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Abstract

Empirical studies of human contact networks suggest a strong relationship between physical distance and
frequency of tie occurrence; such past studies have been complemented by theoretical work suggesting
the importance of space, technology, available energy, and demographic factors in determining human
relations. Here, a general family of stochastic network models is considered which predict tie probability
from a distance function defined on an embedding of actors in a social and/or physical space. It is shown
that these models lead to a set of stochastic equivalence relations on sets of actors, which can be expressed
purely in terms of spatial regions. Several measures of relational macrostructure are also introduced, and
their expectations are given for several spatial models. Implications of one model sub-family (a gravity
model based on physical distance) for tie distributions within several archetypical population structures

are considered, and a variety of macrostructural measures are illustrated.
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1 Introduction

It is a common aim of the field of social network analysis to map out and ultimately predict the web
of human relations — friendships, acquaintanceships, family ties, organizational affiliations, and the like
— in which human actors are inextricably embedded. Much (if not most) work in this area has thusfar
focused either on complete analyses of relatively constrained networks of actors within groups, families,
or organizations, or else on the sampling of egocentric networks within populations. While these studies
have given us a great deal of insight into the general nature of human interaction (not to mention their
more immediate subject matter), relatively little progress has as yet been made in the characterization of
large relational networks among spatially distributed populations. With the accelerated development of
global communication and transportation networks, however, as well as the recent resurgence of interest
in past network macrostructure studies (e.g., the “small world” studies (Milgram, 1967; Travers and
Milgram, 1969)) a renewed consideration of this problem seems warranted. In this paper, then, we seek
to construct a family of stochastic network models based on spatial layout of actors which are applicable
to the analysis of relational networks on large, spatially embedded populations. In addition to exploring
some basic properties of these models, we introduce a number of space-related measures of macrostructure
which can be employed to aid in the characterization and investigation of these networks. Finally, we
demonstrate several of these measures on sample population distributions under a gravity model of tie
formation, and present some suggestions for additional investigations using simulation analysis. The result
is a general theoretical and methodological framework for the treatment of large, spatially embedded social
networks. This framework should be of value both in studying the effects of spatial macrostructure on other
phenomena of sociological interest (e.g., migration, information transfer, cultural diffusion, stratification)

and in understanding the determinants of macrostructure itself.

1.1 Theoretical Motivation

Human beings are social animals, but animals we are still; despite our technological innovations, we and
our activities must nevertheless bow to the constraints of nature. To interact with others we must consume
time and energy, both of which are in limited supply. To form and maintain relations, in turn, we must
interact with particular alters repeatedly over time. Whether these interactions are in person or via the
proxy of a transmitted message, they are still costly', and there are limits to our capacity to maintain

them. When our interaction partners are physically distant from us — or where our social distance requires



us to expend more effort in relating to one another — these costs grow, making relations even harder to
establish (and more vulnerable to disruption) than they would be otherwise.

It has been suggested by theorists such as Mayhew (1980; 1981; 1984) that these sorts of fundamental
constraints on the structures of human action form the most fruitful basis for generating structural theory.
While there may be many and varied effects at the subnetwork or individual level which shape many of the
fine details of interaction, the broader patterns — particularly in large, spatially distributed populations —
will be severely constrained by physical limitations alone. Furthermore, mathematical constraints on the
number and types of structures which can exist may play a significant factor in narrowing the universe
of possibilities which researchers need consider. Graph size and density, for instance, tightly constrain
other graph level measures such as hierarchy, centralization, and connectedness (Anderson et al., 1999);
aggregate size and population density likewise have a strong impact on the number and frequency of
interactions between individuals (Mayhew and Levinger, 1976). Matching constraints (e.g., in marriage
ties) and communication or ritual interaction costs (Mayhew et al., 1995) can interact with demographic
aspects (or “Blau dimensions” (Blau, 1977)) of socio-geographical space to affect the baseline distribution
of groups, ties, and exposure to specific categories of alters (Schelling, 1969)2. With such factors at work
in structuring human interaction, then, Mayhew’s prescription has much to recommend it.

In addition to the simple constraints of linear distance, limited time and energy for interaction, and
the set of possible network structures, spatially embedded interactions are further limited by the basic
problem of the sheer immensity of area itself. The fact that a circular area expands with the square of its
radius is well known, but its impact can be hard to intuit. Consider, for instance, the question of “covering
ground”: how large is the physical area that a given person can hope to cover in the course of his or her
wanderings? Generally, the answer is surprisingly small. To take a rather extreme case, if one were to
drive 24 hours a day for an entire year at 60mph, one would be able to cover an area of only 40 miles in
radius (even including more than 25 feet on either side of the vehicle as “covered” territory). Of course,
even this is rather generous; none of us spend every moment of our lives driving, much less at highway
speeds, and such a scenario is hardly conducive to social interaction®!

While the above example may seem somewhat facetious, the basic question is not an idle one. In
order to form and maintain relations with others, human beings must generally be coterminous in physical
space for some period of time* (this tends to be the rule rather than the exception even with respect

to communication technologies such as email (Carley and Wendt, 1991) in which participants could in



principle meet virtually). If it happens that individuals can cover only a small area of physical space,
then their opportunities for forming relations with others — particularly others who are far removed in
space — are correspondingly diminished. The fact that this limitation is relatively insensitive to changes in
transportation technology (one cannot, after all, communicate with persons effectively if one is shooting
past them at high speed®) suggests that it is an important invariant to consider when building general
theories of social structure at the macro level.

Despite the clear importance of physical distance in structuring patterns of human interaction, spatial
effects are often neglected in models of interpersonal networks®. Indeed, Nowak et al. (1990) sharply
criticize network analysis generally for a failure to realistically consider the importance of spatial factors,
suggesting that an alternative structural approach is required”. At the macro level, efforts have been made
to apply network concepts to the analysis of flows of persons, goods, and vehicles between population centers
(e.g., Irwin and Hughes (1992)), but formal efforts to build explicitly spatial models of human interaction
networks have thusfar been limited. Similarly, while some attempts have been made to study features of
large-scale, spatially embedded human relation networks (e.g., Milgram, 1967; Travers and Milgram, 1969;
Killworth and Bernard, 1978; Bernard et al, 1989), relatively few conceptual or methodological tools exist
for this purpose. In this paper, then, we shall attempt to respond to the critique of network analysis offered
by Nowak et. al. (1990) by developing and exploring the implications of a simple set of stochastic network
models which integrate previous empirical findings concerning the effect of distance on human interaction.
We shall also demonstrate how various measures of macrostructure may be defined in terms of the concepts
here discussed, and will provide formulas by which the predictions of the spatial network models for these
measures may be numerically evaluated from population data. Finally, we shall provide an example of the
application of several macrostructural measures to sample population layouts under a spatial model, and

will demonstrate how visualization may be employed to aid in the perception of macrostructural patterns.

