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Abstract 
 
Ego-networks, or ego-centric networks, have traditionally been studied in isolation. Information 

on where and how a single ego-network fits into the greater social structure is often unavailable, 

whether due to the absence of unique identifiers, such as full names or social security numbers 

(e.g. in HIV networks or networks of drug users), or a sampling strategy designed to obtain 

networks of disparate individuals (e.g. the 1985 GSS Social Network module).  Computational 

approaches have allowed network researchers to probabilistically reconstruct complete networks 

(i.e. sociometric data) from discrete ego-networks, allowing the analyses to, then, include 

aggregate level network measures.  However, the current technology employs attribute 

information of egos and alters, and not the links between the alters of a single ego-network.  My 

research contributes to this method by introducing an algorithm that connects ego-networks 

using both information sources: attributes and alter-to-alter ties, including tie strengths.  

Furthermore, the gains from the inclusion of alter-to-alter ties are assessed as well as the 

expected error in the reformed network as a function of the size, density, network type (i.e. 

random vs. empirical), and the distributions of attributes and alter-to-alter ties.  Results show that 

the error, hence the accuracy of the completed network, varies non-linearly and significantly 

with all of these parameters. 
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Introduction 
 
An ego-network, or ego-centric network, is a specific kind of social network which contains a 

focal individual and his or her direct contacts or alters, whether they are friends or coworkers or 

fellow drug-users.  Additionally, ego-networks may include ties between these direct contacts; 

these ties are often referred to as “cross-ties”.  For instance, a survey respondent lists his parents, 

brother, and two friends as members of his confidant ego-network (i.e. people with whom he 

discusses important matters).  A more complex ego-network would contain information about 

how close the parents are to each other as well as to this sibling and whether the friends are 

acquainted with any of the family. 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Complex Ego-Network 
 
Ego-networks are sampled networks and generally exist within a greater social structure; the 

alters of the ego are similarly connected with other individuals in the world at large, unless we 

are dealing with an isolated population.  Traditional social networks methods and measures are 

applied to socio-metric data, containing linkages between all the members in the population of 

interest.  One generally cannot infer valuable aggregate network level measures, such as 

centralization scores, cliques, and connectivity, from discrete ego-networks without knowing 

whether and how these ego-networks may connect or overlap.  The task of linking ego-networks 

which contain egos and alters which are all uniquely identified, using full name and address or a 

unique id in the dataset, is obviously trivial.  When either the egos or alters or both sets are not 

uniquely identified, the task of inferring a global linked structure becomes far more difficult. 

 

One obvious approach towards linking ego-networks employs attribute data on the egos and 

alters:  the more attributes, the better.  In the figure below, if an unidentified ego (blue) who is 

the only 30-year old sociology grad student in the dataset lists, as an alter, the only 26-year old 
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math student (green) in his friendship network, we can infer that the 26-year old math student, 

located elsewhere in the dataset, who lists the 30-year old sociology grad student is the same 

individual.  More attribute information leads to greater accuracy in the matching. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Matching Ego to Alter Based on Attributes 
 
However, larger and denser networks make the task more difficult by expanding the choice set, 

for each alter of each ego-network.  Uncertainty in the structure arises when a unique match for a 

single alter cannot be found, and one of several candidates must be selected; a greater candidates 

set increases the overall uncertainty that the final structure is correct. 

 

There does exist research, though little, that has employed this procedure of assembling ego-

centric data, including a software tool for the end-user.  Friedman et al (1997)(1999) constructed 

socio-metric data from ego-centric data on HIV/drug using networks in order to determine core 

components of drug injectors.  Also, funded by the NIDA, MDLogix, Inc. markets a software 

product named “Sociometric LinkAlyzer”, designed to link ambiguous alter nominations using a 

host of potential attributes such as gender, age, hangout location, nicknames, physical features, 

etc. (Sociometrica LinkAlyzer abstract, 2002). 

 

However, both the research and the tool employ node attribute data and not the within-ego-

network linkages of the alters, whether due to difficulties in incorporating this information or 

because it was never collected.  A prominent ego-network dataset that does contain alter-to-alter 

cross-ties data is the Social Network module of the 1985 General Social Survey (GSS 1985).  

