
Examining DCSP Coordination Tradeoffs

Michael Benisch
School of Computer Science,
Carnegie Mellon University

mbenisch@cs.cmu.edu

Norman Sadeh
School of Computer Science,
Carnegie Mellon University

sadeh@cs.cmu.edu

ABSTRACT
Distributed Constraint Satisfaction Problems (DCSPs) pro-
vide a model to capture a broad range of cooperative multi-
agent problem solving settings. Researchers have generally
proposed two different sets of approaches for solving DC-
SPs, backtracking based approaches, such as Asynchronous
Backtracking (ABT), and mediation based approaches, such
as Asynchronous Partial Overlay (APO). These sets of ap-
proaches differ in the levels of coordination employed during
conflict resolution. While the computational and commu-
nication complexity of the backtracking based approaches
is well understood, the tradeoffs in complexity involved in
moving toward mediation based approaches are not. In this
paper we comprehensively reexamine the space of mediation
based approaches for DCSP and fill gaps in existing frame-
works with new strategies. We present different mediation
session selection rules, including a rule that favors smaller
mediation sessions, and different mediation strategies, in-
cluding a decentralized hybrid strategy based on ABT. We
present empirical results on solvable 3-coloring and random
binary DCSP problems, that accurately capture the com-
putational and communication tradeoffs between ABT and
various mediation based approaches. Our results confirm
that under some circumstances the newly presented strate-
gies dominate previously proposed techniques.

General Terms
Algorithms, measurement

Keywords
Agent systems, constraint processing, cooperative distributed
problem solving, computational complexity

1. INTRODUCTION
Distributed Constraint Satisfaction Problems (DCSPs) pro-

vide a formalism for representing problems where different
agents are each responsible for instantiating different sets of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

variables subject to constraints. The agents aim to assign
values to their variables, such that all constraints are satis-
fied. Many real-world scenarios can be modeled as DCSPs,
such as supply chain coordination [10], product co-design,
and distributed meeting scheduling [8]. Some of these sce-
narios give rise to naturally distributed problems, others
benefit from distributed reasoning for privacy or confiden-
tiality reasons.

There have been several distributed algorithms developed
for solving DCSPs, each with particular strengths and weak-
nesses. The DCSP algorithm that has received the most at-
tention is an asynchronous version of Constraint Backtrack-
ing (CBT), called Asynchronous Backtracking (ABT) [12].
The original proposal for ABT has seen several improve-
ments [3, 2, 14], and is considered one of the most effective
techniques for solving DCSPs.

Recently the multi-agent systems community has become
interested in DCSP algorithms for modeling agent coordina-
tion tasks. This idea was introduced by Mailler and Lesser
in the context of an algorithm called Asynchronous Partial
Overlay (APO) [5]. In APO agents involved in a conflict
select a mediator to solve a centralized version of a sub-
problem capturing key elements of that conflict.

APO has been shown to involve significantly less commu-
nication than backtracking based techniques, such as ABT,
by reducing the amount of unsuccessful instantiation at-
tempts that repeatedly violate the same constraints (thrash-
ing) [5]. On the other hand, in contrast with ABT, current
versions of mediation based techniques have failed to fully
exploit opportunities for concurrent processing. This trade-
off has not been explicitly identified in prior experimental
investigations due to somewhat coarse computational com-
plexity measurements.

In this paper we measure computational complexity based
on a finer metric recently proposed by Meisels et. al. [6], that
involves counting non-concurrent constraint checks. Com-
prehensive testing based on this finer metric reveals trade-
offs that had not been captured previously. Our results in-
volve solvable 3-coloring problems, as well as random binary
DCSPs. These results have motivated us to develop a hy-
brid technique that reconciles the tradeoffs we have identi-
fied. The basic intuition of our hybrid technique is to avoid
thrashing on solvable problems through coordinated medi-
ation, while maximizing concurrent work in the mediation
process itself.

In Section 2 we introduce the DCSP formally, and discuss
previous work on measuring problem solving complexity of
DCSP algorithms. In Section 3 we discuss ABT and APO,

along with new variations including our decentralized hy-
brid. Experimental results are presented and discussed in
Section 5, and concluding remarks are provided in Section 6.

2. BACKGROUND

2.1 DCSP Definition
The distributed constraint satisfaction problem was first

discussed by Sycara et. al. and Yokoo et.al. as a way of
formalizing Cooperative Distributed Problem Solving [12,
10]. A DCSP is formally defined as a constraint satisfaction
problem (CSP) of the following form:

• a set of n variables, V = {x1, . . . , xn}

• a set of discrete finite domains for each variable, D =
{D1, . . . , Dn}

• a set of constraints R = {R1, . . . , Rm} where each
Ri(di1, . . . , dij) is a predicate on the Cartesian prod-
uct of the domains of all the variables referenced by
that constraint. The constraint is said to be satisfied
if the assignments of each referenced variable satisfy
the constraint.

