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Abstract

Despite the recent wave of interest in the social and physical sciences
regarding “complexity,” relatively title attention has been given to the
logical foundation of complexity measurement. With this in mind, a num-
ber of fairly simple, “reasonable” axioms for the measurement of network
complexity are here presented, and some of the implications of these ax-
joms are considered. It is shown that the only family of graph complexity
measures satisfying the “reasonable” axioms is of limited theoretical util-
ity, and hence that those seeking more interesting measures of complexity
must be willing to sacrifice at least one intuitively reasonable constraint.
Several existing complexity measures are also described, and are differen-
tiated from one another on an axiomatic basis. Finally, some suggestions
are offered regarding future efforts at measuring graph complexity.

Keywords: graph complexity, axiomatization, information content, en-
tropy

1 Introduction

Although the formal theory of complexity extends at least as far back as the de-
velopment of information theory in the 1950s and 1960s (Shannon, 1948; Rényi,
1961), the past ten years have seen a proliferation of “complexity” related devel-
opments in a number of fields (including biology, physics, and computer science).
Despite this renewed interest in the notion of complexity, however, little agree-
ment has been reached on the precise meaning of the term, or on how it should
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be applied across contexts. A number of different definitions of complexity have
been proposed by researchers in a variety of fields; such definitions vary greatly
in their motivations and underlying assumptions, and often differ substantially
when applied to the same inputs! (see, for instance, Feldman and Crutchfield
(1998), Lloyd and Pagels (1988), Li and Vitydny (1991), Cover and Thomas
(1991), Bennett (1985); a brief review of the best-known complexity measures
is contained in Butts (1999)). Given the current confusion about the precise
nature of “complexity” per se, there is clearly a great need for work addressing
the foundations of complexity measurement.

The context for our investigation into the underpinnings of complexity is
that of social network analysis; in particular, our primary interest shall be the
quantification of the complexity of digraphs. Since a wide range of social struc-
tures can be represented in network form,.a treatment of network complexity
should permit application to a number of more specific problem domains. Fur-
ther, social networks offer the added advantage of being well-defined, formal
structures on which it should be both possible and desirable to define meaning-
ful complexity measures. Indeed, social and biological networks provide some
of the oldest applications of complexity (and related concepts) to the social sci-
ences (see, for instance, Rashevsky (1955), Mowshowitz (1968a; 1968b; 1968c),
Freeman (1980; 1984), and Everett (1985)), and an interest in identifying and
simplifying “complex” structures has been long-standing within the field (e.g.,
the work on structural, automorphic and regular equivalence, group definition
and identification, etc.). Formal complexity measures already exist for directed
graphs (Mowshowitz (1968a; 1968b; 1968c), Freeman (1984), Everett (1985),
Butts (1999)), and have been connected to substantively important concept-
s such as interchangeability of positions (Everett, 1985) and the presence of
simplifying structures (Butts, 1999); unfortunately, however, these past treat-
ments have not been derived from a shared formal framework?, nor have their
foundations been examined.

To attempt, then, to clarify the question of what is (and may be) meant by
the “complexity” of a graph, we shall set forth a series of axioms which postulate
a set of properties which (it is argued) should be satisfied by reasonable measures
of graph complexity. The implications (and consistency) of these axioms will be
explored, and a new complexity measure will be introduced which serves as a
model for our axioms. Finally, we shall consider a number of existing measures
of network complexity, and construct an axiomatic classification which allows
one to differentiate between measures on the basis of their general properties;
some additional observations regarding the extension of certain of these results
to other measures of a given type will be discussed as well.

1In fact, some measures of complexity are inversely related; see Wolpert and Macready
(1998).

2For instance, the measure of Everett (1985) is based on the properties of graph automor-
phism groups, while that used by Butts (1999) stems from the difficulty in reconstructing
graph adjacency matrices using a copy/insertion machine.



2 Initial Axioms

We begin our foundational development by the specification of a set of initial
axioms which, we argue, should hold for: all measures of graph complexity. It
should be noted that-the axioms of this section are, to some extent, trivial;
nevertheless, they should not be ignored. Even seemingly “trivial” axioms may
place important limitations on the family of acceptable measures, limitations
which may not be obvious without a thorough accounting of initial assumption-
s3. Conversely, if we are to begin the process of laying a logical foundation for
the measurement of network complexity, it seems sensible to begin with those
points on which there is likely to be substantial agreement. Once these initial
elements of the framework have been established, we may move to less obvious
— and more controversial — axioms.

In the discussion which follows, we shall consider G = {V, E'} to be a loopless
directed graph with vertex set V(G) (with |V(G)| > 0) and arc set E(G)%.
Unless specified otherwise, G is assumed to be labeled; however, we may on
occasion wish to describe a relabeling of G, L(G), which can be thought of as
the directed graph formed by the arcs of E(G) on the relabeling of the elements
V(G) as given by L. :

The first of our initial axioms serves to define both the input and the output
of the complexity measure; specifically:

Axiom 1 (Cardinality) The complezity of a digraph, C(G), must take the set
of labeled digraphs into the real numbers.

While the above would seem to be a very reasonable property to consider of a
graph complexity measure, it should be noted that one could posit alternatives.
Notwithstanding the obvious (but perhaps less interesting®) alternatives such
as complex or vector-valued complexity measures, it is also the case that one
could define graph complexity on a purely ordinal basis. While this might be
sensible for an “intuitive” complexity measure, it would be inappropriate for
measures based on concrete quantities such as information content, number of
automorphism classes, etc. For our purposes, then, it seems reasonable to treat
the complexity of a graph as a cardinal real number.

Another property which one might consider as trivial is that of determinism:

Axiom 2 (Determinism) V G, Ja € R: p(C(G) =a) = 1.

By Axiom 2 we rule out the possibility of graph complexity being a random
variable (except in the most trivial sense). For each labeled graph there must

3For instance, the seemingly “trivial” fact that the geodesic distance between two discon-
nected nodes is undefined causes measures such as closeness to become undefined on graphs
with more than one component; this implication is not always obvious to newcomers to net-
work analysis, and it is certainly not “trivial” in its consequences.

4Throughout the text, we shall make these assumptions unless specified otherwise; they
should thus be “tacked on” to any statements presented here if not made explicit.

5 Although, given the lack of consensus over a generally appropriate notion of complexity,
the idea of a multidimensional complexity measure has a certain attraction. Such a measure
would likely be superfluous, however, as one could always represent its elements individually.




be a unique associated complex1ty value, Wthh is consta,nt given the complexity
measure C.

The above, of course, assumes that C is well-defined for all graphs This
would seem to be an important and reasonable feature, and hence we mclude
among our basic axioms a statement of existence:

Axiom 3 (Exxstence) C(G) exists Y finite digraphs G.