While the GSS ego-networks do not necessarily comprise a complete subpopulation, it is 

=
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nevertheless valuable to estimate a connected structure especially given that there exist 

regularities in ego-network level measures.  For instance, the pervasiveness of homophily leads 

us to expect friendship ties between individuals of similar demographic traits such as gender, 

age, and education level.  Another example is parental bonds, which generally occur between 

individuals whose ages differ by at least 20 years and less than 40 or so. 

 

In Friedman et al (1999), matches that were not one-to-one had to be resolved through other data 

sources, such as ethnographic observation.  Such alternative data sources might not be available, 

as in the GSS, requiring us to “guess” and have an understanding of the certainty, or uncertainty, 

of that guess. 

 

This paper reports the findings of an algorithm written with the explicit intention of including the 

alter-to-alter cross-ties, as well as attribute data of the nodes and strengths of the ties between all 

nodes (i.e. ego-to-alter and alter-to-alter), in the process of ego-network matching.  We highlight 

the conditions under which a significant gain in accuracy is obtained by the inclusion of cross-

ties for randomly generated ego-networks, of varying size and density, and empirical ego-

networks. 

 
Description of Algorithm 
 
The process of matching an ego-alter pair of one ego-network to the alter-ego pair of a different 

one basically requires a matching of identifying attributes, both node-based and structural.  

Examples of node-based attributes in empirical ego-network data include demographic traits 

such as gender, age, race and situational variables (e.g. physical location like permanent 

addresses or “hang-out” spots) found in drug injector data.  Structural attributes include ties 

between alters that the respondent ego may have provided, as in the 1985 GSS. 
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If we considered solely nodal attributes, the following individuals (green and blue) constitute an 

ego-network match: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Non-Matching Egos Due to Non-Matching Structures 
 
However, if we considered their local structures, we find that these two egos do not constitute a 

perfect match since the common alters between the ego and candidate alter do not align.  The 

matching procedure using just attributes can be described as follows, explained using pseudo-

code: 

 
For each ego e1, select an alter a1 {

Select another ego e2 whose attributes match alter a1 {
If ego e2 has an alter a2 whose attributes match those of ego e1
Then it is possible that alter a2 and ego e1 are the same individuals

}
} 
 
The matching procedure which incorporates cross-ties goes as follows: 
 
For each ego e1, select an alter a1 {

Select another ego e2 whose attributes match alter a1 {
If ego e2 has an alter a2 whose attributes match those of ego e1
Then do {

Collect the set of alters who are connected to both e1 and a1
Collect the set of alters who are connected to both e2 and a2
If these two sets match attribute-wise, then we have a potential match {

alter a1 ?= ego e2
ego e1 ?= alter e2

}
}

}
} 
 
Each possible match is marked and saved until all the alters of every ego are tested with other 

egos in the dataset.  It is possible that an alter may have several candidates; that is, several other 

≠
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egos have properly matched.  This can easily occur if the set of identifiers (i.e. the combination 

of all compared attributes) cannot uniquely identify all the nodes.  For instance, if our network 

consisted of several hundred individuals and the attribute set consisted of only gender and race, 

each alter of one ego-network is likely to match several egos of other ego0-networks even if we 

include cross-ties in the matching process. 

 

To understand how the inclusion of cross-ties improves the accuracy of the matching process, 

consider the following social network with a, b, and c denoting distinct attributes: 

 
 
 
 
 
 
 
 
Figure 5.  Sample 4-Node Ego-Network 
 
The four ego-networks, for the four nodes, are as follows, with the focal ego shaded in green:   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Enumeration of Ego-Networks 
 
If we do not consider cross-ties, ego a does know which of the bs are b1 and b2 while it knows 

that its alter c matches ego c.  Without additional information, we are left to guess with a 50% 

chance of being correct.  Hence, the expected probability of obtaining the whole network 
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correctly is 50% and the expected accuracy, or number of correct matches, is 4/5 or 80%.  Both 

expectations would be 100%, if we considered the ego-network cross-ties. 

 
Measuring Accuracy 
 
We can measure the gains in accuracy resulting from including the cross-tie information via 

simulation.  By generating a random Bernoulli, symmetric network and extracting its ego-

networks, we can apply the algorithms and compare the results to the correct answer.  Accuracy 

is measured as the percentage of ego-alter nominations that are matched correctly.  For a 

completely saturated network of size n (i.e. a complete clique), the number of ego-alter 

nominations equal n*(n-1). 

