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Abstract

Many successful algorithms, such as Asynchronous Partiall@y (APO), have re-
cently been developed for cooperative distributed prokdeiwing based on the notion of
coordinated mediation. In this paper we examine the impfadifferent strategies for choos-
ing mediators with respect to the complexity of distribupedblem solving and the difficulty
in merging decentralized solutions. We present experiai@asults which challenge previ-
ously held beliefs suggesting that the appointment of lgigbhstrained agents leads to a de-
crease in problem solving complexity. We show that, instehdosing loosely constrained
agents as mediators in order to minimize the expected sipgedfation sessions can lead
to an overall improvement in system performance on probleitis particular properties.
Analysis with respect to these properties is provided tdampghe observed improvement,
and the analysis is confirmed experimentally.

1 Introduction

Distributed constraint satisfaction continues to serva aaluable paradigm for studying co-
operative problem solving techniques in domains such asures allocatior{Conry et al,,
1994, and distributed time-tabling and transportation roufi&glotorevsky and Gudes, 1996
Perhaps more importantly, DCSPs have helped researchaéesstisind some of the deeper is-
sues surrounding cooperative problem solving and reagdiokoo et al., 1990; Juncet al,,
2001, such as trade offs between the effectiveness of cooperatid the drawbacks due to
the resulting communication. There have been significdottsfdedicated to designing and
testing various algorithms and protocols for addressindplems in this domain such as Asyn-
chronous Backtracking (ABT)Yokoo and Durfee, 1992 Asynchronous Weak-Commitment
(AWC) [Yokoo, 1993, and most recently Asynchronous Partial Overlay (AP@ailler and
Lesser, 2004

For the most part, much of the problem solving effort in thegerithms involves mitigating
the effects of local decisions made by individual agents deatabilize the system. This pro-
cess usually requires a significant amount of inter-ageminconication, because agents must
inform each other of conflicting intentions and cooperateetttify them. The most effective
algorithms, such as APO, have adopted the notion of codperaediation and manage to cut
down significantly on unnecessary communication. Mediabased algorithms involve the co-
ordination of parts of the problem by mediator agents, wieociiarged with the responsibility
of solving some centralized problem and supplying infoiorato other agents that rectifies
some or all of their conflicts. In this paper we explore the actpof different strategies for



choosing mediators, and discuss the relationship betwesse tstrategies and the overall com-
plexity of the distributed problem solving process. As of fes kind of analysis has not been
discussed, and we find that it provides valuable insighttimonature of cooperation.

Our analysis focuses on the Distributed Constraint Satisfia Problem (DCSP) and helps
to clarify the relationship between the computational rtips of solving a centralized version
of the problem, the difficulties in merging or overlaying negdd solutions, and the potential
arising from the parallel and distributed nature of the jEobdomain. In Section 4 we describe
the experimental results of applying our analysis to the A®gbrithm by examining three
different mediator selection strategies on distributezb®r graph coloring problems. Our re-
sults suggest that on solvable 3-color graph coloring rnoislmediators should be selected in
order to minimize the number of agents involved in each nxfiawhich is contrary to the
previously suggested strategies of choosing mediatorsritraize as much of the problem as
possible.

2 Background

2.1 Distributed Constraint Satisfaction

The distributed constraint satisfaction problem was fiistussed by Yokoet.al. as a way
of formalizing Cooperative Distributed Problem SolvingDES)[Yokoo and Durfee, 1992
building on previous exploration into the realm of specifistibuted constraint satisfaction
problemd Sycaraet al, 1991; Lesser, 1990; Parunekal., 198¢. A DCSP is formally defined
as a constraint satisfaction problem (CSP) of the folloviorg:

e asetofn variablesV = {z1,...,z,}
e aset of discrete finite domains for each variattle= { D1, ..., D,}
e asetofconstraint® = {R1, ..., R,,} Where eaclR;(d,1, .. .,d;;) is a predicate on the

Cartesian product of the domains of all the variables refed by that constraint. The
constraint is said to bgatisfiedf the assignments of each referenced variable satisfy the
constraint.