Given any finite digraph, then, we expect our complexity measure to take
on some value. Note that we leave open the question of infinite-order graphs, as
it is not immediately obvious how these should be handled (or whether, in fact,
they should be handled at-all). As to the nature of the values taken by C’(G),
we shall further add the restnctlon of finiteness:

Axiom 4 (Finiteness) V finite digraphs G, 3a € R: C(@) < a.

Thus, we do not allow C(G) to be unbounded over its domain. Such a
restriction is not only intuitive (it is hard to imagine any finite object being in-
finitely complex); but also useful for practical purposes. Were C(G) to diverge
on particular graphs, numerous quantities of interest (such as the mean com-
plexity of an ensemble) would be incomputable in certain cases. By requiring
the complexity of a graph to be bounded, we ensure that these quantities will
be well-defined for all finite graph sets.

3 Four “Reasonable” Axioms (and Their Impli-
cations) / ' |

Having set forth four simple properties which we take to be fairly uncontroversial
requirements of any graph complexity measure, we now proceed to examine four
more axioms whose motivations (and implications) are less trivial. While all of
these axioms are “reasonable” in the sense that one can make a fairly strong
theoretical argument for each, none is unassailable; as we shall see, measures
satisfying all of these axioms jointly are only of limited theoretical interest.
The first “reasonable” requirement which we will suggest for the complexity
of a graph is that of a floor value: intuitively, it seems unreasonable for any
graph to be unboundedly simple, just as it seems unreasonable for any graph
to be unboundedly complex. Furthermore, it would seem intuitively reasonable
to suppose that the graph of minimum complexity should be the single isolate
(K1, under our assumption of looplessness®). While one could imagine a com-
plexity measure in graphs other than K; would be of minimum complexity, it
is difficult to see how any complexity measure could legitimately assign a lower
" complexity to any other graph than to K;; hence, we let this graph define the
floor complexity value:”

SNote that throughout this document the symbols K, Ny, Py, and Cyp will be used to
refer to the complete graph, null graph, path, and cycle on n vertices, respectively.

"Recall that we are considering only cases in which |V(G)| > 0; hence, K is truly the
minimum possible graph in terms of cardinality.



Axiom 5 (Floor Value) C(G) > C(K,) VG.

The second “reasonable” requirement which is suggested for a graph com-
plexity measure is that of insensitivity to nodal labels. Intuitively, graph com-
plexity would seem to be a property of the underlying structure of a graph: it
should not be possible to change a graph’s complexity simply by rearranging
(or relabeling) the members of its node set®. Formally, then, we express this
constraint with the following axiom:

Axiom 6 (Labeling Insensitivity) C (L, (G)) = C (L2 (G))VL,, Ly, G.

Note that Axiom 6 is not trivial: it potentially excludes a number of measures
which operate on vector representations of adjacency matrices (and which are
thus subject to permutation effects). As we shall see, the simple Lempel-Ziv
measure does not satisfy this axiom (though a variant suggested by Butts (1999)
does).

While one could imagine some theoretical (or pragmatic) basis for their re-
jection, Axioms 5 and 6 are clearly fairly strongly motivated. The third of our
“reasonable” axioms has a theoretical motivation as well, but it seems much
more likely to generate controversy (both directly, and because of its impli-
cations). This requirement, which we shall call: monotonicity, states that any
graph must be at least as complex as its most. complex subgraph. The intuition
here follows clearly if one thinks of a social network as an aggregate made up of
“elements” built from the “raw materials” of arcs and nodes. Just as we would
find it odd to think of a large machine as being simpler than its most complex
component, or a book as being simpler than its most complex sentence, it seems
problematic to think of a graph as being simpler than its most complex sub-
graph. Thus, our requirement of monotonicity enforces the notion that a graph
may not be simpler than its component parts®; more formally:

Axiom 7 (Monotonicity) C(G) > C(H)VH CG.

We shall see the problematic side of monotonicity presently. For now, how-
ever, it suffices to point out that any directed graph on n nodes is a subgraph of
K,,, and hence a trivial consequence of Axiom 7 is that the cliques must be of
maximal complexity. While this is certainly not out of line with a “complexity
as cardinality” point of view, it seems somewhat counterintuitive to think of as
uniform a structure as the complete graph as being especially complex. Clearly,
we seem to have uncovered a tension within our intuitive view of complexity; as
we will see, this is indeed the case.

For the fourth (and last) of our “reasonable” assumptions, we consider the

complexity of graphs and their complements. In particular, we shall hold it
" as desirable that any complexity measure assign the same value to a digraph
as to its complement. At first blush, this may seem to be an odd notion:
why should it be that the complexity induced by a set of arcs (holding nodes

80r, equivalently, by permuting the rows and columns of its adjacency matrix.
9The term “component” is here used in its nontechnical sense.



constant) is the same as that induced by the associated set of “holes”? The
intuition here may be most easily appreciated by considering the adjacency
matrix of a particular digraph. Traditionally, it is standard to code arcs which
are present with 1s, and those which are not with 0s; what if, however, we were
to code in the opposite fashion, with Os for present arcs and 1s for those what
are absent? If our complexity measure obeys complementarity, then changing
the way we code the: graph cannot alter its complexity — it. will be the same
in either case. If our measure does not obey complementarity, however, then
observed graph complexity will be dependent upon the way in which we code
our relationships. Like labeling dependence, this opens the door for arbitrary
methodological problems, and runs counter to our intuition that complexity
should be insensitive to coding issues.

Axiom 8 (Complementarity) C(G) = C(G)VG.

As with Axiom 7, -Axiom 8 is not immune to criticism. Clearly, one may
object to equating present and absent arcs: in many substantive theoretical
contexts, one is concerned with physical processes (e.g., information or disease
transfer, monetary exchange, initiation of aggressive behavior) which operate
solely on arcs which are present, and notions of complexity which are relevant
to such processes may be asymmetric with respect to the presence/absence of
ties'0. Similarly, some of the trivial implications of complementarity are not
necessarily intuitive. Under complementarity, for instance the complete and
null graphs on n nodes must be of equal complexity; likewise, the path on three
nodes must be of equal complexity to K; U K. While there are good reasons
to expect a graph complexity measure to conform to Axiom 8, then, one could
also object that this axiom forces an unwarranted symmetry between ties and
holes.

