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Introduction:  

   Decades ago, it has been noticed that the distribution of the 

size of business firms is "almost always highly skewed and its upper tail resembles 

the Pareto distribution (i.e. is a power law)".1  This old and intriguing observation is 

still true today (Figure 1) and is clearly a robust pattern. Since firms engaged in very 

different activities contribute to build this distribution, this suggests the existence of 

long range effects in the economy.   

 Skew distributions are very common. They are found in subjects as varied as 

astrophysics, biology, economics, geophysics, linguistics, etc... They are sometimes 

referred to as 1/f distributions2, as they seem to correspond to power laws 

distributions. Their origin and interpretations on the other hand are far less clear. 1/f 

is a signature for "Self-Organized Criticality".3 Self-Organized Criticality suggests 

that the distribution has a dynamical origin.   

An explanation for the distribution of business size firms, which does not have 

the potential to "explain" the ubiquity of power law distributions is intrinsically 

unsatisfactory. This criticism applies to "explanations" of the business size 

distribution too deeply rooted in economic assumptions. 

                                                 
1 Y. Ijiri, H. Simon, Skew Distributions and the Size of Business Firms, North Holland,  1977, p.138. 
2  1/f means actually 1 / f α

, where typically 0 < α ≤ 2 . 
3 P. Bak: How Nature Works: The science of Self-Organized Criticality, Copernicus, Springer-Verlag, 
1996. 
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"Gibrat’s presented the first formal model of the dynamics of firm size. [It is 

based on] the Law of Proportional Effect".4 It states that the rate of growth of firms 

is constant or proportional to their size, depending of how it is defined, i.e.: 
ds(t)

dt
≈ α s( t)  .  

In a stochastic context, this law can be understood as an extension of the 

assumption that the probability that something occurs is proportional to the number 

of times it has occurred in the past5. A stochastic argument based on this 

assumption can be used to derive the business firm size distribution.6  But the 

empirical evidence is that the relation between rate of growth and size does not 

follow Gibrat’s law of proportional effect. The rate of growth seems to decrease 

with the size.7  

This is sometimes interpreted as implying that the stochastic interpretation of the 

origin of business firm size power law distributions does not work. 

This paper has a dual goal: 

• first to show that the relation between firms size and growth rate could take 

basically any form, and it still would be possible to derive a power law distribution 

for the firm size, from stochastic argument. This accomplished by reformulating the 

derivation of H. Simon in a stochastic differential equation framework. 

• Second to point out that stochastic explanations of power law distributions tend 

to require some fine tuning. This does not seem to provide a compelling explanation 

of why power law distributions are so ubiquitous and robust. 

  

 

Section 1: On the relation between stochasticity and distributions: 

  Stochastic differential equations8 are a powerful tool to study 

stochastic processes9. In the case of firm sizes s(t), it would have the following 

general form: 

 

  ds(t) = a(s, t)dt + b(s,t)dz  

 

                                                 
4 J. Sutton, Journ. Econ. Literature, XXXV (1997), pp. 40-60. 
5 J. Sutton, Journ. Econ. Literature, XXXV (1997), op.cit, p.  
6  H. Simon, Biometrika, 52 (1955), pp. 425-440. 
7 J. Sutton, Journ. Econ. Literature, XXXV (1997), op.cit. p. 46. 
8 RC Merton: Journ. Econ. Theory 3 (1971), 373-413.   
9 S. Karlin, R Taylor, Second Course in Stochastic Processes, (1981) 
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 a(s,t) is the "drift", i.e. the average growth rate of the size s(t). dz is an 

infinitesimal stochastic variable, normally distributed10. The variance of the 

stochastic process is build from the function b(s,t), the "infinitesimal variance".  

The solution of stochastic differential equations are distributions of values for the 
variable. If ϕ (s,t:s0)  is the probability density distribution of the variable s(t), at 

time t, knowing that s(t=0)=s0, ϕ (s,t:s0)  is solution of the Kolmogorov forward 

equation11: 

 

 
∂ϕ (s,t: s0 )

∂ t
=

1

2

∂2 b2 (s, t)ϕ (s, t:s0 )[ ]
∂ s2 −

∂ a(s,t)ϕ (s,t:s0 )[ ]
∂ s

 

 

  The distribution empirically observed is the solution φ∞(s) of the stationary 

form of the Kolmogorov forward equation: 

 