1.2 Empirical Observations

The relationship between distance and interaction in various forms has been empirically studied at least
since the 1930s (Bossard, 1932), in large part with an emphasis on migration and transportation (Stewart,
1941; Zipf, 1949; Irwin and Hughes, 1992). By and large, the central finding of this body of work has
been the common occurrence of an inverse square law for the effect of physical distance; remarkably, this

law seems to hold up for a wide range of specific phenomena (e.g., college attendance (Stewart, 1941),



communication and transportation between cities (Zipf, 1949), memorable interactions between persons
(Latané et al., 1995)) at multiple scales of observation (e.g., individual interactions versus large-scale
flows of persons or messages). Further support for the effect of physical space on social influence and
interaction comes from Festinger et al. (1950), whose classic post-World War II study indicated that
the (exogenous) placement of couples in apartments affected them and their subsequent interactions on a
number of dimensions. Interestingly, the distances considered by Festinger et al. were quite small (under
1000ft), providing yet more evidence for the power of spatial effects even in highly constrained areas.
Following up on earlier studies, Latané et al. (1995) set out to investigate the relationship between
distance and interpersonal interaction in widely dispersed human groups. In three separate populations
(south Floridians, students in Shanghai, and an international sample of social psychologists), Latané et al.
found the number of memorable interactions with alters to be inversely proportional to the median alter

distance®

; more generally, the study strongly suggested an inverse square relationship between physical dis-
tance between actors and the probability of interaction. The Latané et al. study is particularly interesting,
from our perspective, because it considered populations which varied on both cultural and socio-economic
dimensions. Were it the case that access to new communication technologies truly disrupted the classical
relationships between space and interaction, one would expect to see those populations with such access
(the social psychologists, and, to a lesser extent, the Floridians) evince a different pattern of relations from
those without access. In fact, however, all three groups were found to have the same basic interaction
pattern, varying in the total expanse and number of alters but not in the relationship of alter to distance.
This is consistent with the Carley and Wendt (1991) finding that email communications tend primarily to
build on and maintain pre-existing ties, and with a general physical distance model whose scale — but not
form — varies with cultural and economic factors.

In general, then, it would seem that the theoretical intuition that spatial placement of actors should
have powerful structuring properties seems to have been borne out by past empirical research. Such effects
appear to exist at multiple levels of analysis, and for many different types of human action. Furthermore,
a nearly ubiquitous inverse-square relationship between interaction and distance appears in prior empirical
studies of spatial effects; this relationship appears robust to technological, temporal (it has appeared in
studies ranging over 50 years), and cultural changes, suggesting that it is likely due to very basic constraints,
and that it may well characterize most spatial relationships in the human world. Given these observations,

we shall now attempt to construct a simple family of network formation models which build upon our



empirical knowledge of how interaction varies across space, and to thereby examine the affects of these

findings for the spatial macrostructure of human relations.

1.3 A Generalized Inverse Distance Model

To reiterate our basic goal, we here seek to develop a model of large-scale interpersonal networks which is
based on previous findings relating interaction frequency to physical (and possibly social) distance. These
empirical observations suggest that the effect of distance on tie formation will be an inverse relationship;
all other things being equal, the likelihood that one will share a tie with a far-off alter should be lesser
than the likelihood that one will share a tie with a nearby alter. To reproduce this relationship, we shall
construct a network formation model in which the presence of ties (or edges) are Bernoulli random variables
whose probabilities depend upon the locations of the edges’ endpoints. Further, we shall here make the
additional assumption that these random variables are independent?, and we shall consider (at present)
the expected properties only of single realizations of the potential edge set; as such, then, this is a model
of network formation (i.e., it suggests which ties are likely to exist) but not of network ewvolution. Some
issues involved in extending this model to the intertemporal case will be briefly mentioned, but we do not
here treat this topic in detail.

To proceed, then, let us consider a simple random graph, G = (V,E), and a generalized distance

function D. Then Yv;,v; € V(G) : v; # v,

p(efosvi} € B(O) = 1piims ¢

where pj, is the “base probability” of a tie between two persons zero units apart'®. This is the generalized
inverse distance model of tie formation: the probability of an edge being contained in the network decreases
from a given maximum with some function of distance (which, in this case, could refer to social, temporal,
or physical distance) between endpoints.

Obviously, the generalized inverse distance model is appropriately considered to be a model framework,
rather than a specific model per se. A wide range of distance types and functions may be employed for
D, depending on the particular socio-spatial effects being considered. Given this, we shall now move on to
consider a specific implementation of this more general model which incorporates additional insights from

previous empirical findings.



1.4 The Gravity Model

As we have seen, several empirical studies of human interaction have strongly suggested that interaction
not only falls off with physical distance, but that the probability of interaction is proportional to the inverse
square of the distance between partners. Because of both the ubiquity and the simplicity of this result, it
deserves to be treated directly: here, then, we define a gravity model of tie probability which is a special
case of the generalized inverse distance model.

Let us define the function ds(v;,v;) to be equal to the Euclidean distance'! between the positions of
V5,V € V'12_ In general, we shall assume that the distance referred to by d; is one of physical space, but this
need not be the case; like D, d; could consist of distance on physical, demographic, or other dimensions.
(Regardless of the number or content of the dimensions involved, however, the following model is based
on a strictly Euclidean framework.) In terms of the general model, then, this amounts to the following

assumption:

D (v;,v;) = ads(vi,vj)? (2)

Note that « is a scaling factor, indicating units'® for the growth of d;. If applying a gravity model
fitted on z unit data to data on units of size ax (e.g., when converting from miles to kilometers), one

should adjust « as follows:

Qgg = @20ty (3)

(Hence, if the appropriate value of « for 1km units is 2, then the corresponding value for 2km units is
8.) It may also be the case that changes in technology — or in wealth — may result in shifts in the scaling
parameter. While « shall be assumed to be constant and identical for all actors in our subsequent analyses,
the consequences of heterogeneous « values (as, perhaps, in the presence of stratification) are a potentially
interesting area for future research.

To complete our derivation of the gravity model, then, we apply the substitution of equation 2 to the

general inverse distance model (equation 1) as follows:

po(e{onn} €B(G) = frpis @
_ Py (5)

1 + Oéds(’l)i,’l)j)2



Equation 5 above then provides us with the probability of any given edge’s existence; we apply this in

the sections which follow.

2 Spatial Networks and Stochastic Equivalence

As we have seen, spatial models of interpersonal networks posit that the probability of a relationship
existing between any two actors is a function of the distance between them. Furthermore, as we have also
seen, it appears to be the case that tie probability falls off quite rapidly with increases in distance. This
suggests the possibility that tight-knit groupings of actors which are widely separated from other groupings
of actors may share a certain equivalence with respect to those alters: more specifically, their probabilities
of interaction with the distant alters may be (approximately) identical. In this section, then, we shall
elaborate on this special form of stochastic equivalence between spatially embedded alters, and will define
the conditions under which it can be expected to hold for the gravity model.

The intuition behind the equivalence which we will be considering is perhaps best revealed by a simple
thought experiment. Let us consider three actors, Atlas, Hyperion, and Theia, and let us imagine that
the distance between Hyperion and Theia is much greater than the minimum distance between Atlas and
either of the other actors. If we now imagine drawing Atlas yet further away from the other two, what can
we say about the probability of ties among them? Clearly, it is far more likely that a tie exists between
Hyperion and Theia than between either of them (individually) and Atlas; but it is of more interest to
consider each of these latter probabilities separately. If Atlas were ”close” to Hyperion and Theia relative
to the distance between them, we would expect that the probability of a tie linking Atlas and Hyperion
might be much higher or lower than the probability of a tie linking Atlas and Theia. As Atlas is drawn
further away, by contrast, the difference in distances — and hence probabilities — between Atlas and his
two alters begins to become extremely small relative to the distance they hold in common. If Atlas is
thus arbitrarily far away from Hyperion and Theia, the probabilities of his being tied to either become
arbitrarily close: in this way, then, Hyperion and Theia become “equivalent” with respect to Atlas. This
basic intuition of relative distance is a very simple one; however, it lies at the very core of spatially induced
equivalence relations.