3.1 Consistency of the Eight Basic Axioms

Having set out four initial (uncontroversial) axioms and four additional (per-
haps more controversial) axioms, the question now arises as to whether or not
there exists some complexity measure (or family thereof) which simultaneously
satisfies our eight suggested axioms. This, of course, is equivalent to asking
whether or not the axioms in question are consistent. As it happens, it is easy
to show that if the axioms are consistent, any measure which satisfies them
must satisfy some fairly stringent requirements:

- Theorem 1 A compléxity measure C(G) satisfies azioms 1-8 only if C(G1) =
C(Gz)VG1,Gz H IV(GI)I = |V(G2)| and C(Gl) > C(Gz)VGl,Gz : |V(G1)| >
VI(Ga)|.

Proof: By Aziom 7, C(G) < C(Kjv()|)VG- By Aziom 8, however, C(Njy(g)|) =
C(N|V(G)|) = C(K|V(G)|); and by Aziom 7 C(NIV(G)I) < C(G). Therefore,

10For instance, the overhead associated with keeping track of information flow within a
given network may grow with the number of realized ties between actors.




C(Kjva)) < c(@) < C(KIV(G)I)’ which implies that C(G1) = C(G2)VG1,Gy :
[V(G1)| = |V(Gz2)|. Further, note that C(G1) = C(Kjy(a,)) and C(G2) =
- C(K(aa))) YG1,G2. VG1,Gz2 : |V(G1)| < {V(G2)|, however, Ky, C
Kiv(a,)| which implies (by Aziom 7) that C(Ky(a,)) < C(K| |V(G2)|), there-
fore, C(G1) < C(Gz)VGl,Gz V(G1)| < |[V(G2)|. O

Note that we have not, with Theorem 1, shown that any complexity measure
actually satisfies our initial axioms. Clearly, however; if such a measure exists
it will be to within an order-preserving transformation of [V/(G)|. This is an
interesting, if perhaps distressing, result: the only way we can simultaneous-
ly satisfy complementarity and monotonicity is to have a complexity measure
which depends solely on the size the of graph in question! To obtain anything
more subtle, we must be willing to relax one or both constraints. While we shal-
1 proceed to an examination of the status of a number of existing complexity
measures with respect to this particular choice presently, it behooves us first to
finish with the matter at hand. As hinted above, the necessity of Theorem 1
can also be turned into a sufficiency; in Theorem 2 below, it is shown that the
measure C(G) = |V(G)| satisfies our eight proposed complexity axioms.

Theorem 2 The complezity measure C(G) = |V(G)|, together with the set of
loopless digraphs, provides a model for axioms 1-8.

Proof: |V(G)| is a finite real number which is defined VG; thus, Azioms 1,
3, and 4 are clearly satisfied (along, trivially, with Aziom 2).: Note that the min-
imum value of |V (G)| is obtained on K, thereby satisfying Aziom 5. Trivially,
{V(G)]| is not dependent on nodal labels, hence Aziom 6 is satisfied as well.

To see that C(G) = |V(G)| satisfies monotonicity (Aziom 7), we proceed to
consider two separate cases. First, we take two digraphs G1,G2 : |[V(G1)] <
|[V(G2)|. Because G2 ¢ G1 we need consider only the possibility that G1 C
G3. If this is the case, then Aziom 7 requires that C(G1) < C(G2). Since
C(Gh) = |[V(G1)], C(G2) =|V(G2)|, and |[V(G2)| > |V(Gy)|, this is obviously
satisfied. In the alternative case in which |V(G1)| = |V(G2)|, it follows that
C(G1) = C(Gz), and thus clearly Aziom 7 must be satisfied in this case as well
(as both C(G1) < C(G2) and C(G32) < C(G1) are true).

Finally, we consider complementarity (Aziom 8). Note that C(G) = |N| is
constant for all graphs of equal order; hence, Aziom 8 is automatically satisfied.

As azioms 1-8 are true for C(G) = |V (G)| on all loopless digraphs, it follows
that C(G) = |V(G)| (together with the set of loopless digraphs) provides a model
for these azioms. ]

From Theorem 2, the consistency of the proposed axioms follows trivially:

Correlary 1 Azioms 1-8 are consistent.

Proof: By Theorem 2, the complezity measure C(G) = |V(G)| provides a
model for axioms 1-8. It therefore follows that axioms 1-8 are consistent. O



At this point, then, we have shown that considering a number of fairly
simple constraints on the set of acceptable graph complexity measures leads
us to three obvious categories: non-monotonic measures (in which graphs may
be less complex than their subgraphs), non-complementary measures (in which
graphs need not have the same complexity as their complements), and measures
of the |V(G)| family (which satisfy both constraints, but whose practical value
is very limited). Is there a simple relaxation of one or more of these conditions
which will allow us to preserve at least some of the properties which motivated
them without limiting us to such a narrow family of measures? As it happens,
such relaxations exist; we shall consider one such modified axiom in the next
subsection of this essay.

3.2 A Relaxation of Monotonicity

As we have seen, the simultaneous assumption of monotonicity and complemen-
tarity implies a family of complexity measures which are structurally degenerate
(and hence uninteresting for most applications). Given, however, that both of
these properties have reasonable motivations, is there some way in which one
could partially retain them- without accepting degeneracy? Here, we demon-
strate one such alternative: by partially relaxing the monotonicity condition,
we can obtain interesting complexity measures which nevertheless conform to a
number of our intuitive expectations.

To consider which alternatives to Axiom 7 might be appropriate, it is in-
structive to examine Theorem 1. Note that the structural degeneracy of the
resulting family of complexity measures is a consequence of the interaction of
the requirement that K, be of maximal complexity (a simple implication of Ax-
iom 7) with the requirement that K, have the same complexity as N, (which
follows from Axiom 8). To avoid this result, any change to monotonicity must
be such that K,’s complexity is no longer required to be maximal!! - since this
was a natural consequence of our “building block” intuition, however, we shall
have to found our new axiom on a somewhat different basis. One possibility for
such a modification lies in thinking of induced subgraphs, rather than subgraphs
per se, as being the subcomponents!? of larger social structures. Such an intu-
ition is sensible if one takes the connections between nodes as being “given” due
to exogenous factors, but regards the selection of an observed node set as being
subject to variation!3; as this situation is not uncommon in network analysis,
the associated intuition would seem fairly reasonable. Formally, then, we state
our restricted monotonicity as follows:

Axiom 9 (Sample Monotonicity) C(G) > C(G[S]) V S c V(G).