 
1

2

∂2 b2 (s)φ∞ (s)[ ]
∂ s 2 −

∂ a(s)φ∞(s)[ ]
∂ s

= 0  

 

Before discussing the form of φ∞(s) in general, it is worth noting what happens 

in some very well known cases, like the Brownian motion. Brownian motion 
corresponds to the case where a(s,t) = µ  and b(s, t) = σ . ϕ (s,t:s0)  is a Gaussian, 

but φ∞(s) does not exist! The time-dependent probability distribution of s(t), 

ϕ (s,t:s0)  is12: 

   ϕ (s,t:s0) =
1

2πσ2t
e

−
s− s0 −µ t( )

σ 2t

 
 
 

  

 
 
 

   

 

I.e. the variance increases with time. The solution φ∞(s) of the stationary 

equation can also be a Gaussian. But this happens in another case: the so-called 

Ornstein-Ullenbeck process (a(s,t) = −α s , b(s, t) = σ2 )13 or "mean-reverting" 

process.  

                                                 
10 Cf A Dixit, R Pindyck, Investment Under Uncertainty, Princeton Univ Press, 1993, p. 64-65. 
11 S. Karlin, R Taylor, Second Course in Stochastic Processes, (1981), op.cit., Eq. 5.29, p. 220. 
12 S. Karlin, R Taylor, Second Course in Stochastic Processes, (1981), op.cit. Eq.5.16, 5.18, p.217. 
13 S. Karlin, R Taylor, Second Course in Stochastic Processes, (1981), op.cit. p.221, eq. 5.35. 
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The stationary distribution depends on the two functions: the drift a(s) and the 

infinitesimal stochasticity b(s).   Gibrat’s law14 corresponds to a(s,t) ≈ s . Depending 

on the stochasticity b(s,t) the resulting distribution can be very different.  

The general form of the solution of the  stationary equation (cf Appendix A for a 

derivation): 

 

  φ∞(s) =
C1

η(s)b2 (s)
η (ξ )dξ

s

∫ +
C2

η(s)b2 (s)
 

With: 

  η(s ) = e
−2

a( y)

b2 ( y )
dy

s

∫
 

 

C1 and C2  are constants of integration.  Of particular interest for this paper is to 

identify the situations where the stationary distribution φ∞(s) is a power law, i.e. 

where: φ∞(s) ≈ s −λ . 

 This happens if: 
a(y)

b2(y)
≈

α
y

, because that implies:  

η(s ) =
s

s0

 

 
 

 

 
 

−2α

 and:  φ∞(s) =
s2α

b2(s)

  
 
 

  
 
 

C1

1− 2α( ) s1−2α − s0
1− 2α[ ]+ C2

 
 
 

  
 
 

.  

 

There is an infinite number of combinations of choices of functions a(s) and 

b(s), which ensure that the resulting distribution is a power law.  

One can read this result as meaning that whatever the drift a(s) it is always 

possible to find a infinitesimal variance which guarantees a power law distribution. 

(The value of the exponent of the power law depends on the specifics of the drift 

and variance). But one can also read the same result as saying that given a drift, 

there is one limited class of variance functions b(s) which guarantees that the 

resulting distribution is a power law. The variance function b(s) has to be such that: 
a(y)

b2(y)
≈

α
y

. 

  

 

Section 2: Relating with the Yule distribution: 

 

                                                 
14 " A random walk on a logarithmic scale", Y. Ijiri, H. Simon, Skew distributions and the size of business 
firms, North Holland,  1977, p.85. 
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             The Yule 

distribution was shown to be the solution of the stationary form of the following 

master stochastic equation which was developed in the context of the Zipf’s law in 

linguistic15: 

 

 f (i,k +1) − f (i,k) =
1 − α

k
  
 
   

 
 i −1( ) f i −1,k( )− if i,k( ){ } , i=2,k+1 

 

f(i,k) is the number of words which appeared i times in a text of k words. The 

equation reads: the expected number of words which appeared i times in a text of 

k+1 words is: 

-  the number of words which had appeared i times in the previous k words,  

- plus the number of words which appeared i-1 times in the previous k words, 

multiplied by the probability that the new word is one of them 

- minus the number of words which appeared i times in the previous k words, 

multiplied by the probability that the new word is one of them, so now it belongs to 

the family of the words which appeared i+1 times. 

α  is the probability that the new word has not appeared yet. It is assumed 

constant. 