As we have suggested, the form of equivalence in which we are interested is a variant of stochastic
equivalence (Wasserman and Weaver, 1985; Wasserman and Faust, 1994). Stochastic equivalence is itself a

generalization of structural equivalence (Lorrain and White, 1971), and can be understood roughly as the



notion that actors are interchangeable to the degree to which they have the same probability of interaction
with the same alters (see footnote below for a more rigorous characterization). Stochastic equivalence
is particularly useful for purely stochastic models of network formation (such as the p* series of models
(Wasserman and Iacobucci, 1986; Wasserman and Faust, 1994) or the biased-net models of Rapoport
(1949a; 1949b; 1950)) in which tie probabilities by alter can be easily measured and/or unproblematically
grouped. In the event that stochastic equivalence classes can thereby be formed, one can often easily
calculate the anticipated distribution of ties between classes; in some cases, this may lend itself more
readily to empirical verification than classical block relations, particularly in extremely large networks.
The manner in which we employ the notion of stochastic equivalence here, it should be noted, is
somewhat different from its standard usage. While we do intend the term to refer to a relationship
between vertices such that each has the same probability of interaction with various alters, we apply the
additional specification of which alters have this probabilistic isomorphism. (This, as we shall see, is a
useful generalization of the more strict definition, particularly when the set of alters for to which the

equivalence applies is large.) To state the above more formally:

Definition 1 (Relative Stochastic Equivalence) In a simple graph G, two vertices, v;,v; € V(G),
are said to be stochastically equivalent with respect to a vertex set v.C V(G) iff p(e{vi,vx} € E(G)) =
p(e{vj, v} € E(G)) Vv, € v. The mazimum set SEy C V(G) : v; is stochastically equivalent to v; with

respect to v Yv;,v; € SEy is referred to as the stochastic equivalence class induced by v.

Thus, there may be sets of vertices within a graph which are stochastically equivalent with respect to
various alters, but perhaps not with respect to some other set of alters. In the present context, the sets of
vertices we will be considering are those bounded by particular regions in physical space. Because of the
properties of the distance model, it will be possible to identify regions which designate sets of vertices that
are stochastically equivalent with respect to vertices in other regions. This, in turn, may be of theoretical
use in providing a clear rationale for treating spatial aggregates as individual nodes at the macrostructural
level. Note also that this definition is somewhat less strict than that specified in Wasserman and Faust
(1994)'* in the additional sense that relative stochastic equivalence is here defined solely in terms of edge
probabilities vis a vis alters rather than in terms of interchangeability with respect to all events defined
on the set of edge variables. In the case of the probability models considered here, these statements

are interchangeable (excepting, of course, our limitation that one consider only alters in the equivalence



inducing set), but this may not be true in general'®; those seeking to apply our notion of relative stochastic

equivalence elsewhere may wish to use the stricter form.

2.1 Regions of Equivalence

The observation that actors who are physically proximate will have similar probabilities of interaction with
distant actors is not in and of itself exceptionally useful. If, however, it happens that actors are distributed
in space in such a fashion that almost all actors belong to small, dense population clusters which are
spaced widely apart, then things become more interesting. Drawing on the intuition discussed above, if the
population clusters in question are small enough relative to the inter-cluster distances, then it will happen
that all actors in each cluster will have approximately the same chance of interacting with any actor from a
given other cluster (and vice versa). Essentially, in this case, probability of interaction will be determined
by cluster membership, and all members of each physical cluster will form an (approximate) stochastic
equivalence class.

Consider, for instance, three hypothetical cities: Thrace, Corinth, and Athens'®. Each city is densely
populated, but extremely small relative to the distances between the cities themselves. (For the present
example, we shall also assume that no actors live outside of the cities; this is not critical to our argument,
but does simplify the intuition somewhat.) Because the denizens of Thrace are relatively close together, it
must be the case that they are all approximately the same distance from the (tightly packed) citizens of
Corinth and Athens; hence, each must have approximately the same probability of interacting with each
resident of these other cities, and they are therefor stochastically equivalent with respect to these alters.
The same, of course, must also hold true for the residents of Corinth and Athens, for identical reasons.
In this case, then, it is clear that the borders of our three hypothetical cities delineate three stochastic
equivalence classes: it then follows that one may reasonably treat these cities as aggregate nodes in a
network of cities, where the strength of macro-ties is equal to the expected number of ties between city
dyads (again determined by proximity, and by population). Indeed, this could, in principle, be repeated
at the regional level, with clusters of cities identified which are stochastically equivalent with respect to
other clusters, and so on. (The usefulness of such recursive groupings may be limited, however!?.)

In practice, of course, even the most severely urbanized societies are unlikely to be perfect. Small
towns dot the spaces between large cities, and even in “the middle of nowhere” one is likely to find a

habitation of some sort every few miles. That said, this form of regional stochastic equivalence is still



applicable, so long as one bears its strict meaning in mind. Thus (to continue our previous hypothetical
example) if we add a small town near Thrace it will still be the case that the residents of Thrace will
be stochastically equivalent with respect to Corinth, and, indeed, it is likely that the residents of the
town will be as well. What may not be the case, however, is that the residents of Thrace and the town
will collectively be stochastically equivalent with respect to the other cities; though the townsfolk have
approximately the same tie probabilities with the Corinthians as each other (a condition which also holds
among the Thracians), this probability may differ significantly from that of those in Thrace. Likewise,
the Thracians may differ significantly in their probabilities of having ties with persons in the nearby town,
depending on where they (and the relevant townsfolk) are located, thus implying that the Thracians may
not be stochastically equivalent with respect to the townsfolk. None of this is problematic per se (especially
if we are not interested in the smaller towns), but it does bear consideration, particularly when identifying
stochastic equivalence classes. If it is not possible to partition the population into a single set of classes
such that each also induces equivalence among the other classes, then it is important to recognize this fact,

and to work only with specific regional equivalences.

2.2 Stochastic Equivalence for the Gravity Model

Let us now reframe the above in a more formal fashion, using the specific formulation of the gravity
model'®. Assume that there exist two vertices, v; and vj, such that ds(v;,v;) = 6. Now, let A be the
minimum of d,(v;,v) and dg(vj,vx) for some third vertex, vg. If we assume that the distances dg(v;, vg)
and ds(v;, vy) are maximally different!® (i.e., v;, vj, and vy, lie along a straight line with v;, as an endpoint)

and let v; be the more distant of the two vertices from vy, then

pylelviul €B(Q) = s (6)
_ Py
- 1+a(0+A)2 @
and
po(efun o} €0(G) = e ®)
p
= The ®)

10



Now, clearly p, (e {vi,vx} € E(G)) — py(e{vj,vx} € E(G)) as § — 0 ?°. At this point, obviously,
v; and v; would have equal tie probabilities for any vy, and would be truly stochastically equivalent. Of
course, this equivalence would be a fairly trivial one, since it would require v; and v; to reside at identical
points in space; surely, this would not be useful for most purposes!

The above, however, does provide us with an important clue towards a more general argument. What
if, instead of § — 0, it is the case that A > ¢7 If this is so, then we would expect A’s effect on tie
probability to dominate, and hence for v; and v; to be approrimately stochastically equivalent with respect
to all vy such that A is sufficiently large.

For a more precise criterion, we might say that if p, (e {v;,vx} € E (G)) and py (e {vj,vi} € E(G)) are

similar enough that the difference between them is small compared to their own magnitudes, then the two

po(efvin}EEG)
Po(elo;,0 JEB(G))”
1

this is sufficiently close to 1 (say, £5%) then v; is approximately equivalent to v; with respect to v 2L

Thus,

are approximately stochastically equivalent with respect to vg. In particular, let v =

pg (e{vi,v} € E(Q))

Vi, Vi, U = 10
000 = ) € B(0)) (10
2
_ Pb 1+ aA (11)
1+Oé(6+A)2 Py
2
_ 1+ aA (12)
14+ a(d + A)?