The motivation for calling this restricted version of monotonicity “sample”
monotonicity lies in its practical implication; in particular, the property implies

11Without introducing contradictions. This will, however, not be a problem in our case.
12 Ag before, we use this term in its nontechnical sense.
18 Although this is only one interpretation.



that the complexity of any network sample from a larger graph will provide
a lower bound on the complexity of the entire (unobserved) structure. The
practical benefit of this is obvious: as the networks in which we are interested
are often supersets of those we actually observe, being able to draw a guaranteed
inference regarding the complexity of the larger structure is clearly usefull“.
Note, too, that sample monotonicity is clearly a weaker condition than the
form of monotonicity described in Axiom 7. Trivially, any complexity measure
which satisfies the latter must satisfy the former, as an induced subgraph of a
digraph is (by definition) also a subgraph per se. Similarly, the converse of this
statement is false: a complexity measure could satisfy Axiom 9 while giving Cy
a higher complexity than K for (since all induced subgraphs of K4 are cliques),
which would violate Axiom 7. Monotonicity thus implies, but is not implied by,
sample monotonicity. :

Given that we can define an apparently intuitive relaxation of monotonicity,
what sort of measures does it imply? In particular, how does it interact with
complementarity? Is it consistent with the other axioms? To answer these
questions, we demonstrate a new graph complexity measure which satisfies both
conditions simultaneously.

One way in which one might think of the complexity of a graph is with
respect to the number of “types” of structures found within it. A clique, for
instance, is relatively simple in this sense, as it contains only additional cliques;
by contrast, a random graph of equivalent size will often contain a wide range
of varying structures, and hence will be more complex (given this notion of
complexity). Of course, one might ask what is meant here by “containment”.
Obviously, the notion of subgraph is not consistent with the above — as has
been noted, a clique contains all graphs of equal or lower order as subgraphs —
but that of containment vis a vis induced subgraphs is indeed permissible. To
construct our new complexity measure, then, we shall take the complexity of a
given directed graph to be the size of the set of all distinct (i.e., non-isomorphic)
induced subgraphs contained within it; formally:

Definition 1 (Induced Subgraph Complexity) Let S be the set of all dis-
tinct induced subdigraphs of directed graph G. The induced subgraph complexity
of G, C1s(@), is given by Crs(G) = |Sg|-

Is this notion of complexity consistent with our previous axioms (absent
monotonicity)? As it happens, the answer is yes, as is shown in Theorem 3
below.

Theorem 3 The induced subgraph complezity measure, Crg, together with the
set of loopless digraphs, provides a model for axioms 1-6, 8, and 9.

Proof: By Definition 1, Cis(G) = |Sg|, where Sg is the set of distinct
induced subgraphs of G. |Sg| is a finite real number which is defined V G; thus,

140f course, a lower bound is just that — we cannot know whether the larger structure is
substantially more complex without observing it. Nevertheless, a lower bound is better than.
no bound at all.



Azioms 1-4 are clearly satisfied. Because |Sg| takes its minimum value (0) on
K, Aziom & is also satisfied, as is Aziom 6 (due to the fact that the number of
distinct subgraphs of G is a labeling independent property).

To verify that Cis satisfies complementarity (Aziom 8), first assume the
contrary. Then, by definition, 3G : C1s(G) # C15(G). Without loss of gener-
ality, we take Crs(G) > Cis(G). By Definition 1, this implies that 3 induced
subgraphs 81,85 C G : 8y ¥ s; and 37 = 33 (where = signifies the relation
“s isomorphic to”). However, H; = Hj implies H; = H, V digraphs Hy, Hy;
therefore our assumption implies a contradiction, and hence it must be the case
that Crs satisfies complementarity.

Finally, we show that sample monotonicity (Aziom 9) is satisfied. Assuming
that Crs fails to satisfy Aziom 9 implies that 3S C N(G) : C15(G[S]) > C1s(G).
Let Hg be the set of all distinct induced subgraphs of G, and let Hgg) be the
set of all distinct induced subgraphs of G[S]). By the definition of subgraph,
Hgis)U Hgin()-s) € Hg; therefore, |Hg| > |Hg(s)| + |Hain(e)—s)| — [Haisp N
Hginvy-s)l 2 |I-IG[g]| This contradicts our initial assumptzon and thus Crs
must satisfy sample monotonicity.

As azioms 1-6, 8, and 9 are true for Crs on all loopless digraphs, it follows
that C1s (together with the set of loopless digraphs) provides a model for these
axioms. O

Thus, induced subgraph complexity provides a working example of a non-
trivial measure which satisfies the majority of our intuitive requirements for a
measure of complexity. In demonstrating this, the above theorem clearly implies
the consistency of these axioms as well:

Correlary 2 Azioms 1-6, 8, and 9 are consistent.

Proof: By Theorem 3, the induced subgraph complezity measure provides a
model for azioms 1-6, 8, and 9. It therefore follows that axioms 1-6, 8, and 9
are consistent. [

What, now, of the question of behavior? While a full examination of the
behavior of the induced subgraph complexity measure is beyond the scope of this
paper, it is perhaps useful to compare this measure with some number of other
measures found in the literature. In this case, we illustrate the behavior of the
induced subgraph complexity measure by comparison with the orbit information
measure of Mowshowitz (1968a, 1968b, 1968c) and the role complexity of Everett
(1985) on all distinct graphs of order four!5. The presentation here (see Table 1
below) follows that of Everett (1985), and the data for I(G) (orbit information)
and R.(G) (role complexity) is taken from the same source.

15Since all three measures satisfy complementarity, only half of the distinct graphs are
shown; complements of those listed will be of identical complexity. Note that only simple
graphs are considered here, in order to maintain comparability with Mowshowitz (1968a) and
Everett (1985).
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Table 1: Comparison of Three Complexity Measures
G I(G) R.(G) - C1s(G)
4K, 0 0 3
CsUK; || 2—%log,3 2 5
Py U2K, 1 = 5
P; UK, 13 2 6
Py 1 3= 5

It is interesting to note that, as Table 1 indicates, the behavior of C;g is
distinct from that of the other two measures even when considering very small
graphs. While both the null graph on four vertices and union of two disconnect-
ed dyads are considered to be of minimal complexity under the orbit information
measure, the latter is clearly more complex with respect to the induced subgraph
measure. Likewise, both the path on four vertices and the union of the three
vertex path with a single isolate are considered to be equally complex under
the role complexity measure, despite the fact that the former exhibits less in-
duced subgraph complexity. While all three measures clearly show a general
trend towards identifying certain kinds of structures (e.g., long paths) as being
more complex than others (e.g., cliques), each corresponds to a distinct notion
of complexity, and as such there is not total agreement between them. Iden-
tification of the conceptual divisions between these measures is pursued in the
next section; systematic illustration of the behavioral implications of each is a
topic for future research.

4 Existing Measures of Structural Complexity,
by the Axioms

While we could continue to add and/or modify axioms in an a priori fashion,
creating an increasing number of complexity measure classes (and measures),
we shall now follow a somewhat different pattern: having laid out these initial
axioms, we shall proceed to examine how a number of existing measures of
graph complexity may be classified, adding axioms as needed to discriminate
between measures. By so doing, we hope to illustrate the conceptual significance
associated with choosing one measure over another for a given application.