This master equation assumes that the probability that a word appears again is 

proportional to the number of times it appeared before. It is the linguistic version of 

Gibrat’s law of proportional effect. 

The stationary solution f * (s) is the solution of the master equation with   
f (x,k )

k
=

f (x,k −1)

k −1
. The stationary solution is the Yule distribution, namely: 

f * (s) ≈ B(s,ρ +1). 

 B(s,ρ + 1) = λ s−1 1− λ( )ρ
dλ

0

1

∫ =
Γ (s)Γ (ρ +1)

Γ (s + ρ +1)
 is the Euler Beta function. 

Asymptotically this distribution follows a power law (cf Figure 2): 
B(s,ρ + 1) s→ ∞ →   Γ (ρ +1)s− ρ+1( )  .  

 

Implicit in the derivation of the Yule distribution from the master equation, is a 

special form for the stochasticity or variance function.   

                                                 
15 H. Simon, Biometrika, 52 (1955), op.cit., eq.2.1 p. 427. If the words appearing in a text are rank ordered 
according to their frequency, the Zipf’s law states that the rank order of a word is inversely proportional to 
their frequency. 
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In order to find which stochastic process has as Kolmogorov forward equation, 

the master equation for f(i,k), we first notice that f(i,k) is related to the probability 

distribution ϕ (x,t) that some words have appeared x times by: ϕ (x,t) =
xf (x, k)

k
. 

I.e. ϕ (x,t) is the ratio between the number of words which appeared x times 

divided by the total number of words. 

The discrete time version of the forward Kolmogorov equation can be written: 

 
∂ϕ (x, t)

∂ t
= x

f (x,k)

k
−

f (x,k −1)

k −1
 
 

 
 

=

1

2k

b 2(x +1)(x +1) f (x + 1,k) − 2b2 (x)xf (x,k) +

b 2(x −1)(x −1) f (x −1, k) − a(x)xf (x,k) − a(x −1)(x −1) f (x −1,k)[ ]
 

  
 

  
 
 
 

 
 
 

 

 

Notice that the condition for steady state (
f (x,k )

k
=

f (x,k −1)

k −1
) is identical to the 

one used by H. Simon16. The steady state solution f*(x) is solution of: 

 
b2 (x +1)(x +1) f *(x +1) − 2b2 (x)xf * (x) + b2 (x −1)(x −1) f * (x −1)[ ]=

a(x)xf * (x) − a(x −1)(x −1) f * (x −1)[ ]
 (1) 

    

 

Assuming a(x) ∝ x , the solution of the stationary form of the master equation 

is17: 

 

  f * (x) = B(x,ρ +1) f * (1)  

with: 

  ρ =
1

1− α
 

  

Implicit in this derivation is an assumption about the nature of the stochasticity 

b(x). Assuming we know that  a(x) = x  and f * (x) = B(x,ρ +1) f * (1) ,  

The continuous time equivalent of eq. 1 is:: 

 

 
1

2

∂2 b2 (x)xf * (x)[ ]
∂ x 2 =

∂ a(x)xf * (x)[ ]
∂ x

 

                                                 
16 H. Simon, Biometrika, 52 (1955), op.cit., eq. 2.8 p. 428. 
17 H. Simon, Biometrika, 52 (1955), op.cit., Eq 2.13, p. 429. 
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using this equation, b(x) is the solution of: 

 

 
∂ b 2(x)xB(x,ρ +1)[ ]

∂x
= 2x2 B(x,ρ +1) + C1  

I.e. it is: 

 b(x) =
1

xB(x,ρ +1)
2 y2B(y,ρ +1)dy + C1x

0

x

∫ + C2

 
 
 

 
 
 

 

 
 

 

 
 

1
2

 

 

 It is easy to show (Appendix C and Figure 3) that for large x: b(x) ≈ x . This 

means that asymptotically the stochastic process behaves like a "geometric 

Brownian motion", i.e. it becomes similar to the solution of a stochastic differential 

equation of the general form: dx = µ xdt + σ xdz . It is identical to: 

d ln x = µ dt + σ dz , i.e., " a random walk on a logarithmic scale", like Gibrat’s 

law18. 