 

For the canonical case, we assume the absence of any node attributes and also assume binary ties 

(i.e. relationships take on values of 0 or 1); structure will be the only guide, thereby rendering 

non-cross-tie matching wholly inferior. 
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N = 8 (95% Confidence Intervals)

Density

1.00.90.80.70.60.50.40.30.20.10

95
%

 C
I A

cc
ur

ac
y

.6

.5

.4

.3

.2

.1

Cross-Ties

Exclude

Include

 
 
Figures 7.  Comparing Accuracies between Exclusion and Inclusion of Cross-Ties 
 
The above figures display the differences in accuracies for randomly generated networks of size 

n = 8.  The x-axis denotes the density parameter (i.e. a Bernoulli probability of tie) and the y-axis 

denotes the percentage of alters matched with the correct ego across all ego-networks.  The 

higher, green, line and error-bars denotes the condition when cross-ties were used in the 

matching process and the lower, red, line and error-bars denote the exclusion of cross-ties in the 

matching.  For each density/cross-ties condition, 1000 random networks were generated.  The 

results are quite clear in demonstrating that the information gain from cross-ties is significant.  
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For all densities, except 0.1 and 1.0, the differences are highly significant as noted by the non-

overlapping error-bars.  For most densities, the accuracy gain is about two-fold!  When the 

density is 0.1, cross-ties are not frequent enough to be advantageous.  When the density is 1.0, 

the effect is opposite:  all ego-networks are cliques and equivalent in structure, hence, non-

distinguishable.  The accuracies of the “exclude cross-ties” condition is simply 1/n.  Currently, 

the algorithm does not reciprocate ego-alter matchings in the alter’s ego-network.  If the 

algorithm dictates that ego a select, as one of his alters, ego b.  Then ego b must indicate that one 

his alters is ego a.  The current state of the algorithm is such that ego b’s selection is independent 

of ego a’s.  Explain the expected gains from this 
 
The figure on the right displays the same 

comparison using the actual densities, measured 

after the random network is generated.  

Confidence intervals reveal that cross-ties 

become instrumental around a density of 0.18 

 
 
 
 
 

Figure 8. Comparison Using Actual Densities.  
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We compare these results with larger graphs of size n = 10 and n = 15: 

N = 10
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N = 10 (95% Confidence Intervals)
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N = 15
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N = 15 (95% Confidence Intervals)
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Figure 9.  Comparison with Larger Networks. 
 
The accuracy gains clearly hold for networks despite the increase in size, hence the difficulty of 

the matching problem. 

 

In the next figure, we hold density at a constant 

0.5 and examine, more closely, the effects of 

network size on the accuracy.  We observe that 

network size effects a non-linear decay on the 

accuracies of both conditions as network size 

increases from 6 to 30. 

 
 

 
Figure 10.  Effect of Network Size on Accuracy 
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Variation in Tie Strength 
 
Networks can contain ties that have multiple values.  These valued ties can denote the strength of 

the relationship, frequency of contact, etc.  In the GSS social network module, the cross-ties 

denote either neutrality of the relationship between alters or their closeness.  Since we are 

currently experimenting with symmetric networks and ties are reciprocated exactly, any variation 

in the tie strength can serve as an identifying source of information in the matching process, 

whether we include cross-ties or not.  We should expect an accuracy gain that is superior to those 

we have so far seen; the variation of tie strengths should also be observed in the cross-ties hence 

reducing the number of non-unique choices. 

 
The following graphs demonstrate an improvement of accuracy with networks that have ties that 

can take on two values in addition to a value of nil (i.e. tie value is 0). 

N = 10, Tie Strengths = 2
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Figure 11.  Effect of Varying Tie Strength 
 
There is moderate gain at the base density of 0.1 from the additional information for both 

inclusion and exclusion scenarios; compare the 41% accuracy at density 0.10 with 30% accuracy 

for N=10 in Figure 9.  Since there are few or no cross-ties, this density can be considered the 

“base case”.  However, when we exclude the cross-tie, the gain diminishes with the increase of 

density, or the number of ego-alter links.  Conversely, when we include cross-ties, the varied tie 

strength becomes an additive source of information; the more common alters two nodes share, 

the more likely the tie strengths can serve as unique identifiers.  Hence, we observe the accuracy 

increases until a point of diminishing return, when the density at 0.90 finally exceeds the gains. 
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The figure on the right shows what 

happens when the tie strength can take on 

seven values in addition to zero.  The base 

accuracy is equivalent for both conditions 

at 80%, a gain of 50% over the single 

value tie condition.  However, for the 

exclusion condition, this gain diminishes 

exponentially while perfect matching is 

quickly obtained at a density of 0.6 for the 

inclusion condition; this level of variation 

in tie strength is sufficient even when the network is completely dense at 1.0.  Note, we will omit 

error-bars for the graphs in which the lines are significantly different. 