4.1 Some Sample Complexity Measures

As has been noted, the literature on complexity utilizes a wide variety of distinct
notions of what it means for a system, structure, or algorithm to be “complex”;
even in the more restricted case of graph complexity, a number of possible mea-
sures are available. Even excluding the notion of graph dimensionality (Roberts,
1969; Guttman, 1977; Freeman, 1980; Everett, 1984) as a suitable complexity

11



construct?®, the set of potential measures is quite large. 'Here,’ we have chosen
to focus on six existing complexity measures (in addition to induced subgraph
complexity, which was introduced earlier). These measures are as follows:

Cardinality of the vertez set: As we have already seen, the cardinality of the
vertex set supplies a model for our eight basic axioms; as such, it is a natural
candidate for inclusion. Substantively, graph size is also a widely used intuitive
notion of complexity in organizational and mental model contexts. In the text
which follows, vertex set cardinality will be represented in the usual fashion

(IV(@)D-

Cardinality of the arc set: Along with graph size, it is intuitive in many
contexts to presume that a structure is more “complex” insofar as there are
more connections between its component parts. As with vertex set cardinality,
arc set cardinality is represented via the typical notation of |E(G)|.

Source entropy of the arc set: A natural frame for considering the infor-
mation content (and arguably the complexity) of a graph is that of a con-
text in which we imagine the graph to be transmitted on an arc-by-arc ba-
sis to some receiver. In such a situation, the expected information content
of each arc {in bits) corresponds to the related first order Shannon entropy,
or — (dlogyd + (1 —d)log, (1 — d)), where d is the density of the digraph in
question. The source entropy of the arc set scales the asymptotic maximum
Lempel-Ziv complexity (Kaspar and Schuster, 1987), and is intuitively related
to the expected degree of graph compressibility!?. Here, we represent this mea-
sure by h(G).

Orbit information: Mowshowitz (1968a, 1968b, 1968c) defines the complex-
ity of a graph in terms of the expected information content of an optimally
encoded signal regarding the orbit membership of a randomly chosen vertex.
Formally, for a digraph G with orbits A;, A2, ...Ajorb(q)|, the orbit informa-
tion (I(G)) is given by I = — Al 1o Al The use of orbit

(I(G)) is given by I(G) Aeoz:rb(c)]—v%éw 82 TS
information as a measure of structural complexity developed originally out of
early work by Morowitz (1955), Rashevsky (1955), Trucco (1956), and others
in topological biology, where its intuitive motivation involved quantifying the
difficulty of reconstructing an organism from (chemically) structurally defined
constituents; the parallels between this notion and group or organizational struc-

16This approach was introduced to the social network literature by Freeman (1980), but has
been criticized by Everett (1985) on the grounds that dimensionality is conceptually distinct
from complexity and that the particular measures of dimension offered in previous work yield
intuitively unappealing results. Here, we have chosen to focus on more traditional graph and
information theoretic approaches, and do not treat dimensional measures of complexity; it
should be noted, however, that we do not dismiss the notion that dimensional measures may
be of conceptual or practical value.

17More formally, an upper bound on the length of the optimal encoding of a graph is given
by H(G)|V(G)2.
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ture are obvious.

Role complezity: Everett (1985) defines a notion of graph complexity based
on the size of a graph’s automorphism group. Though related to the measure of
Mowshowitz (1968a, 1968b, 1968¢), Everett’s role complexity (R.(G)) more di-
rectly addresses the degree of exchangability between positions!8. (Alternative-
ly, it can also be understood in terms of the chance of drawing an automorphism
from the set of all node labelings under a uniform sampling condition.) Role
‘complexity is given by R.(G) =1 — A“é,?!, where AutG is G’s automorphism

group.

Induced subgraph complezity: Induced subgraph complexity (the number of
‘distinct induced subgraphs of a given graph) was introduced in Definition 1
above. Represented by C;g(G), this measure can be interpreted as the num-
ber of different substructures composing a given graph (where “substructure”
is given to mean an arbitrary set of vertices and all associated arcs); it is hence
a measure of what might be called “structural diversity”. -

Lempel-Ziv complexity: Lempel and Ziv (1976) present a measure of algo-
rithmic complexity for finite sequences which can be shown to behave like the
Kolmogorov-Chaitin complexity (Kolmogorov, 1965) in certain respects (Lempel
and Ziv, 1976). Subsequent work by Kaspar and Schuster (1985) demonstrated
the applicability of the measure to dynamic systems, and estimated its conver-
gence properties on simulated data. Butts (1999) indicated a means of calculat-
ing the Lempel-Ziv complexity on suitably encoded digraphs, and showed that
the measure was strongly related to the presence of nontrivial structural equiva-
lence classes; an empirical examination of a range of network data sets suggested
that the Lempel-Ziv complexity of actual relational networks is generally quite
high. Due to the length of the definition (and the fact that it is presented in
Butts (1999)), it will not be given in full here. In brief, however, Cr_z(Q) is the
number of insertion operations required by a copy/insertion machine to produce
a given n-ary sequence, and provides an index of the algorithmic complexity of
the sequence in question.

Having described each of the measures which will be used in the remainder
of the paper, we may now proceed to the problem of axxomatlc discrimination
between measures of graph complexity.

4.2 Axiomatic Discrimination Between Measures

One use of a formal logical framework is to facilitate the development of con-
structs which can be shown to obey certain desirable properties. Another is to
identify conceptual distinctions between constructs, and to create a system for

1814 is also related to algorithmic complexity (see Butts (1999) for a discussion of algorithmic
complexity on social networks), due to the fact that the presence of nontrivial automorphism
classes implies compressibility.
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their classification. Earlier in this paper, the former usage of complexity axioms
was deployed; now, we shall consider the latter. Given the set of measures at
our disposal, will the axioms so far introduced allow us to differentiate between
them? To find out, we shall now proceed to show which axioms are (and are
not) satisfied by each of the measures in question.

First, we shall consider the axioms 1-5. As we have seen, the measures
already examined have been found to satisfy these requirements; in fact, it
happens that all of the measures under consideration obey these axioms, and
hence they will be ignored for the remainder of the analysis. (Detailed proofs
are not presented, due to the fact that they follow the form of the proofs for
Theorems 2 and 3, but are available upon request.)