Recalling that § > 0, we can define a “tolerance threshold”, 7 < 1, such that 7 < ~(v;,v;,vx), and then
find the minimum value of A (given § and «) needed to satisfy 7. Alternately, if A is taken as fixed, we
can find the maximum § such that the above is satisfied. (This last amounts to asking how close v; and v;
would have to be, in the worst case, to be approximately equivalent with respect to vy at level 7.) Solving

for this maximum v;,v; distance in terms of the other relevant variables, then, gives us

_TaAF V-Ta(t — 1 — aA?)
T

or = (13)

Of the two solutions, only the second is meaningful. Evaluating this expression for a range of «, A, and
7 values gives us the values of Table 1. These thresholds give us some basic intuition about the sorts of
relative distances required for approximate equivalence, and gives us some additional hints as to the ways

in which the model parameters affect d,. First of all, as can be seen, the ratios involved are non-degenerate
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(and therefore interesting); for instance, a distance of approximately 50km?? or less between two actors
would be sufficient to ensure that their respective probabilities of interaction with an alter 1000km away
would differ by no more than 1%. As this is considerably greater than the diameter of most cities, such
a distance is certainly large enough to encompass a large number of actors (and 1000km is well under
the distance between many US population centers). Secondly, it is clearly the case that d, is relatively
insensitive to the scaling parameter, a: changing a by a factor of two away from 1 in either direction does
not appear to have a strong impact on &, values?®. This is somewhat less true for very small A values, but

even in these cases one does not see extremely substantial effects.

(Insert Table 1 Here)

The third, and perhaps most interesting, aspect of the above is that it can be quite easily — and fairly
accurately — approximated. Inspection of the computed values reveals that §, = %A(l — 7) provides
excellent estimates for A > 10, though here again we note some anomalies for very small As. (These
are in part due to the aforementioned effect of large A values in damping scaling effects, as well as to
nonlinearities which become more significant when A is small.) With this expression, we can cast the
relationship in yet another way: for some 7 (say, 0.95) we can think of this as giving the fraction of A
which §; must be to satisfy the equivalence requirement (in this case, 0.025). While not absolutely perfect,

this rule of thumb is quite reasonable for modest to large values of A. Similarly, one can also reverse the

rule to find an approximate lower bound on A given a particular ¢, (from the above, A = 12577 , or 406, in
the present case).

Having established a general relationship between the distance between two actors and the minimum
radius?* such that the two will be stochastically equivalent (to a given degree) to any alter at or beyond it,
and having reduced this relationship to a fairly simple linear approximation, we have laid the groundwork
which is required to examine spatially induced stochastic equivalence under the gravity model. Because
equivalence is here a matter of regions in space rather than individual actors, we do not require data at the
individual level to make predictions regarding stochastic equivalence classes among spatially-embedded
populations. All that is needed is to identify clusters of actors within some §,: all actors within such

clusters will be stochastically equivalent with respect to all actors outside the corresponding threshold

radius A. Testing this hypothesis merely requires sampling actors from within the clusters and examining

12



their relations with alters beyond the radius; spatial subgroups drawn from within a given cluster should

have the same number of ties, on average, to the same (A or greater distance) locations.

3 Spatial Measures of Macrostructure

As we have seen, networks of relations on spatially embedded populations may be highly structured, and
in some cases these networks may even contain equivalences at the macro level which permit reduction and
analysis at the level of population centers. In other cases — or when considering smaller geographic regions —
it may be necessary to look to alternative approaches for the measurement of macrostructure. As has been
mentioned, the sheer size of even a modest regional population prohibits use of traditional techniques on
such networks; indeed, even if such were possible, it is uncertain whether or not this would be theoretically
apt. When measuring macrostructures, we are no more interested in the properties of individual positions
than a survey analyst is interested in the attitudes of a particular actor. Similarly, spatial macrostructure
lacks the properties of boundedness which make many traditional graph-level measures useful in other
areas of research (e.g., organizational analysis or group behavior). To analyze spatial macrostructure, we
seek measures which allow us to characterize the features of such structure across space and population,
which relate to fundamental macrostructural processes such as cultural diffusion and migration, and which
can be readily measured using the standard instruments of population analysis (in particular, sampling
techniques). In this section, then, we present a variety of such measures, explaining how each can be
computed and providing specific formulations for their expectations under the gravity model of spatially

embedded interpersonal networks.

3.1 Spatial Subgraph Measures

When examining populations in space, one of our first questions is nearly always “how many people live
in any given region?”. Though a simple concept, population density implies much about any number
of social, environmental, and economic processes; it is an essential building block of spatial population
analysis. When we turn to the consideration of macrostructure, we may seek to ask a similar sort of
question: “how many ties exist among persons living in a given region?”. Knowing the answer to this
question gives us a sense of the social density of a particular area, provides insight into the strength of
“local” influences on residents, and allows us to estimate the number of conduits within which information

regarding matters of local interest may readily flow. Our first measures of macrostructure, then, concern
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the cardinality of the edge sets of subgraphs which are induced by choosing actors from particular regions
of physical or social space.

The basic approach which will be pursued here is one of treating dyads as independent Bernoulli random
variables (as per the model described in equations 1 and 5) which are aggregated to form various measures
of expected tie frequency. The fundamental method of selecting dyads which will be employed is spatial:
we shall consider sets of vertices by reference to the areas in space in which they reside. With the proper
assumptions regarding population distribution, this allows us to transform problems of counting dyads into
integrals?® over regions in space; these easily lend themselves to numerical (and, in some cases, symbolic)
evaluation using a variety of well-known techniques.

To characterize populations of persons (or, for our purposes, vertices) in space, we obviously cannot
hope to keep track of each and every individual (nor would we wish to do so, given that our objective is
not to study individual network positions). Instead, we employ a population density function which, for
any given region in space, returns the number of persons “residing” there. It is important to note that,
for our present purposes, we shall treat any given individual as being associated with exactly one spatial
position, and we shall treat these positions as both exogenous and fixed. This should not, however, be
interpreted as requiring that actors are necessarily immobile per se; rather, we assume that there exists
some (knowable) position associated with each actor such that his or her tie probabilities can be determined
from this position (and those of other actors)?®. While we shall generally presume that the position in
question corresponds to place of residence, alternatives such as the centroid of actor positions across a

given time interval could easily be substituted without doing violence to the structure of the model. Given

this, we define the population density function as follows:

Definition 2 (Population Density Function) Let Pa represent the number of persons residing within
a given spatial region A. A function f,(v) is referred to as a population density function if [, fp(v)dv =

Pa VA.

Again, we emphasize that Pa in the above definition will be considered exogenous and fixed for purposes
of the analyses which follow. Generalization of the above to dynamic or stochastic population models is
certainly possible, but would raise various additional issues which would complicate our analyses without
adding a great deal of insight?”. (One simple exception to this, however, is the case in which populations are

deterministically dynamic with a relaxation time much greater than that of the implicit network formation
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process. In this particular case, these results may be applied directly by “slaving” them to the population
change process.)

As we have already seen, our assignment of nodes to spatial locations implies that any set of points
(or area more generally) implies a node set in the larger network; hence, we can unproblematically refer
to induced subgraphs of the total graph (denoted by G[A], where A C V(G)) in terms of regions within
physical space. Let us define the internal tie volume of a given area A (denoted V¥(A)) to be the cardinality

of the edge set of the subgraph induced by A. It follows, then, that the expectation of V' must be:

B(V(A) = B(FGAD) "
- %AAfp(vl)fp(v2)p({V1,Vz} € E(G)) dvidva (15)

(where vy and vg are vectors in A). Under the spatial model, we make the appropriate substitution

for the probability of an edge’s existence; the result is simply

E(Vi(A)) = E(E(GA)) (16)

_ 2 P gudy
= 5 [ st g sdvav, (7)

The same procedure holds for the gravity model, giving us

E(Vi(A)) = E(E(GA]) (18)

1
= 5 | [ htnhva) e ——avidv, (19)

(v1,v2)

Observe that the above amounts to nothing more than summing the expectations of all possible dyads
within the subgraph, and then dividing by two (to reflect the fact that the double integral counts each
dyad twice). In general, this is a fairly straightforward operation, which may be undertaken numerically
for any arbitrary region given a suitable population density function. Note also that the empirical value of
this measure can be estimated by surveying a random sample of persons within a given area using name
generation techniques and employing the reported numbers of local alters to derive the area’s internal tie
volume. This measure of macrostructure, then, is well-suited both to theoretical and to empirical study?8.