 

 

 

Section 3: Firms size distribution: 

        The following stochastic 

differential equation for the firm size s(t): 

 

  ds(t) = a(s, t)dt + b(s,t)dz  

 

assumes that  the evolution of the size of firms is stochastically determined from 

their present size. There is no other exogenous factors. Using the arguments of the 

previous sections, we get that the assumption 
a(y)

b2(y)
=

λ
2y

 leads to the family of 

power law distributions: 

 

  φ∞(s) ≈
C1s

b2(s) 1− λ( ) +
C2s

λ

b2 (s)
 

  

 Assuming: b(s) ≈ s γ , in obvious notations, the general form of the distribution 

becomes: 

 
                                                 
18 Y. Ijiri, H. Simon, Skew distributions and the size of business firms, North Holland,  1977, p.85. 
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  φ∞(s) ≈ C’1 s1−2γ + C’2 sλ − 2γ  

 

C’1  and C’2  are integration constants. C’1 ≠ 0  is incompatible with the results of 

the previous section. Assuming therefore C’1 =0, one gets:   

φ∞(s) =
C2

η(s)b2 (s)
≈ sλ − 2γ .  

 

Gibrat’s laws means a(s) ≈ s . In order to get a power law distribution for the 

business firm, one needs: γ = 1, implying: φ∞(s) ≈ sλ −2  . 

 λ   is related to ρ  appearing in the previous section by: φ∞(s) ≈ sλ −2 ≈ s−ρ , 

namely: λ = 2 − ρ . ρ =
1

1− α
. α ≥ 0  is the probability that a new word appears. It 

implies ρ >1 or here: λ < 1. 

 

More generally, we have shown that power law distributions occurs in the class 

of stochastic processes described by the stochastic differential equation19:  

  ds(t) = c(s,t) λ dt +
s

c(s, t)
dz

  
 
 

  
 
 

 

where c(s,t) is such that.: c(s, t) = s −τ f (t) , where f(t) can be a  function of t.20   

This implies: φ∞(s) ≈ C’2 s λ −1+2 τ . Which in turn implies (cf Figure 1) that: 

λ −1 + 2τ ≈ −0.6 , or, assuming that the average rate of growth of firm λ ≈ 0.03, 

we get: τ ≈ 0.18.  

This means that in order to derive the exponent of the power law observed for the 

firm size distribution, starting from a stochastic differential equation, the 

assumption that the average growth of size is 3% leads to the requirement that the 

size dependence of the growth goes like s −0.18 . This is not incompatible with the 

empirical evidence21. 

What this result suggests is that it is possible to build a consistent argument to 

explain the power law or Paretian character of the size distribution, by assuming 

that the sizes obey a stochastic differential equation. 

                                                 

19 This implies: 
a(s,t)

b(s,t)2 =
λ
s

 , 
1

b(s,t)2 =
1

sc(s,t)
 and: φ∞(s) ≈ C’2 s λ −1+2 τ

 

20 a(s,t)  and b(s, t) do not seem to be constant, but slowly decreasing function with time while the firms 
still follow the same distribution. 
21D Evans, Journ. Ind. Econ. XXXV (1987), pp. 567-581. 
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But the values of the parameters are severely constrained. This kind of stochastic 

argument provides a consistent picture but fails to give an intuitive characterization 

of those processes which has the potential to explain their apparent universality.  

 

  

Section 4: Business firms size distribution as evidence of the self-organized 

character of the economy: 

         The 

distribution of size of firms is an aspect of the organization of the economy. This 

distribution expresses a dynamical equilibrium between dynamical objects. The 

growth of firms is known to be correlated to age and size of the firm. The 

correlation with age is more an anti correlation22. The growth firm relationship is 

"highly non-linear", i.e. it depends on the size of the firm. As we saw in the 

previous section this does not preclude the possibility that the dynamics driving the 

size distribution be stochastic. 

The power law form of the distribution suggests  long range effects in the 

economy that presumably transcend the relation between size, age and growth of 

firms. The specifics of the distribution are probably related to those relations. But 

the ubiquity of such distributions suggests that it is a robust dynamical pattern, 

whose origin is still to elucidate.  

  

 

 Power law distributions ϕ ( x) ∝ x −α  satisfy: ϕ (µ x ) = µ Hϕ ( x) . They are self-

similar, α-stable23 or "stable Paretian"24 distributions with index of self-similarity 

H=-α. 25   

• What is the dynamical origin of the spontaneous emergence of self-similar 

distributions for business sizes? Is it possible to recognize some features in common 

with other dynamical systems?  