Next, we note that two of our measures — [V (G)| and Cys(G) - have already
been dealt with in Theorem 2 and Theorem 3, respectively, with the exception
of the the proof of sample monotonicity for |V (G)|. For this last, recall from
the proof of Theorem 2 that [V (G)| satisfies monotonicity (Axiom 7). As was
observed earlier, any measure which satisfies monotonicity must also satisfy
sample monotonicity; therefore, it obviously follows that |V (G)| satisfies sample
monotonicity as well. Thus, |V(G)| satisfies all nine of our current axioms,
while Crs(G) satisfies Axioms 6, 8, and 9 in addition to the first five (which are
satisfied by all measures under consideration).

For |E(G)|, we state the following theorem:

Theorem 4 |E(G)| satisfies Azioms 6, 7, and 9; |E(G)| does not satisfy Az-
iom 8.

Proof: Trivially, the cardinality of the arc set of a loopless digraph G is
labeling invariant; thus, Aziom 6 is obviously satisfied.

To verify that | E(G)| obeys monotonicity (Aziom 7), recall that the arc set of
a subdigraph is a subset of the arc set of the original digraph. It therefore follows
that |[E(H)| < |E(G)| VY H C G; thus, Aziom 7 is satisfied. (Since monotonicity
implies sample monotonicity, Aziom 9 is satisfied as well.)

Finally, we note that |E(K,)| > |E(K,)| ¥V n > 1. Thus, |E(G)| fails to
satisfy Aziom 8. O

As shown, arc set cardinality satisfies all axioms but complementarity; this
result is quite intuitive when one considers the original rationale behind the
measure. If a structure is more complex to the extent to which it has more
internal connections, then it obviously follows that arcs and “holes” are not
synonymous, and the measure in question would not be expected to obey com-
plementarity. E(G), then is an example of a “compromise measure” in the
sense discussed earlier: it avoids degeneracy while maintaining monotonicity by
forgoing complementarity.

The other side of this compromise is illustrated below by source entropy, for
which we state:

14
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Theorem 5 h(G) satisfies Azioms 6 and 8 h(G) does not satisfy Aziom 7 or
Aziom 9.

Proof: Recall that h(G) can be ea:pressed as — (d 10g2 d+ (1 - d)log, (1 d)),

where d is the density of G (more precisely, d = W(—‘Y%QIL‘I’W ). Thus, h(G) de-

‘pends only on the cardinalities of the vertex and.arc sets of G; these are labeling

“independent properties, and thus h(G) must satisfy Aziom 6. Also, observe that

since d(G) = 1-d(G), substitution gives us h(G) = — ((1 —d) log, (1 — d) + dlog, d) =
h(G). Therefore, it follows that h(G) obeys Aziom 8 as well.

That h(G) cannot satisfy Aziom 7 is immediate from the observation that
h(G) takes its mazimum (1) when d = 0.5, and is at its minimum (0) ford = 1.
Thus h(G) > hMKya))) for G : d = 05, but G C Kjyg)- This violates
Aziom 79, - :

Lastly, a counterezample to the assertion that h(G) satisfies sample mono-
tonicity (Aziom 9) is provided by G : V(G) = {a,b,c,d}, E(G) = {(a,b)}
and vertex subset S = {a,b}. In this case, h(G) = 0.414 which is less than
h(G[S]) = 1, which violates the conditions of Aziom 9. O -

In the case of h(G), then, it is monotonicity which is sacrificed to preserve
complementarity. Here again, this is sensible when ‘one considers the basis
of the measure itself: the source entropy of the arc. set is a measure of the
expected uncertainty regarding the existence of any given arc without regard
to its position, and hence treats arcs and holes symmetrically. Uncertainty per
arc is not related in any. straightforward way to the particular network sample
in question?°, and thus the monotonicity axioms are violated.

These observations, interestingly, seem to generalize (to some extent) to
other information-based measures of network complexity. Consider the case of
orbit information:

Theorem 6 I(G) satzsﬁes Azioms 6 and 8; I(G) does not satisfy Aziom 7 or
Aziom 9.

Proof: By definition, two vertices i,j € V(G) are members of the same
~orbit iff 3 a relabeling | of the vertices of G: 1(i) = j and I(G) = G; relabeling,
hence, cannot affect orbit structure, and I(G) must satisfy Aziom 6.

To verify that I(G) satisfies Aziom 8, we first assume the contrary. If I(G)
does not obey Aziom 8, it follows that 3i,j € V(G) and relabeling | of V(G):
(1) = j, G) = G, and I(G) % G. However, it is also the case that G = H
implies G = H V digraphs G, H; hence, I(G) = G implies I(G) = G, and (by
contradiction) I(G) must satisfy Aziom 8.

For brevity, we shall now demonstrate that I(G) fails both monotonicity (Az-
iom 7) and sample monotonicity (Aziom 9) by showing that I(G) does not satisfy

19This could also be proven simply by noting that the weaker condition of sample mono-
tonicity is violated (see below). The separate proof of this proposition is given to aid intuition
regarding the behavior of h(G).

20Ceterem paribus, and providing that the sample is not degenerate.
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the latter (and therefore cannot obey the more stringent condition). Consider
the graphs P> U 3K, and P2 U 2K, (taking all arcs as reciprocal). The orbit in-
formation values of these graphs are I(P; U3K;) = 0.971 and I(P, U2K;) =1,
respectively; however, P,U2Kj is an induced subgraph of PoU3K;, and Aziom 9
(along with Aziom 7) is therefore violated. O ‘

The pattern of I(G) is identical to that of h(G): only the monotonicity
axioms are violated. This similarity, as it happens, is not entirely accidental.
In general, any information measure defined on a partition p,ps, ... of graph
features (e.g., orbits, dyadic states, etc.) will violate Axioms 7 and 9 if for
any graph G and partition ¢ it is possible to create a new graph H such that
38 Cc V(H) : G = H[S] C H,|p:(H)| > |pi(G)|, and |p;(H)| < |p;(G)IVj # i.
The precise nature of the graph feature per se isirrelevant; if it is possible to add
members to exactly one partition simply by adding vertices and associated edges
to a graph, then one may ultimately obtain a violation of sample monotonicity
(and therefore monotonicity as well) simply by repeating this process a sufficient
number of times?!. This follows directly from the fact that the information
measure is 0 for the uniform distribution and approaches unity as an increasing
proportion of probability mass is placed on a small number of partitions??.
While it is conceivable that one could choose a set of features which would not
allow such concentration of cases within a particular partition, one suspects that.
most interesting features will have this property; thus, a wide range of graph
information measures, at the very least, will not be suitable for applications
requiring the monotonicity axioms.

As we have seen, then, it is possible to satisfy the tension between monotonic-
ity and complementarity by completely discarding one or the other. Similarly,
some measures compromise by obeying only the more relaxed form of mono-
tonicity. Crs(G), discussed, above, is one such measure; another, as it happens,
is role complexity, as is shown by the theorem below.