Where each agent is said kaowabout a particular set of variables and constraints. Thé goa
of each agent is to assign a value to its variables that sstisfi of its known constraints,
in an effort to satisfy the entire problem. For the rest of thaper, for the sake of simplic-
ity, we will restrict our problem domain to associate eachragvith a single variable, and its
known constraints to be all of the constraints that refehtd variable. We will also consider
only binary constraints (constraints between two varighlalthough the ideas presented can
be generalized to relax both of these restrictions. It ie ateful to note that CSPs are often
viewed as graphs or networks where vertices represenichdilvariables, and edges represent
constraints between two or more (in the case of hyper-edgesbles. In the distributed do-
main the constraint graph also typically represents a conication network between agents,
because agents are more likely to communicate with othensemxted via constraints.

2.2 Related Work

In their original paper formalizing DCSPs, Yoketal. also described a simple extension of a
commonly used CSP solving technique called AsynchronoektBacking (ABT). This tech-
nigue involves a trial-and-error type solution, where dgawmntinually assign their variables
random values and revise them, or backtrack, when theywededication from others that
they have destabilized the system.

Soon thereafter several other techniques were ported frencentralized CSP domain,
such as Asynchronous Weak Commitment (AW@)koo, 1995. This algorithm extends ABT



by allowing agents to treat assignments from other agemgeak-commitments, rather than
unchangeable instantiations. When an agent identifies #iatpit can choose to temporarily
ignore the offending variable if it has reason to believe ttsavalue can be easily changed.
Agents decide whether or not offending variables can bédyeasanged based on dynamically
computed priorities, which reflect the frequency with whibk corresponding agent has been
involved in other trial and error sessions.

The most recent, and most successful framework for DCSRitigts so far is called Asyn-
chronous Partial Overlay (APO) developed by Roger Mailled ¥ictor Lesse[Mailler and
Lesser, 2004 APO is based on the concept of cooperative mediation, wigpeats that iden-
tify conflicts in local sub-problems choose a mediator tove@ centralized version of the
sub-CSP that includes the conflict, and then abide by thesidesi of the mediator.

The use of cooperative mediation for distributed probletwing first appeared in work
involving air-traffic control[Cammarataet al,, 1983, and has appeared in various other dis-
tributed domains such as supply chain manufactUifaturanaet al., 1999. These algorithms
have proven mediation to be an extremely useful techniquediordinating distributed decision
making, however there has been little to no formal discumssfahe effects of different mediator
selection strategies.

3 Methods
3.1 Mediation, Overlay and Complexity

For the purposes of this paper, we will define the terms miediand overlay in the following
fashion with respect to DCSPs:

Definition: mediationis the process of solving a centralized version of a subprabh the
DCSP to resolve conflicts among two or more agents (one oftwhizy be the mediator).

Definition: overlayis the process of fitting together partial solutions to a DAIB® puzzle
pieces.

The remainder of the analysis in this section describesala¢ionship between the complexity
of a mediation procedure, the mediation process, and theagverocess. In the most basic
terms, the initiation of a mediation session in DCSP soliivglves the following process:

1. A mediator must be appointed either arbitrarily or basedame strategy implemented
by the agents.

2. The mediator must collect any information deemed necgs$said the mediation pro-
cess, such as the constraints placed on other agents idvaltiee session.

3. The mediator must derive a solution that satisfies idabt#i conflicts.

4. The solution must be relayed and adopted by the otheragetved in the session, and
the solution must be overlayed with problem solving effantthe rest of the DCSP.

Notice that if mediation is the only technique availablette gents for satisfying conflicts and
the mediator’s solution does not perfectly overlay ontogheblem, the final step will require
additional mediation sessions to stabilize the system. iéieth in DCSP solving is usually
initiated when a conflict is identified by an agent based omeriily assigned variable values.
The goal of the session will be to re-assign values to eachtdgeolved that alleviate the
conflict.

The benefits of this process to DCSP solving arise from coatioumal improvements asso-
ciated with finding a solution to the centralized versionted sub-problem, and communica-
tion improvements arising from the lack of negotiation rebdince the mediator's decisions



are adopted immediately by all agents in the session. Thebdreks of employing media-
tion based techniques in DCSP solving result from the wastfedts of non-mediating agents
during a mediation session that are awaiting direction ftbenmediator, and the difficulty of
overlaying solutions from several different mediationss@ss.