An agent, i, is said to know about a particular set of vari-
ables, Vi, and constraints, Ci. We will call the group of
agents that agent i is connected to by constraints i’s neigh-
borhood, Ni. The goal of the agents is to instantiate their
variables so that all constraints are satisfied. As in other
work, for the sake of simplicity, we restrict our presenta-
tion to situations where each agent controls (“owns”) a sin-
gle variable and knows about all the constraints that refer
to that variable. We further limit our discussion to binary
constraints (constraints between two variables). It has been
shown that more general problems can be reduced to prob-
lems that conform to these restrictions. In Section 6 we
briefly discuss why the trends observed in this study should
extend to these more complex classes of DCSPs.

2.2 Related Work
The original descriptions of ABT and APO appear in [12]

and [5] respectively. In empirical studies of APO and back-
tracking based algorithms, such as ABT and Asynchronous
Weak Commitment [11] (AWC), computational complexity
measurements were often based on somewhat coarse per-
formance metrics. In particular, these experiments typi-
cally did not differentiate between steps that required sig-
nificantly different amounts of computation, e.g. equally
counting as a single step a consistency check in AWC and
a full backtracking search in a mediation session. Because
they also focused primarily on solvable 3-coloring problems
these experiments also raised the question of whether they
were representative of other problem classes. In this paper
we revisit the coordination tradeoffs involved in solving DC-
SPs using finer computational metrics and a more extensive
class of problem instances - both solvable 3-coloring prob-
lems and random binary DCSPs. Our experiments reveal a
richer set of performance tradeoffs than had been reported
earlier. In addition, we present novel search configurations
that aim to reconcile these tradeoffs.

Our empirical analysis uses a metric introduced by Meisels
et.al. [6] that records the number of non-concurrent con-
straint checks (NCCCs) associated with different distributed

search procedures. This metric distinguishes between com-
plex computational steps involving multiple constraint checks,
and much simpler ones. Constraint checks are the preferred
computational unit used to measure performance of central-
ized constraint processing algorithms (see for example [9]).
By counting non-concurrent checks the NCCCs metric is
akin to the notion of a make-span or throughput measure-
ment in scheduling [4].

The results presented in this paper build on our prelim-
inary work comparing different mediation session selection
rules for APO [1].

3. BASIC BACKTRACKING AND MEDIA-
TION ALGORITHMS

This section outlines key features of ABT and APO, fo-
cusing on elements that impact computation and communi-
cation complexity.

3.1 Asynchronous Backtracking
ABT is an asynchronous implementation of the traditional

backtracking search approach to solving centralized CSPs.
A summary of the procedures involved in the original de-

scription of ABT is shown in Figure 1. The algorithm begins
with an initialization process, during which each agent i is
given a static priority, pi (typically based on lexicographic
order). Agent i then arbitrarily assigns a value, di, to its
variable, xi, and broadcasts it to all lower priority neigh-
bors. When agent i receives an assignment message from
another agent, j, it stores the assignment as a tuple in the
set called its agentview. Agent i then checks the consistency
of its agentview and its own assignment. When it finds that
its own assignment violates a constraint it tries to assign
a value to its variable that resolves consistency. If it can-
not find such an assignment it begins the backtrack process,
and informs a higher priority agent that its agentview is
nogood (leads to an unsatisfiable situation for the agent)1.
The algorithm proceeds until all of the agents have vari-
able assignments consistent with their agentviews, or one of
the agents discovers that the problem is infeasible. For a
full description of the ABT algorithm along with proofs of
completeness and correctness, the reader is directed to its
original description in [12].

An agent executing ABT uses constraint checks2 to deter-
mine the consistency of its variable assignment. Because the
agent knows only about the assignments of higher priority
agents (as defined in its agentview), this amounts to checking
each constraint with a higher priority agent. Notice that the
original description of ABT involves recording each received
nogood as a constraint (see “when received nogood” in
Figure 1). As a result, each learned nogood is among the set
of constraints that must be checked for consistency. Since
the storage of nogoods can grow exponentially on harder
problem instances, checking nogoods as constraints can sig-
nificantly increase the number of NCCCs used by ABT. It
has been shown, however, that agents can avoid much of
the constraint checking work associated with nogoods by
eliminating them from storage once they become stale (they

1We are aware that an agent can potentially resolve the sub-
set of its agentview that resulted in the conflict. However,
this has been shown to provide little benefit.
2Note that this refers to constraint checks in general,
whether or not these checks are concurrent.