Theorem 7 R.(G) satisfies Azioms 6, 8 and Aziom 9; Rc(G) does not satisfy
Aziom 7.

Proof: Because (within graphs of a given order) role complezity depends only
on the automorphism group of G, the arguments used in the proof of Theorem 6
regarding Azioms 6 and 8 also apply in the case of R.(G); thus, by the earlier
proof, Axioms 6 and 8 are satisfied.

To show that R.(G) satisfies Axiom 9 (sample monotonicity), it is first useful
to observe that this assertion is equivalent to the statement that AG,v € V(G) :
el > |V(G)|. This follows from the fact that R(G) = 1 — {5i53l, and
that a violation of sample monotonicity would require there to exist some graph
whose role complezity could be decreased by adding a new vertex®s.

21For instance, we obtained the violations of Theorem 6 by adding isolates.

22Note that, as this suggests, the stated condition is sufficient but not necessary to guarantee
a violation of the monotonicity axioms.

23Note that this last is a necessary and sufficient condition for violation of Axioms 9.
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Hamng reframed the problem in this fashwn, we now demonstmte that :

~in fact AGv € V(G) : it > V(@) Let Fiz(v,G) = {g : g € -
Aut(G), g(v) = v}, or the set of automorphzsms of G ﬁzmg v, and let Orb(v,G) =

{u:3g: g(v) =u} (or the orbit of v in g) It isa baszc result of the theory of

L permutatzon groups®® that ,

TP%’{%: jOrb(v,G)}Vv‘e‘V(C’rr')_

: Some_s;impléalgebm, then, gives us

AwG] |Fz:c(v @)lIord(v,G)]
lAutG - v| IAutG - v}

“‘We now observe that Fz:c(v G)isa subgroup of AutG-—v, therefore, Jl%‘“%%zll <
1 and hence , :

AutG : '
: TAleEZI_ﬂ < |0rb(v,G)|

- Orb(v,G), however, is oboio'usly ‘a subset 'of V(’G),”which imj}lie;é that

| AutG)

ThaG 7 < < V@MW e V(G)

Thus, AG,v € V(G) : ]—A‘—zig—c_;lﬂ > |V(G)|, and by our z'm'tial ‘argument,
R.(G) must satisfy Aziom 9.

Finally, we note that |AutK,| = n!, and hence R.(K,) = 0 ‘there are,
' however, subgraphs of K, (such as P;) with higher comple:mty (in this case,
1), which molates Azioms 7. O

Although it is quite non-obvious that R.(G) should satisfy sample mono-
tonicity, it nevertheless does; in fact, it obeys all of our proposed axioms, with
the exception of full monotonicity. That role complexity has this property is
shown in the proof of Theorem 7 to follow from the fact that the normalizing ter- -
m of R.(G) must grow at least as fast as the size of AutG for all G. Thus, once
~a particular graph “falls behind” in the sense of having a small automorphism
group, there is no way for it to “catch up” by adding nodes and associated arcs.
This fact also suggests that the population of large structures (even those with

241 am'indebted to Martin Everett and John Boyd for this result.
25This is a version of a theorem: usually credited to Burnside.
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nontrivial automorphism classes) will tend to be concentrated towards complex-
ity 126, and that finite random graphs should approach maximum complexity =
quite rapidly under a.standard process of evolution by addition of arcs. '

The last of the measures which we shall here consider differs rather substan-
tially both in the manner of its deﬁmtlon and in the partlcular a.xmms which it
does (and does not) satisfy:

Theorem 8 Cr_z(G) satcsﬁes Azioms 8 and 9; Cr— Z(G) does not satisfy Az-
ioms 6 or 7.

Proof: As noted, the Lempel-Ziv is given by the number of insertion oper-
ations required by a (copy/insertion) production process which regenerates the
sequence whose complezity is under evaluation. Following Butts (1999), we here
-assume that the complezity of a digraph G is taken to be the L-Z complexity of
the vector formed by a concatenation of the rows of the G’s adjacency matriz
(AP,

Gwen thzs, the L-Z complexity is defined on an arbztmry alphabet of symbols;
as the adjacency matriz of G is merely the adjacency matriz of G with 0s and
1s exchanged, it follows that Cr_z(G) must obey complementarity (Aziom 8).

In order to demonstrate that Cr_z(G) satisfies Axiom 9, first note that
Cr-2z(8Q) > CrL-z(S) for all vectors S,Q with concatenation SQ?®. Now
consider a digraph H with adjacency maitriz Ap. If we add some set of ver-
tices Vgg to H (forming a digraph G of which H is an induced subgraph),
then the adjacency matrix Ag will consist of four submatrices: Ay (m)zv (),
Av(m)2v(G-H), Av(G-)zv(H), 018 Ayv(G_H)zv(G-H) (where Aqqp represents
the adjacency matriz associated with the set of arcs from vertex set a to vertez

set b). Note that, by our earlier observation, Cp_z(A) > el max( )CL —z(4).
ows(A

Thus, Cr—z(Ag) > Cr—z(Av(myev(G—m)AvEyevan) > Cr—z(Ax), and Az-
iom 9 is satisfied.

An example of a violation of Aziom 6 has already been given by Butts (1999),
in showing that the Lempel-Ziv complexity of the isomorphic structures

26Indeed, since |AutG| = 1 for almost all graphs, it follows that almost all graphs are of
maximum complexity under R.(G); that this is also true (for similar reasons) of algorithmic
complexity underscores the connection between the two.

27Butts (1999) also discusses alternative encoding schemes — such as dyadic encoding — as
well as a means of estimating an L-Z complexity measure for unlabeled graphs. Here, we use
only the initial (labeled, arc encoded) formulation, and our conclusions apply only to this
version of the complexity measure.