Understanding the general form of mediation techniquegsshes formalize their complexity
in DCSP solving. Throughout our analysis we will make thédfelng assumptions:

e For simplicity sake, and to focus on the primarily on the ictpeEf mediation, we assume
that agents have no manner of resolving conflicts other thedfiation.

¢ We will assume that the complexity of the mediation procesarés all other agent pro-
cessing, such as the computation required to choose a mediais assumption is jus-
tified considering that mediation usually requires perfiogrsome kind of search, which
is likely to overshadow the complexity of other agent tasks.

e For a particular problem instance and a particular medidt@mework we will assume
that M provides a finite upper bound on the number of mediationsiredjto reach a
stable solution, or identify that the problem is infeasibd@ upper bound exists for any
complete algorithm such as APO, as mediation sessions caimaally grow in size until
the entire finite sized problem is mediated by a single agetiteé worst case.

e We assume that the functiof(x) describes the worst-case complexity of mediating
agents, such that the computation involved by the indidichediator isO(f (x)).

Let T'(w) be a function such that the worst-case computational costylef the entire medi-
ation system can be described@6I'(w)), wherew € Q defines a vector of siz& whose
i'th entry is the number of agents involved in thih mediation session, ard is the set of all
such possible vectors that lead to a solution with\/ sessions (note tha®| < n(M + 1)).
Different chains of mediation sessions will result in diffatw vectors, and any chain which
requires fewer thad/ sessions will have values of zero for all entries beyond thalrer of
necessary sessions. To clarify, the differences betweagimglean result from the selection of
different mediators, and differences in solutions chogerdrh mediator. Using these defini-
tions and the assumptions above, the funciigw) can be defined as the a linear combination
of the complexity of each individual mediation session d®¥es:

M

Tw) = Y flw) 1)

=1

The mediation procedure that minimizes computational derity* of the system, is the
one that produces a vectar, which minimizes the value df in Equation 1.

However, determining the number and size of mediationsessequired for the procedure
to lead to a stable state often involves carrying out theeptioblem solving process. Instead it
is useful to use probabilistic analysis and empirical itigagion to design mediation procedures
that minimize the expected worst-case complexity of thegss.

To that end we can describe the expected worst-case conyptd>aur mediation system
by introducing a probability density functiom(w), which describes the probability that our
mediation procedure involves the mediation sizes in théincecified byw. Using the proba-
bility function, we can describe the expected complexitpof system a® (E [T (w)]), where
E[T(w)] is equal to the functiom(p). This function involves summing the complexity over all
possible values ab € 2, multiplied by their probability. We can deriveas follows:

11t is worth noting that other goals in mediator selection nb@ydesirable, such as minimizing the amount of
communication involved in reaching a stable state, whicjuire different analysis.
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We can conclude our analysis and reach the desired intuationtroducing one final set of
assumptions.

e Letus assume that the probability functigiw), can be estimated with a functigf(;),
which satisfies Markov and independence properties; suathtib probability of observ-
ing a mediation of sizg depends only on the size gfand not on its previous or future
values. This assumption allows us to reason about and neettsuprobability of pro-
ducing sessions of a particular size, rather than speciitsh

e We will also assume that the functigrip’) relates the probability distribution over the
size of mediation sessions to an estimate of the number ofati@aks required to reach a
stable state, or the state beyond which the valueswbuld be zero. This function can
also be reasoned about and experimentally measured, anelieedintroducing it helps
to make our discussion more insightful.

Using these final assumptions (also recall thas the number of agents and variables in the
DCSP) we can re-write the expected worst-case complexitytta as:

n .(J(P/)
T(p') = Z Zf(j) P'(5)
) = g®)>_ fU)P () €)

Notice that the functiory describes the relationship between difficulty in overlgysolu-
tions and likely session size, because the number of medgtequired to reach a solution is
related to how many conflicts are created by each sessionfufieton f describes the rela-
tionship between difficulty in finding a mediation solutiondesession size. Thus, Equation 3
clearly illustrates the trade off between mediation praced which are likely to involve coor-
dinating large parts of the problem space, and proceduatsitk likely to coordinate smaller
parts of the problem at the expense of involving more sessiorterms of designing mediation
procedures, this model suggests that during the executitreqrocedure, optimal mediator
selection strategies should be employed to adjust the pilapalistribution, p’, over the size
of mediation sessions and minimize the expected system leaityp 7.