N = 10, Tie Strengths = 7
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The first pair of the following 3-D graphs depicts how accuracy varies with both tie strength and 

density; the second pair depicts accuracy against tie strength and network size n.  The green 

graph represents inclusion of cross-ties while the red denotes the exclusion of cross-ties: 

 
The curvatures are similar within each cross-tie condition.  For the inclusion condition on the 

right, there are some minor interactions between density and tie strength.  However, the overall 

trend is the increase of accuracy as density, network size, and tie strength increase.  However, in 

each case, there is a point of diminishing returns; when the complexity of the network is too 

large relative to the assisting information provided by varied tie strength, the accuracy becomes 

worse.  For low tie-strength values, we see accuracy either decreasing or remaining the same as 

the network becomes more complex either due to increasing density or size. 
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The curvatures for the exclusion condition are quite similar.  Basically, the lack of additional 

information forces the accuracy to drop as network complexity increases until it reaches the 

minimum accuracy of 1/n. 

 
Node Attributes and Multi-Valued Attributes 
 
While we may encounter network data that is purely structural, empirical datasets for which this 

algorithm is designed will most likely contain nodal attribute data, such as demographic, 

physical, or behavioral traits of the individuals representing the nodes.  For these analyses, we 

employ de-contextualized attributes and merely assign them integral/categorical values of 0, 1, 2, 

etc.  The following pair of graphs reveals the response of the algorithm when one or more binary 

attributes are considered: 

N = 10 with Attributes, Exclude Cross
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N = 10 with Attributes, Include Cross
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Error-bars are omitted as most of the differences between the lines are significant at the p = 0.05 

level.  For the exclusion condition, the gain of each additional binary attribute is basically linear 

and roughly constant.  The accuracy gains are less linear in the inclusion condition.  As with 

increasing tie strengths, the addition of single attribute has a striking effect, improving accuracy 

almost three-fold.  Additional attributes assist with decreasing magnitudes of improvement. 

 
Multi-valued attributes take on more than two values.  In these graphs, we show results from 

nodes with a fixed, three attributes, each of which can take on 2, 3, or 4 different values.  The 

networks tested here are of size n = 10. 
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Multi-Valued Attributes, Exclude Cross
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We find the previously observed patterns for the exclusion and inclusion conditions persist: 

decreasing accuracy in the exclusion conditions and increased or maintained accuracy in the 

inclusion condition.  However, in the exclusion condition, gains from increased attribute values 

are not constant, as with increasing the number of binary attributes.  Three binary attributes can 

uniquely identify eight items (23).  Increasing the values from binary to tri-nary raises the 

identifiable set to 27 (33); hence, the accuracy improvement is not altogether surprising.  

 
Fitting a Linear Model to the Results 
 
A linear model manages to predict 

the accuracy fairly well, with 

variance explained at R2 = 0.611; 

residuals roughly fits a normal 

distribution. 

 
Not surprisingly, the 

exclusion/inclusion of cross-ties 

most significantly affects the 

accuracy, based on the standardized 

beta coefficient of .508.  The number 

of attributes happens to be a close second suggesting that the matching of ego-networks with 

enough nodal attributes may not require cross-ties.  As expected, increasing the network size 

hampers the matching.  And, tie strength affects most weakly out these effectors. 

 

Model Summary
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Empirical Ego-Networks 
 
We can use complete empirical networks to measure the effectiveness of the cross-tie inclusion, 

to get a sense of what real world advantages it provides.  A brief test of the algorithm on two 

datasets taken from the UCINET software package follows. 
 