Often, we may be interested in the tie volume within a particular space (e.g., within a given city,

region, or nationality) for theoretical and/or empirical reasons. In such instances, the above measures
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may be unproblematically deployed via standard numerical estimation procedures, and can be useful in
addressing a variety of questions of interest. In some cases, however, we may not have a particular region
in mind a priori; indeed, we may be less interested in the value of local tie volume within a given area than
in the way in which this volume wvaries as one moves across a region of interest. One means of approaching
this problem is to describe the local tie volumes within arbitrarily small regions about particular points:
these volumes can then be estimated for a grid of sample points over the area of interest, providing a sense
of the more general macrostructure.

To accomplish this analysis, we take the limit of the expectation of V{(A) as A approaches a single
vector. This, of course, is only possible if such a limit exists; and, further, it is only useful to the degree
that this limit is unique?®. If the population density function being employed is not suitably well-behaved,
this will not be possible, or may yield different expected flow volumes depending on how the limit is taken.
Taking f, to be a smooth curve will generally solve this problem; some fitting may be required, then, prior
to computing this measure on empirical population data.

The general expression of the expectation of the instantaneous internal tie volume, then, is

E(V(v)) = E(EGM)) (20)
= Jim [ [ B0 ({1, v2) € B(G) dvidva (21)

(This may be reformulated in terms of the specific spatial network models considered here using the
above substitutions.)

Another fairly direct application of the internal tie volume measure is the internal tie volume per actor.
This, which is simply the average degree of a vertex in the spatially induced subgraph, is a useful practical
measure of (local) social density, and may be compared to empirical results from the study of egocentric

networks. Formally, the measure’s expectation is given by

Pa Pa

Ja Ja fo(v1) fp(va)p ({v1, va} € E(G)) dvidve
Ja fp(v)dv

(The fact that population is not itself a random variable allows us to simply divide directly; if this

o (v%A)) _ E(E(G[A]) -

(23)

assumption were relaxed, the analysis would be rather more complicated.) Here again, we may substitute

the specific probability model as required, using equations 1 and 5.
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3.2 Spatial Cut Measures

In the above discussion, we considered subgraphs induced by particular regions with the objective of de-
termining the cardinality of their edge sets (or some statistic thereof). This was motivated by a theoretical
concern with being able to assess the number of ties present among actors residing in a particular area;
another, complementary question is that of the number of ties between such a set of actors and alters who
are not contained within the set. Mathematically, this is a question of cutsets (or cuts): the number of ties
between persons residing within a given region and those beyond it is the cardinality of the cut from the set
of nodes corresponding to actors within the given region and its complement. The macrostructural mea-
sures which follow, then, are concerned with various aspects of the sizes of spatially induced cuts (which,
in turn, inform us about the degree to which actors in a given region are exposed to external influences).

Our first spatial cut measure is a simple analog to the expected internal tie volume which we considered
previously. Given the cutset on the set of vertices corresponding to the area A and its complement
(denoted G[A, A] C E(G)), we define the external tie volume V¢(A) to be the cardinality of G[A, A]. The
expectation of this measure, then, may be straightforwardly expressed as a sum of the expectations of tie

variables in the usual manner:

E (V(A))

B (|61, A]) o
= A/Z\fp(v1)fp(vz)p({V1,vz}EE(G))dvlde (25)

Of course, under the general distance model we are able to substitute the basic probability model into

the above, giving us

E(V°(A))

E (|G[A, A])) (26)

= [ [ htvnva) s dvadva 27

(v1,v2)

The same can be performed for the gravity model, as follows:

E (V°(A))

E (|G[A, A]]) (28)

— Py
= [ i) g g dvadvs (29)
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Note that for population density functions which are sufficiently poorly behaved, the above may not
be finite for infinite spaces. While this is clearly not a problem for empirical research (the world being a
decidedly finite place), an exceptionally carelessly designed simulation could potentially be distorted by
“edge effects” if populations tend to grow rapidly near the bounds of the simulated geography.

Generally, our interest in tie flow across cuts is likely to be motivated by interest in particular regions,
population centers, and the like. As with the case of internal tie volume, however, it may be useful in
some cases to understand how external tie volume changes across space; this may be facilitated by an
instantaneous external tie volume measure. As before, we derive this measure by taking a given area and
observing the limit of the expectation of the external tie volume as the area approaches a single point
in space. Obviously (as in the case of instantaneous internal tie volume) this measure is an abstraction,
assuming a continuous, well-behaved space of population. Nevertheless, it may prove useful in mapping
out macrostructural properties, and in identifying areas in which conditions promote an influx of external
ties. Following a similar argument to that applied to expected instantaneous internal tie volume, then, we

find that the expected instantaneous external tie volume is given by:

B(BGS-V)) = Jim [ [ fu(v)f(valp({vi,va} € B(G) dvidvs (30)
= [ 50hvp (v} € BG) dvi (31)

This expression is easily adapted to the general spatial model, and to the gravity model, by substituting
the assumed expression for p ({v1,va} € E(G)). In practice, rather than actually allowing A to approach
a single point in space, it may be useful to instead consider V¢ for small (but not infinitesimal) cells about
a grid of sample points. This approach yields a roughly similar interpretation, and is more likely to be
computationally feasible than a strict limit method. (It is also clearly the obvious choice when working
with population data which has not been smoothed.)

Just as the instantaneous internal tie volume measure has its external counterpart, so too does the
normalized variant. As with internal tie volume, it is a relatively simple matter to identify the external tie

volume per capita by simply dividing through by the population within the given area:

p(VAA)) _ B(OAK) -
Py Pa
_ Ja Ja fo(v1) fp(v2)p ({v1, v} € E(G)) dvidva (33)
Ja fp(v)dv
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Note that the units of this measure are in ties per person; this is not directly interpretable as a classical
density measure. This last is due to the fact that the number of possible ties is Pa Pz, the second factor
of which may be extremely large (and which is inversely related to Pa, in any event). This measure is
intended for use in assessing the total exposure of persons in a given area to external alters...it does not

provide information on the degree to which this exposure approaches its theoretical maximum.

3.3 Tie Flow Across Cuts

The families of measures which we have considered thusfar are concerned with counting the expected
number of edges in various sets of interest. In some cases, however, we are not only interested in how many
ties of one sort or another are present, but where they are going. Consider taking a hypothetical sample
of small communities surrounding a large city. Evaluating this sample, one might find that each of these
communities possesses a large external tie volume; clearly, many persons in these communities have ties
elsewhere, but where exactly? In such a situation, one might suspect that many of these ties lead to the
city...but the tie volumes are mute on this point. What is needed for this sort of analysis is a measure not
of the number of ties leaving a given area, but of the direction in which ties from that area tend to go. It
is to just such a measure that we now turn.

To see the intuition behind the notion of directionality in our analysis of tie distribution, it is somewhat
helpful to think in terms of fluid flow. Consider a relatively complicated, turbulent flow of water under high
pressure; as it rushes by, we pick a static region and begin to examine the flow across it. While water might
flow in and out at various points (and with various velocities), we can easily imagine characterizing the
net direction of flow in terms of a vector which describes the mean direction and velocity of flow crossing
the boundary of the region. Clearly, “flows” of ties do not behave quite like flows of water®?, but we may
employ this same basic approach to assess the average direction in which ties from persons in a given area
are heading.

Let us now proceed to use the above intuition to derive a measure of directional tie flow. Given an
area A, let us define the directional external tie volume (which we shall denote V¢(A)) as the sum of the
direction of the vectors formed by the difference between the endpoints of all edges contained in G[A, A].