• The parameter in α in "α-stable" plays a central role for the distribution. Can 

one find an interpretation to its value in the economy? 

                                                 
22 D. S. Evans, Journ. Pol. Econ. 95 (1987), pp.657-674. 
23 G. Samorodnitsky, MS Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite 
Variance, Chapman Hall, New York, (1994), op.cit. p. 9-11. 
24 B Mandelbrot, The Journ. of Business, (1963) pp. 394-420. 
25G. Samorodnitsky, MS Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite 
Variance, Chapman Hall, New York, (1994), p. 309. 
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Before speculating about the first question, we address the second.  Another way 

to put it which may go a bit further is to use the result that an α-stable distribution is 

the fixed point (or asymptotic distribution) of the renormalization group 

transformation26: 

  Tn X( )
i
=

1

nδ X j
j =in

( i +1)n−1

∑   with δ =
1

λ
 

Xj{ }here represents the firm sizes, assumed to build an α-stable distribution. n 

is the number of firms randomly put together to build a set of new firms. The 

renormalization group can be construed as a rescaling. Invariance under the 
renormalization group is therefore a scale invariance.  Tn X( )

i{ } builds the same α-

stable distribution as Xj{ }. If the firms were randomly aggregated n by n, the new 

set of firms would build the same distribution, provided the elements were divided 

by  n
1

λ  where λ is the slope of the distribution in a log-log plot.  

This statement is strictly true only for infinite α-stable distributions. Suppose 
one take some license from this constraint and let n go to the limit n = ntotal =total 

number of firms. At the limit the distribution is reduced to one element which 

represents the total size of all the firms put together, i.e. the total work force L. The 

denominator becomes ntotal

1

λ .  

If one assumes that the total output Y is proportional to the total number of 

firms, one gets Y ∝ Lλ  as a consequence of the α-stable character of the size 

distribution of firms.  

 This means that the exponent α appearing in the neo-classical expression for 

the production: Y = Lα f (K ,T )  is the same as the slope of the firm size distribution. 

This is compatible with empirical data27. 

  In the area of phase transitions28, the exponent α or λ appearing in the 

renormalization group equations, corresponds to a "critical" exponent. This 

reinforces the impression that the origin of the α-stable character of the firm size 

distribution has a dynamical origin reflecting the competition between firms and 

involving entry, exit, mergers among other things.   

The fact that the size of business firms fall in 1/f distributions is clearly a robust 

phenomenon which suggests that the sizes of firms involved in completely unrelated 

                                                 
26  G. Samorodnitsky, MS Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite 
Variance, Chapman Hall, New York, (1994), op.cit. p. 4. 
27 MJ Boskin, LJ Lau in edited book >1990! 
28 ref. for phase transition 
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areas are correlated. Firms do not compete with all the other firms to the same 

extent and at the same time. 

 The emergence of 1/f distributions suggests that the dynamics building the 

distribution of sizes, act like local interactions (involving only a few firms at time) 

generating to long range forces in the economy coupling apparently unrelated areas, 

as happens in phase transitions29 and self-organized criticality30. It has been recently 

observed that this also occurs in a class of finite size systems31.  

Inspired by this example, we study the following system:  

 
  si(t +1) = si(t) + λsi (t)

ρ( )− g si +1(t)( )  

 

The size at t+1 is related to the size of the same firm at time t, and to the size of 
the nearest neighbor through the coupling g si +1(t)( ) (local interaction). We tried two 

kinds of coupling: linear: 

g ⋅ si +1( t) and logistic: si(t +1) = si(t) + λsi (t)
ρ( )− g ⋅ si +1(t) 1 −

si +1( t)

smax

  

 
 

  

 
 . In both 

cases we assume that when the size of the company becomes negative the firm 

exits. And we allow new entries with a variety of rules involving the choice of a 

random values for the size of the new entrants. We find a power law distribution for 

a large variety of cases (cf Figure 3a and 3b).  The slope of the distribution depends 

on the values of the parameters λ , ρ  and the specifics of g. The size of the 

fluctuations around the power laws depend on the number of firms, and the values 

of the parameters. But the appearance of the distribution seems a robust 

phenomenon.  

 In this system which involves only local non-linear interactions, long range 

forces seem to be generated. An attractive (because natural) hypothesis is that such 

relations are a natural manifestation of ecological interactions between firms.  

