantic Web Technologies for Privacy and Service
Invocation

Applications, user profiles and contextual information in our museum tour guide
environment refer to an open collection of ontologies expressed in OWL [OWL]. These
ontologies define relevant domain concepts such as exhibits, tours, exhibit topics,
contextual attributes, etc. For instance, Figure 47 provides a simple definition of the
concept of museum exhibit in OWL and Figure 48 shows an instance of this concept (in
RDF).

We have also developed ROWL, an extension of OWL, to specify rules that relate to
concepts defined in our ontologies [GS04b]. In ROWL, a rule is expressed as consisting
of a body (i.e. a set of conditions) and a head (i.e. an action to be taken if the conditions
are satisfied). Rules in ROWL can include variables that refer to instances of concepts
defined in ontologies. A simple example of a rule is illustrated in Figure 49, indicating
the preference of a particular visitor, Ben, to have an extra stop inserted in his tour, if his
“early_tardy_status” is “early”, namely if he has some extra time. A variation of this rule
for another visitor could indicate that he would rather stop at a restaurant and eat, if he
has some time left.

 84

<owl:Class rdf:ID="Exhibit"/>
<owl:DatatypeProperty rdf:ID="name">

<rdfs:domain rdf:resource="#Exhibit"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</owl:DatatypeProperty>
<owl:ObjectProperty rdf:ID="topic">

<rdfs:domain rdf:resource="#Exhibit"/>
<rdfs:range rdf:resource="http://iii.org.tw/ontology/Topic#Topic"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="recommended_duration_time">

<rdfs:domain rdf:resource="#Exhibit"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="CrowdSize">

<rdfs:domain rdf:resource="#Exhibit"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="TargetAgeGroup">

<rdfs:domain rdf:resource="#Exhibit"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="interactivityLevel">
 <rdfs:domain rdf:resource="#Exhibit"/>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
</owl:DatatypeProperty>

Figure 47. Simplified concept of museum exhibit.

<exhibit:Exhibit rdf:ID="exhibit_Ofd10231">
 <exhibit:name>Our Galaxy</exhibit:name>
 <exhibit:topic rdf:resource="&topicins;#astronomy 124"/>

<exhibit:recommended_duration_time>10</exhibit:recommended_duration_time>
 <exhibit: CrowdSize >nil</exhibit: CrowdSize>
 <exhibit:TargetAgeGroup>elementary school</exhibit:TargetAgeGroup>
 <exhibit: interactivityLevel >for watch</exhibit: interactivityLevel >
</exhibit:Exhibit>

Figure 48. An instance of a museum exhibit.

Our rule ontology includes more specialized rules such as privacy rules and service
invocation rules. An example of a privacy rule is illustrated in Figure 5. Privacy rules are
defined using three tags [GS04a]: a content tag describes the piece of knowledge to
which the privacy rule applies (e.g. a visitor’s location); a check tag specifies conditions
that need to be met to authorize read access (e.g. to allow someone to see the visitor’s
location), and an optional revision tag is used to specify possible obfuscation rules, e.g. to
specify that location information can only be disclosed at the level of the building the

 85

user is in but not at the level of the particular exhibit he is at. Figure 50 illustrates one
such rule where someone only allows his teammates to see his location at the level of the
exhibit (“stop”) he is at.

<rowl:Rule rdf:ID="rule1">
 <rdfs:label>Insert a new exhibit</rdfs:label>
 <rowl:body rdf:parseType="Collection">
 <visitor:Visitor rdf:about="#VisInst">
 <visitor:name>Ben</visitor:name>
 <visitor:tour rdf:resource="#tour"/>
 <visitor:interest rdf:resource="#pref"/>

<visitor:extra_time_preference>visit</visitor:extra_time_preference>
<visitor:early_tardy_status>early</visitor:early_tardy_status>

 </visitor:Visitor>
 <exhibit:Exhibit rdf:about="#e">
 <exhibit:topic rdf:resource="#pref"/>
 </exhibit:Exhibit>
 <tour:Tour rdf:about="#tour">
 <tour:stop>
 <stop:Stop rdf:about="#stop">
 <stop:nextstop>nil</stop:nextstop>
 </stop:Stop>
 </tour:stop>
 </tour:Tour>
 <stop:Stop rdf:about="#stop1">
 <stop:stop_at rdf:resource="#e"/>
 </stop:Stop>

</rowl:body>
 <rowl:head rdf:parseType="Collection">
 <tour:Tour rdf:about="#tour">
 <tour:stop>
 <stop:Stop rdf:about="#stop">
 <stop:nextstop rdf:resource="#stop1"/>
 </stop:Stop>
 </tour:stop>
 <tour:stop>
 <stop:Stop rdf:about="#stop1">
 <stop:stop_at rdf:resource="#e"/>
 <stop:previousstop rdf:resource="#stop"/>
 </stop:Stop>
 </tour:stop>
 </tour:Tour>
 </rowl:head>
</rowl:Rule>

Figure 49. Expressing visitor preferences as ROWL rules.