Applying our usual procedure, then, we can ascertain that the expected value of V_'e(A) is as follows:

V) = [ [ B v fy(valp ({vi, va} € B(G)) dvadva (34)

[ve — va| "
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In terms of the generalized distance model, this is simply

2 — Vi1 Db
——dvid 35
)= [, s e 02 T gy e (33)
and, for the gravity model,
V2 — Vi Do
v v dvidv 36
)=y Sk e VD) g gy (36)

The result of these equations is a vector whose direction is the expected average direction of all ties in
the cut induced by A and its complement, and whose magnitude grows with the expected number of ties
pointing in this direction®'. Note that this naturally implies that symmetric tie flows (i.e., flows “across”
a region) tend to cancel each other out; if one is interested in capturing such flows, it is advisable to reflect
all ties across one axis prior to integrating. Further, when interpreting direction it is important to recall
that this measure is an average: just because the expected average tie points in a given direction, it does
not follow that one should expect no ties in the opposite direction! While Ve(A) can give one an excellent
sense of the macrostructural relationships between regions, it should be used in conjunction with other

measures to establish a more complete picture.

3.4 Locality of Ties

In analyzing both internal and external tie volumes, one of our basic theoretical goals has been the charac-
terization of tie “locality”. In particular, we have been interested in developing some sense of the degree to
which ties tend to be distributed purely to physically proximate actors, as opposed to being sent to actors
over long distances. To conceptualize the difference, it is perhaps helpful to think of the macrostructure
as a sort of social “fabric”, a tangled skien of relational threads linking actors across space. Insofar as ties
are localized, this fabric is tight and orderly: threads are short and even, connecting neighbor to neighbor
across the landscape like components of a wire mesh. Where ties are highly non-local, by contrast, the
fabric becomes a tangled mass of overlapping and criss-crossing threads, dense cobwebs stretched over the
surface of the earth. Such differences may affect such diverse phenomena as the spread of culture (and the
development and/or retention of subcultures), the number and size of collective events, and patterns of
migration; they may provide clues as to which regions are likely to ally themselves in times of crisis, and

which will be at the forefront of cultural change.
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Utilizing tie volume and tie flow measures, we may gain insight into locality; nevertheless, none of these
index locality directly, in the sense of characterizing how ties are distributed across space. To rectify this
situation, then, we here introduce a direct measure of locality which extends external tie volume to account
for distance covered by as well as number of edges.

Given an area A, let the locality of A (denoted L£(A)) be the expected distance between the endpoints

of all ties contained in G[A, A]. Tt follows, then, that £ may be easily formulated as

£(8) = [ [ Iva = villfu(va) o (valp ({va,va} € B(G)) dvadva (37)

Following the usual drill, we can re-express this in terms of the generalized distance model:

£A) = [ [ Ive =il o) ey v (38)

V1i,V2)

or, similarly, of the gravity model:

= —V A\ A% P viav
L) = [ [ Ive =il foo) fov2) g oy vidvs (39)

Measured in this way, the locality of a given region suggests the degree to which ties entering or leaving
the region tend to come from alters which are spatially proximate, or, alternately, the degree to which
such ties tend to span greater distances. (Indeed, while one can infer either from the measure, it should be
noted that, despite its name, “locality” is actually a measure of non-locality.) Used in combination with
tie volume measures, this can suggest a great deal about the macrostructure of relations within a given
area. Consider, for instance, a large region for which the external tie volume is observed to be low; if an
examination of subregions of this larger region reveals high values of £ relative to the region’s size, then
one can readily infer that the region as a whole is both closed to the outside and tightly intraconnected.
High values of V¢ combined with low values of £, by contrast, are characteristic of regions with tight
connections to the immediate surroundings but few ties to outlying areas. By combining measures, then,
we can characterize a wide range of macrostructural configurations with a relatively limited number of

observations.
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4 An Application of Macrostructural Analysis: Sample Population

Structures

To illustrate a few of the measures which we have discussed in the above sections, we shall now apply
them (under the gravity model) to several sample population structures. As our purpose is demonstrative
rather than substantive, the population structures we shall use here are hypothetical rather than real;
each was generated using a simple simulation routine which randomly allocated “population centers”
to a continuous landscape, varying population in terms of distance from these centers?. This setup
allows us to easily compute approximations of instantaneous macrostructural measures, and to manipulate
population structure so as to be able to provide fairly simple examples. The basic visualization techniques
demonstrated here can then be applied to real-world data relatively easily.

The first population structure which we shall consider is a very simple one: a single population center
(maximum density 5000 persons/km?), placed randomly on a 200x200km square area. Plotted as a three-
dimensional surface®?, the population density for this structure appears as shown in Figure 1. Note that
population density decays fairly evenly as one moves out from the population center, gradually leveling

out at a radius of approximately 50km.
(Insert Figure 1 Here)

Turning to internal tie volume, V*, we may plot it using the same approach; these results are shown
in Figure 2. V' values here were calculated numerically for 1x1km cells, using the standard gravity model
with pp = 0.1 and o = 1.0. As can be seen in the above plot, V* follows population density to a great
extent; however, the combinatorics of subgraph size tend to cause internal tie volume to grow faster than
population (for arbitrarily small cells, O( fz?)) One result of this is that, for small, uniform regions, small
variations in population density across space may be amplified by internal tie volume. This could have
implications for the emergence of structural heterogeneity from minor perturbations in population, partic-

ularly if internal tie volume is itself related to population growth or retention.

(Insert Figure 2 Here)
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Having examined internal tie volume for the simple population structure, let us now consider external
tie volume. As can be seen in Figure 3, external tie volume here peaks at the center of population, but di-
minishes much more slowly with distance; as one moves into outlying areas, one encounters a V¢ “shadow”
of the larger population center in the form of high tie volumes drawn towards the peak. This is not an
idiosyncratic phenomenon: note that as the area on which one computes external flow volume diminishes
(approaching the instantaneous case), V¢ becomes increasingly dominated by nearby population centers.
As a result, V¢ will often act much like a smoothed version of the population density function itself when

taken over small areas.

(Insert Figure 3 Here)

From simple external tie volume to directional external tie volume: the vectors of the overhead view
in Figure 4 indicate the direction of net external tie flow3* superimposed on isolines of population den-
sity. Note how the net external tie flow tends to be perpendicular to population isolines, pointing in
the direction of increasing population, and how one can get “turbulence” in uneven areas around peaks.

The effect of a large population center in drawing in ties from the immediate area is clearly illustrated here.

(Insert Figure 4 Here)

Considering a simple population form, such as the above, helps illustrate the behavior of several mea-
sures of interest without requiring us to disentangle the effects of multiple competing population centers
and the like. Now, however, we turn to a somewhat more complex case. Our next population structure was
created by placing fifty population centers (maximum population density distributed U(500,1500) persons
per km?) randomly in a 200x200km area (as in the previous case). We show the population density plot

in Figure 5.