Krackhardt High-Tech Managers Friendship Network (n = 21, d = 0.243) 

CORRECT
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The above histograms show the distribution of correct ego-alter matches for the friendship 

network of high-tech managers, recorded by Krackhardt (1987).  The accuracy gain, from cross-

tie inclusion, is moderate: a little over two-fold as observed by the means  5.0 vs. 12.4.  Again, 

the cross-tie inclusion works more effectively with a substantially dense network.  The total 

count of ego-alter pairs is 102; the mean accuracies translate to 5% and 12%, respectively. 
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Bernard and Killworth Fraternity (n = 58, d = 0.585) 
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These histograms convey the correct ego-alter matches for the fraternity data taken by Bernard 

and Killworth (1980).  Despite the higher n, compared to the previous network data, the higher 

density as well as the 28 valued tie-strength clearly translates to a drastic, four-fold increase in 

accuracy.  The total ego-alter pairs in this network is 1934; the mean accuracies translate to 1.8% 

and 6.8%, respectively.  Again, this test demonstrates the usefulness of cross-tie inclusion.  We 

expect that the addition of few attributes can improve the accuracy, with cross-tie inclusion, to 

100%. 

 
Biased/Clustered Network 
 
Sample ego-networks may not necessarily be taken from a discrete population, but instead, span 

a larger community, with sets of local ego-networks overlapping.  Such is a case for the ego-

networks of the Social Network module of the 1985 General Social Survey.  In order to estimate 

the kinds of gains we might expect, we can bias the randomly generated, testing ego-networks to 

reflect these clusters of sub-populations.  The following adjacency matrix from a generated 

network is an example of how such ego-networks sampled from separate communities or 

families, though partly overlapping, may look like.  The 1 or 2 denotes a link while a blank space 

denotes the absence one: 
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******************************************************
* 112 *
* 1 1 *
* 1 2 1 *
* 212 11 1 *
* 1 221 *
* 11 111 *
* 1 22 *
* 21 1 2 *
* 1212 1 *
* 1 21 1 1 1 *
* 1 11 *
* 1 1 1 2 *
* 2 111 1 2 *
* 1 *
* 11 111 1222 *
* 1 12 2 *
* 21 22 1 *
* 22 22 *
* 2 2 2 *
* 22 12 *
* 2 2 1 22 *
* 22 1 21 *
* 21 122 *
* 1 *
* 2 *
* 22 2 1 *
* 1 2 2 1 2 *
* 2 1 1 *
* 1 1 1 *
* 2 2 1 *
* 1 1 2 1 1 *
* 21 1 *
* 2 2 1 1 *
* 1 1 12 1 *
* 2 2 *
* 2 112 2111 *
* 2 2 *
* 1 12 22 *
* 1 2 2 12 *
* 1 22 2 12 *
* 2 *
* 1 12 *
* 2 2 2 2 2 *
* 1 11 *
* 2 *
* 1 21 1 *
* 2 12 21 *
* *
* 2 12 *
* 1 *
****************************************************** 
 
In the GSS, tie strengths have two values: one for neutrality and two for extra-closeness of 

confidant alters to ego or to each other.  We simulate a set of clustered ego-networks of size 200; 

the GSS contains ~1500 ego-networks yielding almost 6000 nodes.  However, for the sake of 

rapid computation, we use a smaller network size.  Future work will examine networks of the 

higher magnitude.  We also assign three attributes that can take three values to each node, 

reflecting the modest set of demographic variables included in the GSS. 
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Simulated GSS-like Ego-Networks (n = 200, d ~ 0.05) 
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As with the previous network, we observe a significant gain by including cross-ties, despite the 

low densities of these networks.  Part of the relatively high accuracy, for both conditions, is due 

to the information added by the tie strengths and attributes, and another part may be due to this 

kind of clustered ego-network structure.  However, the real gain, again, occurs when we include 

the cross-ties, improving the mean accuracy from 58% to 96%. 

 
Conclusion 
 
The desired outcome of introducing a method for yielding higher accuracies in ego-network 

matching has been unequivocally met.  Unless there is enough and varied non-structural 

information, such as attributes, to uniquely identify almost every node, the matching processes 

which do not include alter-to-alter cross-ties will yield numerous inaccuracies.  While the 

inclusion of cross-ties will not always result in perfect matches, as in extreme circumstances of 

low information and large size or low densities, cross-ties will provide a potential half-fold to 

four-fold gain in accuracy.  Future direction now includes symmetric selection of ego choices 

when the choice set for a given ego-alter pair is > 1, assessing the error when holes exist between 

ego-networks (i.e. incomplete data), and dealing with asymmetric ties.  The issues and 

complications for these are beyond the scope of the current paper and will be discussed in future 

writings. 
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