 86

<sowl:PrivacyRule>

<rdfs:label>people can only know the Location of teammate</rdfs:label>
<sowl:target>

<visitor:Visitor rdf:about="&variable;#VisInst">
 <stop:Stop_at rdf:resource="&variable;#stop_at"/>

</visitor:Visitor>
</sowl:target>

<sowl:check>

<rowl:And>
<rowl:condition>

<qowl:Query rdf:about="&variable;#query">
<qowl:sender rdf:resource="&variable;#teammate" />

</qowl:Query>
</rowl:condition>
<rowl:condition>

<visitor:Visitor rdf:about="&variable;#VisInst">
 <visitor:Teammate>
 <visitor:visitor rdf:resource="&variable;#teammate"/>
 </visitor:Teammate>

</visitor:Visitor>
</rowl:condition>

</rowl:And>
</sowl:check>

<sowl:revision>

<visitor:Visitor rdf:about="&variable;#VisInst">
 <stop:Stop_at rdf:resource="&variable;#stop_at"/>

</visitor:Visitor>
</sowl:revision>

</sowl:PrivacyRule>

Figure 50. Example of a Privacy Rule.

Within our environment, queries supported by the Museum Context Information Server
as well as resources such as displaying push messages on the visitor’s PDA are modeled
as web services that can dynamically be invoked by rules. For instance, a request to
display a promotion message on the visitor’s PDA is directed to that visitor’s eWallet.
Upon receiving such a request, the eWallet checks the request against the visitor’s
privacy preferences (in this case disruption preferences). If the request is compatible with
the visitor’s preferences, it gets displayed on his PDA by invoking the push display
application as a service. Similarly, rules that require information about the user’s context
such as his location result in the invocation of services supported by the Museum Context
Information Server.

Technology to reason about facts and rules has been implemented in two different forms:

 A generic Semantic Web Rule Engine (SWRE) that can be used as a basis for
developing tour guide applications (e.g. an application to recommend additional stops to

 87

the visitor using rules such as the one illustrated in Figure 49)
 A Semantic eWallet, which provides a unified front-end to resources available for

a given visitor subject to his privacy preferences. This includes access to the visitor’s
contextual information and preferences as well as access to his PDA to display push
messages. The Semantic eWallet can be viewed as a specialized version of the SWRE
that supports both privacy and service invocation rules.
Both reasoning engines have been implemented in JESS [JESS], using XSLT
transformations to translate RDF/RDF-S, OWL and ROWL annotations into CLIPS
[GS04a]. The engines also support rollback points that make it possible to retract and
modify facts (e.g. removing a stop from a visitor’s tour). By relying on an open collection
of ontologies, by modeling preferences as rules expressed in terms of these ontologies
and by modeling contextual resources and applications as web services, our museum tour
guide environment makes it easy to introduce new exhibits, new preferences, new sources
of contextual information and new applications.

12.5 Illustrative Scenarios

Visitors are insulated from the complexity of the underlying Semantic Web infrastructure
by simple menu-based interfaces. Upon entering the museum, they are prompted to
specify their interests by selecting from a list of topics. They are also asked to indicate
how much time they have available and to specify a few simple preferences, such as
whether they plan to eat at the museum. Privacy preferences are currently specified using
three slider bars: one for museum-operated push services, one for visitors that are part of
the same group, and one for other visitors. Each slider bar requires visitors to select from
three predefined privacy profiles: low, medium or high. Once selected, these options are
translated into rules and facts that refer to the museum’s ontologies and are stored in the
visitor’s profile (Figure 1). Based on this profile, an initial tour is developed for the
visitor. The tour is used to provide directions to the visitor and is updated during the
course of his visit based on contextual information such as whether the user has fallen
behind or based on crowds at different exhibits. The following illustrates two scenarios
supported in the current prototype implementation.

12.5.1 People Finder Application
Consider two visitors, Ben and Ted, who are part of a same group. They have different
interests. Accordingly, their individual museum tour guides have developed different
tours for them. Ted has specified that he is willing to let members of his group see his
location. This preference has been translated into a rule similar to the one shown in
Figure 50 and is stored in his individual profile. As lunch time is drawing near, Ben
decides to look up his friend, Ted, using the People Finder application available as a
button on the screen of his PDA. Ben’s People Finder application sends a request to
Ted’s e-Wallet, which in turn checks it against Ted’s privacy preferences. The eWallet
determines that Ben is a member of Ted’s group and that therefore he is allowed to see
his location. The eWallet proceeds and invokes the Museum Context Information Server,
requesting Ted’s location. Upon receiving the location back, the eWallet forwards it to

 88

Ben’s PDA. Ben asks his PDA to give him directions to Ted’s current location so that the
two of them can go and have lunch together.

12.5.2 Dynamic Recommendation Application
Ted and Ben end up having a rather quick lunch together. As he resumes his tour, Ted is
told that he has some extra time and is asked whether he would like a recommendation
for another exhibit he might want to look at. Ted accepts, which triggers his
recommendation application to look for a nearby exhibit that matches his interests and
does not take longer than the extra time he has available. This recommendation involves
accessing a special service supported by the Museum Context Information Server to
compute the time it takes to walk between different places.

12.6 Summary and Concluding Remarks
In this paper, we introduced a context-aware museum tour guide that adjusts its
recommendations to the interests and contexts of individual visitors and enables them to
selectively share their experience with others. The tour guide is built around an
innovative Semantic Web framework that minimizes the development and maintenance
costs associated with the introduction of new exhibits, new visitor-oriented services, new
sources of contextual information and new preferences. In particular, it features a
semantic web rule reasoning engine that enables visitor-oriented services to invoke
relevant sources of contextual information and to enforce user-specified privacy
preferences (e.g. “Only members of my group can see my current location”, or “Only my
friends can see how I rate exhibits” or “I don’t care for promotional messages”). While
still in prototype stage, the tour guide’s target museum is the National Museum of
Natural Science in Taiwan, a museum that welcomes over 3 million visitors per year.