(Insert Figure 5 Here)

Clearly, this presents a somewhat more rugged population landscape than the single peak we consid-

ered earlier. Computing V* (again for 1x1km cells) on this population structure, then, gives us the volume
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“map” of Figure 6. Here again, we see a pattern which closely follows population density itself. Further,
the patterns of exaggeration we noted previously are also present: large peaks are somewhat larger but fall
off slightly faster, while very small peaks appear to have been damped out relative to their larger neighbors.
This is typical of the fg effect, which has little effect on low populations but which causes substantial V*

growth once density begins to increase beyond a minimal level.
(Insert Figure 6 Here)

Proceeding to external tie volume, our calculations give us the surface shown in Figure 7. Here, we can
see that population “peaks” which are broad, and/or close to other peaks, tend to give rise to V¢ peaks
which can be substantially greater in magnitude than would be anticipated from local population densities.
This suggests an interesting exception to the earlier smoothing argument: where small, populous regions
lie between other populous regions, these central areas may experience disproportionate growth of external
tie volume. Insofar as this growth rate is faster than that of V*, such regions may become dominated
by external influences to a degree that their neighbors do not. Interestingly, continued population growth
may slow or even reverse this process: if population in the central region becomes sufficiently concentrated,
internal tie volumes may begin to outstrip their external counterparts. While this clearly depends on the
manner in which population and macrostructure interact, it is interesting to note how these simple com-
binatorial growth patterns can potentially give rise to fairly subtle effects for population centers with the

appropriate local structure.
(Insert Figure 7 Here)

Having considered V¢ for more complex case, now let us look at the directionality of external tie flow;
this is presented in Figure 8. (Note that, as before, we have shown only a subsection of the larger space due
to graphical constraints.) What is particularly interesting in this case is what does not appear: whereas
before we saw smooth flow perpendicular to the population isolines, now flow seems to travel across pop-
ulation centers! The explanation for this phenomenon lies in the power of remote population centers to
pull ties towards themselves, such that there is a net “overflow” of ties in the direction of large population

clusters over the entire landscape. As we saw from the graph of V¢, these local population centers do
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have their share of regional traffic; at the same time, however, the pull of nearby clusters can work subtle

distortions in their patterns of ties, increasing the number of paths leading towards the core areas.

(Insert Figure 8 Here)

5 Discussion

The modeling framework which has been presented here is one which incorporates both an important set
of theoretical concerns and a body of empirical findings regarding human interaction; nevertheless, it is
itself still untested, and may or may not prove to provide a satisfactory portrayal of spatial macrostructure.
In particular, the scale which is required to ensure reasonable predictive accuracy is currently unknown.
While Festinger et. al. (1950) found effects of physical distance over quite small scales (on the order of
1000ft), our theoretical results regarding stochastic equivalence suggest that larger scales (on the order
of 1000km) may be needed for certain applications (e.g., treating cities as single entities). In general, we
would expect for the efficacy of the model to be very limited at small scales and to increase substantially
as one considers larger areas; the actual speed with which this occurs must be determined from empirical
data. On a similar note, it is also the case that the current model is limited by the assumption that the
population density function is known with certainty, and that it is static (relative to the speed with which
ties are formed). Insofar as the real world deviates from these simplifying assumptions, we can expect
reduced performance3’.

Regardless of these limitations, however, the macrostructural measures introduced here should be usable
even without the underlying model (though their theoretical significance may in some cases be diminished),
and all can be estimated by way of sampling procedures. Because computation of expected values of these
measures is relatively simple for models such as the gravity variant, it should be fairly simple to compare
observed values to theoretical predictions once population distribution is known®®. Given a number of
such comparisons, it should be possible to evaluate whether or not these models are adequate to explain
observed patterns of tie volume in real networks.

Another direction which should be taken to continue the present work is the interface of spatially

produced networks with pre-existing network process models. Numerous models of diffusion and influence

exist, for instance, which have heretofore been tested largely on either canonical structures (e.g., grids,
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toroids, etc.) or on random graphs (generally controlled for size and density) (Carley, 1990; Carley, 1991;
Butts, 1998a; Latané, 1996; Friedkin and Cook, 1991; Krackhardt, 1997). Do these models exhibit different
behaviors on spatially generated networks? If so, this clearly raises questions of validity regarding past
studies. Other models which might be investigated include models of exchange (Friedkin, 1995; Cook et al.,
1983), spontaneous eruption of panics or fads (Butts, 1998b), cultural evolution (Latané, 1996; Axelrod,
1997), and collective action (Macy, 1991).

Perhaps the most obvious extension of the spatial modeling framework presented here is that of per-
mitting treatment of change in population distribution and relations over time. Such innovations would
facilitate tie-in with research on migration, mobility, and urban sociology (Irwin and Hughes, 1995), and
could potentially lead to development of a unified demographic-relational model of macrostructural evo-
lution. Before the model can be extended in this way, however, more must be known about the relative
relaxation times of migratory/demographic and tie formation/disruption processes; otherwise, it is not
possible to couple the processes properly. Furthermore, continued development would also be greatly facil-
itated by a clearer understanding of the underlying processes governing tie formation across space. While
a purely static treatment does not necessarily require a great deal of knowledge regarding how or why ties
end up exhibiting an inverse square relation to physical distance, a dynamic model has much less flexibility
in this regard: if, for instance, ties are formed by chance meetings among actors (whose positions in space
are, in turn, given by a probability distribution over locations??) then one may be lead to a very different
sort of model than one would employ if actors tend to gain ties through “referrals” (a la Granovetter
(1973)). (Needless to say, extensions such as these would require the macrostructural measures presented
here to be computed in a very different fashion.)

Another promising area for future examination of the spatial modeling framework is the investigation
of the distributions of graph-level indices (GLIs) on spatial graphs. While there are a number of challenges
involved in the computation of GLIs on macrostructures, increasing availability of inexpensive parallel
processing capability should ultimately make a wide range of GLI experiments possible using simulation®®.
Of particular interest in macrostructures are properties such as girth, diameter, and length of the median
geodesic, as well as clique frequency and the like; as these GLIs are less-often studied on meso or microstruc-
tures than traditional measures such as hierarchy or centralization, there may be room for theoretical and

methodological development in this area’.
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6 Conclusion

In this paper we have considered both theoretical and empirical arguments for the importance of space
in determining the structure of human relations within large populations, and have presented a stochastic
modeling framework which builds on these prior findings. We have shown how one of these models —
the gravity model — can induce stochastic equivalence classes in populations which are spatially clustered,
and have derived the inter and intra-cluster distances which are necessary to obtain these effects. To
characterize spatial macrostructures of human relations, we have introduced a number of measures which
may be employed either instantaneously or over areas of interest to determine volumes of tie “flow” across
space; expectations of these measures under spatial models of network formation have been given, as well
as suggestions for their empirical estimation. Finally, we have illustrated how some of these measures
may be visualized on populations of interest, and have indicated some insights into the behavior of the
gravity model which these measures reveal. It is hoped that these results will lead to further work on
the problem of spatial macrostructure, and on the development of more accurate and extensive models
to predict and describe networks generally. As network analysts have shown, a wide range of problems
of concern in the modern world — including information flow, innovation, and the spread of disease — are
intimately interconnected with patterns of human interaction. By understanding how large-scale structures
of relations across entire populations behave, we may gain further insight into these problems as well.

It is perhaps worth reiterating at this point that, as important as the macrostructure of human relations
may be for understanding other sociological problems, it is the opinion of the authors that macrostructure
is in and of itself a valid object for study. To characterize, measure, and ultimately predict the vast webs
of interaction which form the fabric of human society is truly a task worthy of the sociological imagination,
and is of scientific merit regardless of whether it yields insights at the individual level. As the astrophysicist
may study galaxies whose lifespans exceed even the grossest limits of our temporal comprehension, or the
biologist may seek to untangle ancient chains of innovation and competition which lead to the emergence of
our own human form, so do we attempt to contemplate the dense and ever-changing weave of relationships
in which each of us is inextricably embedded. In this spirit, then, it is our hope that the present work may
aid us in beginning to understand social macrostructure on its own terms; surely, this is an exciting area

for future research.
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Threshold Parameters | a =05 | a=1 | a=2
T A 0r 0r Or
0.9 1 0.155 0.106 | 0.080
10 0.551 0.546 | 0.544
100 5.410 5.410 | 5.410
1000 54.093 | 54.093 | 54.093
095 |1 0.076 0.051 | 0.039
10 0.265 0.262 | 0.261
100 2.598 2.598 | 2.598
1000 25.978 | 25.978 | 25.978
099 |1 0.015 0.010 | 0.008
10 0.052 0.051 | 0.051
100 0.504 | 0.504 | 0.504
1000 5.039 5.038 | 5.038
0.999 | 1 0.002 0.001 | 0.001
10 0.005 0.005 | 0.005
100 0.050 0.050 | 0.050
1000 0.500 0.500 | 0.500

Table 1: Stochastic Equivalence Thresholds for the Gravity Model
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Directional External Tie Volume, Single Population Center
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Figure 6: Estimated Internal Tie Volume (50 Pop Centers, 1km x 1km Cells)

39



50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

Ve

External Tie Volume, Fifty Population Centers

7 TR
e MG
o 20N
e
Wl e
Dice "’”l’
=

,:.Jzz.:g::::-:':t,lllllb'.%'

Figure 7: Estimated External Tie Volume (50 Pop Centers, 1km x 1km Cells)

40



Directional External Tie Volume, Fifty Population Centers
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Notes

Tndeed, even the memory devoted to keeping track of old friends and the time taken to hunt for phone
numbers or email addresses have costs; the degree to which such trivialities can be sufficient to affect our

interactions should be obvious to anyone who has ever had to apologize to a friend for not keeping in touch.