3.2 APO Overview

The APO algorithm provides a basic framework for utilizingdimation in DCSPs, which we
will employ to explore our theoretical model of distributebblem complexity. For the details
of the APO algorithm the reader is directed kdailler and Lesser, 20Q4for additional details
see[Mailler, 2004). The algorithm can be summarized as follows:

1. Agenti begins by assigning a random valdg € D;, to its variablex;.

2. It then calculates its local priority,;, based on the number of agents it share constraints
with (its degree in the constraint graph).



3. The agent then communicates information about its lossigament,d;, to all of its
neighbors and when a conflict is identified by an agent thahatbe rectified by the
agent alone, a mediator is chosen with the highest prianithé group of agents known
be part of the conflict.

4. The agents who are part of the conflict communicate allitfaination they know about
their local sub-problems, including:

o the set of constraints};, that apply to their variable,
o the entire domain of their variabl®),,

¢ and information about other agents that are known to be iflicowith each of the
values in their domain (this is referred to aabeleddomain).

5. This information is then used by the mediator to perfornranbh-and-bound search
guaranteed to find a feasible solution, if one exists, to tite@oblem pertaining to
agents that are part of the mediation session that minimtfeeiumber of constraints
violated for agents outside of the session (the mediaterohéhes the number of external
violations using the labeled domains).

6. The mediator’s solution is communicated to each of thentsgavolved in the session,
and any external agent (not involved in the elapsed mediagssion) who was violated
by the solution is added to the mediator’s neighborhood t lese the same agent medi-
ates, the violated agent will be included in the session.

3.3 Mediator Selection

In order to validate our theoretical model of mediation céewjy, we will explore the perfor-
mance of different mediator selection strategies withim ftamework of APO. As described
above, mediators are selected in APO based on local pesnithich are proportional to the
number of agents in the mediator’s neighborhood. To explifferent mediator selection strate-
gies we will change the way these priorities are generated.

Notice that the mediation aspect of the APO algorithm ingsla complete branch-and-
bound search of the centralized sub-problem. The searchithlion is well known to be ex-
ponentially complex in the number of variables on 3-colamir coloring problems. Thus in
Equation 3 the functiorf is O(27), which minimizes complexity when sessions are likely to be
smaller. Howeverg will likely be inversely related to expected mediation sikecause larger
mediations will lead to fewer sessions. This suggests asing the size of mediations and
potentially mitigates the effects of the branch-and-bocmahplexity. An important insight is
that becaus¢ is exponential in expected mediation size; i inverselysub-exponentidgh the
expected mediation size, therwill be minimized wherp’ favors smaller mediations.

Furthermore, during mediation, rather than choosing tis¢ diiscovered feasible solution,
mediators continue to search for the solution with the murmmumber of external conflicts.
This is intended to increase the likelihood that mediatddtemms will overlay properly with
existing solutions, and thus decrease the inverse contpleithe g function. Because of this
fact, and the fact that on solvable graph coloring instattoe® will always be a way to overlay
feasible solutions, our model predicts the expected caoxitplef the system on 3-color graph
coloring problems will be minimized when the expected siizthe mediations is smallest. This
prediction is contrary to suggestions and intuitions pnése in the description of the APO
framework, which involves choosing mediators who are mosistrained and thus will have
the largest expected mediation sessions.



APO p; = |nei ghbor hood(i) |

Random APO (RAPQO) p; = random numbee [0, 1]

Figure 1: Summary of Mediator Selection Strategies

4 Results

4.1 Distributed 3-color Graph Coloring

The experiments presented in this paper involve solvingaddé instances of a distributed 3-
color graph coloring (D3GC) problem using different mediagelection strategies with the
APO algorithm. The D3GC problem is a DCSP where all of the traimgs arenot-equal
constraints, and the domain of each variable contains 8rdifft colors. We generate random
solvable instances according to the algorithm presentBdiimton et al., 1994, which has been
used for benchmarking previous research in this area.