 

                                                 
29 H. Chaté, A Lemaître, P Marcq, P Manneville, Physica A 224 (1996), p.447-457. 
30P. Bak: How Nature Works: The science of Self-Organized Criticality, Copernicus, Springer-Verlag, 
1996, op.cit. 
31 P Marcq, H. Chaté, P Manneville, Phys. Rev. E55 (1997), pp. 2606-2627. 
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Appendix A: Solving the Kolmogorov forward equation: 

 

 
∂ b 2(y)ψ (y)[ ]

∂y
= 2a(y)ψ (y) + C1,    where C1  is an integration constant. 

 

 
∂ s(y)b2 (y)ψ (y)[ ]

∂y
= C1s(y)   <=>  

∂ b 2(y)ψ (y)[ ]
∂y

+
b2 (y)ψ(y)

s(y)

∂ s(y)[ ]
∂y

= C1 

 

I.e.: 

 
b2(y)ψ (y)

s(y)

∂ s(y)[ ]
∂y

= −2a(y)ψ(y) 

Or: 

 

 
∂ ln s(y)[ ][ ]

∂y
= −

2a(y)

b2 (y)
, implying : s(y) = e

−2
a(y’)

b 2 (y’)
dy’

y

∫
 

 

Then the equation: 

 

 
∂ s(y)b2 (y)ψ (y)[ ]

∂y
= C1s(y)  leads to: 

 

 ψ (y) =
C1

s(y)b2 (y)
s(ξ )dξ

y

∫ +
C2

s(y)b 2 (y)
 

  

 If one assumes: 
a(y)

b(y)2 =
1

yσ 2 , then: s(y) = e
−2

a(y’)

b 2 (y’)
dy’

y

∫
=

y

y0

 
 
  

 
 

− 2

σ 2

 

 

And: 

  ψ (y) =
1

b2(y)

y

y0

 
 
  

 
 

2

σ2
−1

C1y

− 2
σ2

+1 
 

 
 

y

y0

 
 
  

 
 

1− 2

σ2

−1
 

 
 
 

 

 
 
 

+ C2

y

y0

 
 
  

 
 

 

 
 

  

 

 
 

  
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Appendix B: Yule distribution and stochasticity: 

 

 Making the change of variable z = y / x , on: 

 

 b 2(x)B(x,ρ +1) = 2x2 zB(zx ,ρ +1)dz + C1x
0

1

∫ + C2  

Implies that when: x → ∞ , 

 

      B(x,ρ +1) → x−ρ−1 

And: 

  x2 zB(zx,ρ +1)dz →
0

1

∫ x2 z zx( )−ρ−1
dz →

0

1

∫ x2−ρ−1  

 

So:   b 2(x) → x2 , i.e. asymptotically the stochastic process is like a geometric 

Brownian motion. 
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Figure 1: Log-Log plot of the size distribution of the 100 largest firms in 1995 

according to the Fortune 500. Horizontally the rank-order of the company is shown. 

Vertically, the size as measured either in revenues (thousands of dollars), or by 
number of employees. The fit suggests: s = smaxr −0.6 .  smax  is the "size" of the largest 

one, General Motors, with $168.8286 millions in revenues, in 1995. a General Motors 

was also the largest one by employees: 709,000 employees in 1995. 
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Figure 2A: Power law nature of the Yule distribution. 

 

 

 
Figure 2B: implicit stochasticity b(s) in Yule distribution used in H. Simon, 

Biometrika, 52 (1955), pp. 425-440. 
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Figure 3a:1/f and nearest neighbor non-linear couplings: this curves were 

obtained assuming:  
 
si(t +1) = si(t) + 0.04 ×si(t)

0. 7( )− 0. 4 × si+1 (t) 1−
si +1(t)

smax

  
 
  

 
  

  
 

  
. 

The speed at which the distribution of the 50 largest becomes 1/f, depends on the 

number of firms. The units for the size are arbitrary here. 

 

  
Figure 3b:1/f and nearest neighbor non-linear couplings: this curves were 

obtained assuming:  
 
si(t +1) = si(t) + 0.03 ×si (t)

0.7( )− 0.05 × si+1( t) .  The units for 

the size are arbitrary. 
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Figure 4: results of Evans for dln[s] at different ages. 

The average: 
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Figure 5: age effect not compelling on growth rate, more on exit rate.... Affects 

coupling to the environment. 