2The exchange of genetic (or, perhaps, mimetic) material can also be constrained in a similar fashion.

See, for instance, Boorman and Levitt (1980).

3 Allowing four hours of sleep per night and reducing the speed to a friendlier 5mph reduces the radius

covered to 10 miles, for those who are interested.

4Obviously, modern communication technology lessens this requirement somewhat (though see Carley
and Wendt (1991)), but even in virtual environments participants must be “close” in some communication
space to engage in interaction. Whether or not these communication spaces are in fact “smaller” than

their physical counterparts for purposes of interaction is an open (and interesting) question.

SRadios and the like being excepted. This, however, falls under the category of communication space

interactions mentioned above.

60r, at least, are not included; given that many if not most empirical analyses of relational networks
consider individuals who are physically proximate, this may be less of an omission than has been suggested.

(But see Festinger et al. (1950).)

It is interesting to note, however, that the influence structures of Latané’s Dynamic Social Impact
Theory (DSIT) (Latané, 1996) can be represented in terms of valued graphs; hence, the dichotomy is

clearly a somewhat exaggerated one.

81t is worth noting that the relations described accounted for upwards of 90% of the variance in number

of interactions within their three samples, making this a finding of truly remarkable strength.

9Clearly, it is quite possible that this assumption does not hold in all cases; it seems, however, to be
a reasonable point from which to start. We thus present this model (and the gravity model) as baseline
models in the spirit of Mayhew (1984), with an eye towards beginning with “obvious” physical constraints

and adding additional complexity only as required.
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10Since this may take any value in [0,1], this does not imply loss of generality.
1Or the minimum arc distance, in the case of spherical embeddings.

12Generally, we shall represent vertices with lowercase v’s, and the vectors which designate their positions

by boldface (e.g., v).

BInterestingly, this implies that fitting a gravity model on data with physical and social spatial dimen-
sions will yield social distances in physical equivalents; thus, in principle one could ascertain the “extra
distance” in km between persons of differing race or gender. The relative “size” of these Blau dimensions
across cultures could be an interesting tool for comparative analysis, particularly if obtained at multiple

points in time.

1 Specifically: “Given a stochastic ‘multigraph’. represented by the collection of random matrices X,
actors i and 4’ are stochastically equivalent if and only if the probability of any event concerning X is

unchanged by an interchanging of actors i and ¢.” (Wasserman and Faust, 1994).
15E g., under relaxation of independence.
16Obviously, these are also real cities. Here, however, we shall consider them only hypothetically.

1"Tn order for such multi-level clusterings to be “clean”, human populations would have to be laid out in
an extremely sparse fashion. Indeed, the sort of self-similar fractal which would be generated by a perfectly
clean pattern of this type would be (in form) somewhat like the Cantor set, which is often referred to as

an example of “fractal dust” due to its low dimensionality.

18The same procedures could be applied to other distance models, but may or may not yield closed-form

solutions.

19This assumption allows us to consider a lower bound on the conditions for approximate equivalence,
and aids in clarity of presentation. The same basic logic may be applied to derive exact bounds in the

general case.
20This is because ds(vj,vx) = A and dg(vi, v) = 0 + A.

21This is, essentially, a likelihood ratio approach (in the sense that require there to be minimal difference
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between the edge likelihoods); it is employed here (rather than a raw difference measure of some sort) both
because it provides a reasonable representation of our notion of “difference” in this case, and because it is

an effective means of comparing arbitrarily small values independent of scaling effects.
22Note that units here are arbitrary, so long as a, A, and § are in the same scale.

2Since the net effect of o is bounded by \/a(r — 72)/7, a would have to be in the vicinity of 10 to
potentially have a unit impact on ¢, (assuming a fairly lax 7 = 0.9). In practice, however, the effect
would be reduced for large A; in general, the message appears to be that this aspect of the model becomes

increasingly well-behaved as A grows relative to the other parameters.

24 Again, it should be repeated that this is an upper bound on the minimum radius. Obviously, then,
it is true that the equivalence will exist for any actor beyond this minimum radius, though it may be the

case that some closer actors will share the relationship as well.

250r summations, in some cases. We shall be rather cavalier throughout the text in treating space as
continuous and our associated functions as (abstractly) integrable, but these quantities can be interpreted

as summations if required. (See Grimmett and Stirzaker (1992).)

26Thus, we are in fact assuming that the associated spatial position is a sufficient statistic for tie

probability, not that it is in fact the only actual position ever occupied by the actor.

2TFor instance, a stochastic model could be constructed which treated persons as “events” in space in
something of an analogy to the Poisson process. A rigorous treatment of such a model, however, is beyond

the scope of the present work.

20f course, it could be argued that quantities which are poorly suited to empirical measurement are
necessarily of limited theoretical value; insofar as the purpose of theory is to identify useful relationships

between observables, this is certainly the case.

29 And that it is not uniformly zero! Technically, of course, if we truly allow our area of interest to go to
zero, it must be the case that (in the real world) our area cannot possibly include more than one person.
That said, the instantaneous measure should be interpreted as a description of the way in which local tie

volume changes across space, rather than as a true estimate of volume at a given point in space.
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30The entry and exit of ties, for instance, need not be “conserved”; nor are tie flows incompressible
(which amounts to the same thing). Perhaps most importantly, the endpoints of ties need not be spatially

local, which is clearly not the case for the movement of molecules.

3INote that the distance covered by these ties is intentionally removed. We shall consider the question

of expected tie distance presently.

32The number and size of the population centers was controlled; the contribution of each center to a

given point was an inverse linear function of the distance from the center in question.

33 A1l plots for this document were produced using gnuplot. Surface plots were created using a 40x40

sample grid, smoothed using city block distances (norm of 2).
34 Al vectors have been normalized to facilitate display.

35Tn addition, it is obviously assumed here that any determinants of social ties other than those accounted
for by position in socio-physical space are ignorable with respect to the spatial model. This assumption

may limit the applicability of the model in certain contexts.

36Fortunately, excellent data sets exist mapping population to physical space; with the advent of the

GPS, this data can only be expected to improve.

37Indeed, one can imagine a dynamic model in which actors, rather like electrons, are portrayed as
“clouds” of possible positions with varying probability, and in which these position distributions evolve

over time. Unfortunately, the complexity of such a model would likely be prohibitive.

38The authors have performed several preliminary simulation experiments using the gravity model on
various layouts containing several thousand actors; thusfar, early results seem to confirm the importance
of population density (and configuration), and point to scaling effects as having important consequences

in many cases.

39The presence of stochastic equivalence classes in spatial networks, for instance, implies that such graphs
should have lower levels of algorithmic complexity than their random counterparts (Butts 2000a; 2000b);

this may in turn have implications for other properties of spatial networks.
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