28We shall here take CL—z to be defined on graphs, matrices, and sequences, using the
encoding assumption mentioned above.
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are not identical (the exact values are 10 and 11, respectively). To show vio-
lation of monotonicity, it is sufficient to note that the complete graph produces a
1-vector, which has complezity 2 (Lempel and Ziv, 1976), and that the structure
0100
101
0j(1]0
0|1(0 .
has a complezity of 5 (exhaustive history given by 0-001-10-100-1000-100
- note the lack of a closing dot, indicating that no insertion was required for the
final word). Since this structure is a subgraph of Ky, it follows that Cr_z(G)
does not satisfy Aziom 7. O

(=] =3 K] g

Unlike every other measure considered here, then, the Lempel-Ziv complex-
ity (given the assumed encoding scheme) fails to satisfy labeling independence.
This is a consequence of the fact that the vector encoding is not itself labeling
independent; while not every measure encoded in this fashion will necessar-
ily be labeling dependent, it is worth bearing in mind that many will (and
hence one should bear this in mind when examining measures based on such a
scheme). Cr_z(G), on the other hand, does obey both complementarity and
sample monotonicity. This is to be expected from a measure which is based
on the algorithmic complexity, as it should be A) symmetric in its treatment
of elements in the coding alphabet, and B) nondecreasing as the signal to be
compressed increases in length. (Although a version of Cr_z(G) presented by
Butts (1999) does satisfy labeling invariance?, the original version is given here
for simplicity.) ,

Given the above theorems, then we can clearly differentiate between a num-
ber of complexity measures. R.(G) and Crs, however (along with A(G) and
C1-z), satisfy the axioms, and cannot be uniquely classified on the basis of
Axioms 1-9. To separate these pairs of measures, then, we introduce one final
axiom:

Axiom 10 (Normalization) 3Ja,b € R:a < C(G) < bVG.

Normalization, in the limited sense used here, indicates the presence of a

- 29Though this is at considerable computational cost; in general, the labeling invariant ver-
sion of Cy - z(G) can only be estimated, due to the fact that exact computation is O(|V(G)|!).
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ceiling on complexity values®® in addition to the floor implied by Axiom 5. In-
tuitively, the difference between the notion of complexity as satisfying normal-
ization and the notion of complexity as being unnormalized is that of whether
complexity should be seen as an inherently bounded property, or whether it
should be unbounded. As a simple examination of the definitions considered
_ here indicates, this bounded notion of complexity is consistent with source en- -
tropy of the arc set (which is naturally constrained by the maximum uncertainty
of a Bernoulli event) and role complexity (which is explicitly framed by Everett
(1985) in terms of the (relative) degree of interchangeability among positions).
None of the other complexity measures presented satisfy Axiom 10.

Having now presented a set of axioms such that each complexity measure
satisfies a unique combination of postulates, we are now in a position to examine
the total classification. For the five “critical” axioms (Axioms 5-10) on which
the measures presented differ, Figure 1 below illustrates the area of overlap of
each using a Venn diagram. Note that, as this depiction renders obvious, there
are a number of cells in our classificatory system which are currently unoccupied.
Insofar as these cells correspond to assumptions which are of theoretical interest,
then, it may be of value to use such “empty” regions as a guide when creating
new measures3!.

30Recall that the finiteness axiom only states that for each graph there be some real number
greater than that graph’s complexity. Normalization states that there must be a real number
greater than the complexity of any graph.

310f course, it is undoubtedly also the case that many cells are empty because they corre-
spond to hypothetical measures which are inconsistent with nearly all of our notions of how
a complexity measure should behave. It should not be assumed that the mere presence of a
cell motivates serious consideration of the measures within.
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Labeling Insensitivity Sample Monotonicit

*=Normalization

omplementarity
Figure 1: Discrimination by Five Critical Axioms

Another presentation of this same information is in Table 2 below; here, the
proposition that each axiom is satisfied is evaluated for each measure (yielding
a result of true (T) or false (F) for each measure/axiom combination). My
examining the columns of this table, it is easy to get a general sense of the degree
to which various axioms do or do not tend to be satisfied by the measures of
complexity here examined. Labeling independence, for instance, is satisfied in
nearly all cases (as is complementarity), but sample monotonicity is somewhat
more divided. As can be seen, the basic combination of labeling independence,
complementarity, and nonmonotonicity describes four out of the seven measures
examined; labeling independence, complementarity, and sample monotonicity
were satisfied by three of the seven. Clearly, then, there is some degree of
consensus in terms of the assumptions on which graph complexity should be
based, though there is also fair amount of disagreement even on reasonably basic
matters (such as whether sample monotonicity should be obeyed). While our
choice of axioms obviously affects the observed grouping, it is worth emphasizing
that only Axiom 10 was selected for the purposes of differentiating among similar
measures. The others here employed were derived from a priori conceptions of
the notion of graph complexity or, in the case of sample monotonicity, from a
relaxation of an a priori concept motivated by a tension between conceptual
elements. ‘ o
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Table 2: Axiomatic Comparison of Graph Complexity Measures

Norm. (AIO)

‘Measure || Lab. In. (A6) [ Mono. (A7) | Comp. (AS8) Samp Mon. ‘(AQ)
TEG) T T F T I F
1) T T T T F
3 T F T F T
I(G) T F T F F
R.(G) T F T T T
Cis(G) T F T T F

| Cr-z(G) F F T T F

5 Conclusion

As we have seen, one can set out a number of “reasonable” axioms regarding
the complexity of graphs, and then use these for both constructive and classi-
ficatory purposes. While complexity measures do exist which satisfy all of the
suggested axioms, such measures are not interesting for most purposes; they are
structurally degenerate, depending only on graph size. By relaxing certain of
our requirements, it is possible to admit measures which exhibit more variabil-
ity within size classes, with the particular relaxation in question determining
the properties of the measures permitted. Examining one such relaxation (that
of full monotonicity) allows for the definition of a new and distinct complex-
ity measure, induced subgraph complexity, which increases with the diversity
of substructures present within a graph. Considering the relaxations required
to admit (and fully classify) a number of extant complexity measures, it can
be seen that existing notions of graph complexity span a wide range of as-
sumptions; although certain family resemblances between measures exist (e.g.,
within information-based measures), the number of widely shared properties
is limited (absent certain very basic properties such as determinism and exis-
tence). Among those definitions of complexity considered here, almost all do
obey the properties of labeling insensitivity and complementarity. Most do not
obey monotonicity or normalization, although most do obey the less restrictive
sample monotonicity property.

This study has limited itself to postulatmg a small number of fairly gener-
al axioms, and to examining only a handful of complexity measures, with the
intent of establishing a set of basic results on which a more complete axiomat-
ic treatment could expand. At least two directions, then, suggest themselves:
first, the possibility of elaborating and refining the axiom set to allow a larg-
er set of deductions; and, second, the classification of measures beyond those
considered here. Given the current fragmentation of the subject, it would seem
highly advisable for those proposing new measures of graph complexity to (at
the very least) demonstrate those of the basic axioms presented here which are
or are not satisfied by the measures in question, and (ideally) to show how the
new measures may be derived axiomatized in their entirety. While admittedly
somewhat time consuming, such a procedure would ensure that the assumptions
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- underlying novel measures may be clearly understood and examined, and would
facilitate the comparison (and possible unification) of disparate notions of graph
complexity. Though complexity appears to be a powerful and compelling con-
cept, its study is unduly hampered by a lack of attention to foundational issues;
it is hoped that the a.xmmatlc approach presented here w1ll aid in rectifying this
situation.
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