4.2 Experimental Setup

Figure 1 summarizes the different mediation strategies xgen@e in our experiments. The
different strategies include the strategy suggested WwaghAPO framework of choosing prior-

ities proportional to an agent’s number of constraints,redoa strategy, which we will refer

to as Random APO (RAPO), that assigns priorities completehiglomly, and a strategy that
assigns priorities inversely proportional to an agent®bar of constraints. This last strategy
is intended to minimize the expected mediation size, antdbeilreferred to as Inverse APO
(IAPO).

In our experiments we varied the number of variables in tlodlem,», and the problem
density, or number of constraints per variabte, We generated 10 random solvable problems
for each combination of andm, n = 15, 30, 36, 45, 51, 60 ana = 2.0 (low density) and
2.7 (high density). For each of the 10 problems we generaedifferent random starting
assignments which were shared across all algorithms, futabdf 1200 runs per algorithm.

4.3 Experimental Results

The relationship between the average size of mediationosssand number of mediation ses-
sions required for each algorithm is shown for each of theesbfn andm in Figure 2. The
running time results are shown in Figure 3 as percentageowepnent graphs over the APO
algorithm of the other two algorithms, with 95% confidenceiuals. We are aware that the
running time of an algorithm can be greatly effected by itplementation specifics, however
these algorithms were all implemented in the exact sameefnark ensuring that differences
were only due to the difference in mediator selection sfriae We also measured the number
of cycles each algorithm required, and the number of mesgaagsed between agents. During
a cycle all messages are delivered to agents, they are dlltoygrocess the information con-
tained in the messages, and all messages emitted duringdleeace placed on the queue to be
handled during the subsequent cycle. Both of these megiesated no significant differences
between any of the algorithms or the results reported for AP(Mailler and Lesser, 2004

As expected, the IAPO algorithm has the smallest mediassiens on average and the
APO algorithm has the largest for all valuesodndm. The mediation measurements confirm
that there is an inverse relationship between the average$ithe mediations and the number



of sessions required for all algorithms and all values:adnd m, however the relationship
appears to be inversely sub-exponential. This relatignalsio appears to be more significant
on problems with larger values afandm, which can be explained by the increasing difficulty
in overlaying solutions. The running time results confirhattlAPO is significantly faster for
all values ofn andm than the APO algorithm, and appears to scale more effegtivee RAPO

algorithm falls directly

in between the other two algorithon all reported metrics.

We performed similar experiments on random (not guararitebd solvable) 3-color graph
coloring problems and found the results showed little défece in performance on average
between the different mediator selection strategies. \Wibate this to the fact that infeasible
problem instances require larger mediation sessions tifgeln order to identify an infeasible
problem the subset of variables which together preventsitfiasolution must be centralized
by a mediator, which is more likely to happen when mediatinesare larger. Thus, improve-
ments on solvable instances by the IAPO algorithm are bathhg a more rapid recognition of
infeasible problems by the APO algorithm.
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needed to



Runtime Improvement (%)
&

APO Baseline

10 20 30 40 50 60

Problem Size ()

(a) Low Density Problems# = 2.0)

Runtime Improvement (%)
-
>

APO Baseline

10 20 30 40 50 60

Problem Size (n)

(b) High Density Problemsng = 2.7)

Figure 3: Running time needed to solve random solvable D3G@mnces as mean percentage
improvement over APO.

5 Discussion

In this paper we presented a theoretical model for undeatstgrthe computational complex-
ity of mediation procedures for solving DCSPs. The modebssts that problems with sub-
exponential overlay costs should be biased towards snmaéidiaton sessions to reduce system
complexity. Our experimental results validate our theoattnodel by examining different me-
diator selection strategies on solvable 3-color graphrawjgproblems. The results confirmed
that the relationship between the expected size of a mediagission and the number of media-
tion sessions needed to reach a stable state was inverbedxponential on these problems. As
our model predicted, this led to a significant increase inesygunning time as average medi-
ation size increased. These results are contrary to pralyioeported intuitions about effective
ways of selecting mediators, and the resulting algorithipedormed APO, the previously
most successful technique in this domain.

The model presented in this paper formalizes the relatiprisstween the benefits of me-



diation for cooperation and the difficulty in fitting the réting solutions together in DCSPs.
DCSPs have been shown as formalized instances of coomedidivibuted problem solving,
and we believe this generalizes our model to provide insigbtthe larger domain of mediated
cooperative problem solving.
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