procedure init()

calculate priority, pi (usually lexicographic order);
choose di ∈ Di arbitrarily; set xi ← di;
agent viewi ← ∅;
broadcast();

when received ok?(j, dj)

update agent view(j, dj); /* stores j’s assignment */
check agent view();

procedure update agent view(j, dj)

if agent viewi contains assignment for j then
remove assignment of j from agent viewi;

end if
agent viewi ← agent viewi ∪ {〈j, dj〉};

procedure check agent view()

if ¬consistent(agent viewi ∪ {〈i, xi〉}, Ci) then
if choose value() then
broadcast();

else
resolve conflict();

end if
end if

procedure broadcast()

for agent j ∈ Ni | pj < pi do
send ok?(i, xi) to agent j;

end for

procedure choose value()

for di ∈ Di do
if consistent(agent viewi ∪ {〈i, di〉}, Ci) then

xi ← di; return >;
end if

end for
return ⊥;

procedure resolve conflict()

if agent viewi 6= ∅ then
find agent j ∈ agent viewi with lowest priority, pj ;
send nogood(i, agent viewi) to agent j;

else
No solution!

end if

when received nogood(j, agent viewj)

for agent k in agent viewj and not in agent viewi do
let dk be the value of agent k in agent viewj ;
update agent view(k, dk);
request that k add i to Nk;

end for
let cj be the constraint that agent viewj is nogood;
Ci ← Ci ∪ {cj};
check agent view();

Figure 1: Procedures Defining the Behavior of an ABT Agent i

refer to a branch of the search tree that has already been
discarded) [2]. The necessary revisions to ABT for prun-
ing stale nogoods are given in Figure 3.1. When measuring
the computational requirements of this revised version of
ABT, it is important to take into account the additional
checks that have been introduced to determine whether or
not a nogood is stale. However, because the number of stale
nogoods tends to grow exponentially, the savings typically
far outweigh this additional computational cost. We would
like to note additionally, that this improvement cannot be
used in A WC because priorities are assigned dynamically
and stale nogoods may become relevant again. This makes
AWC less competitive when measuring computational re-
quirements based on consistency checks. For this reason we
do not report experiments with AWC in this paper.

Another configuration of ABT involves having agents read
all queued messages before trying to re-assign their vari-
ables. In contrast to checking consistency after each incom-
ing assignment update or nogood, agents processes all the
information they have received before performing their next
consistency check (“procedure check agent view”). This
small variation has recently been reported to provide signif-
icant improvements [13].

3.2 Asynchronous Partial Overlay

A summary of the procedures involved in a basic media-
tion framework for DCSPs is given in Figure 3. Procedures
that are not redefined are assumed to be identical to the
description in Figure 1. The initialization process of a me-
diation based algorithm proceeds the same way as in ABT.
However, when agent i broadcasts its value assignment, it
does not consider priority and sends the assignment to all its
neighbors. When agent i receives an assignment message it
proceeds in the same fashion as ABT to update its agentview
and check the consistency of relevant constraints. If agent i

detects a conflict and cannot resolve it locally by changing
the value of its variable it initiates a conflict resolution pro-
cess. In a mediation based algorithm the this involves agent
i inviting all of its neighbors to join a mediation session - the
size of the mediation session is defined by agent i’s neigh-
borhood. Once all of agent i’s neighbors have each either
accepted or rejected the invitation, a mediation session be-
gins. A mediation session only involves the agents that have
accepted the invitation. An agent can only accept to par-
ticipate in one mediation session at a time. Agents choose
which invitation to accept according to a mediation session
selection rule, which we denote R≺. Additional details of the
APO algorithm, a specific mediation based implementation,
can be found in [5].

In the following Section we review different possible medi-

when received ok?(j, dj)

update agent view(j, dj);
prune stale nogoods();
check agent view();

procedure prune stale nogoods()

for nogood constraint cng ∈ Ci do
let agent viewc be the agentview that created cng;
if agent viewc * agent viewi ∪ {〈i, xi〉} then

Ci ← Ci \ {c
ng};

end if
end for

when received nogood(j,agent viewj)

for agent k in agent viewj and not in agent viewi do
let dk be the value of agent k in agent viewj ;
update agent view(k, dk);
request that k add i to Nk;

end for
if agent viewj ⊆ agent viewi ∪ {〈i, xi〉} then

let cj be the constraint that agent viewj is nogood;
Ci ← Ci ∪ {cj};
check agent view();

end if

Figure 2: Revisions to ABT for Nogood Pruning

ation session selection rules and mediation procedures, and
discuss their constraint checking requirements. Indepen-
dently of the mediation session selection rule and mediation
procedure, mediation based agents use constraint checks to
determine the consistency of their variable assignments.

4. MAPPING MEDIATION DIMENSIONS
The space of possible mediation strategies has been the

subject of limited investigation. In this paper we focus on
two mediation dimensions that we have found to have a sig-
nificant impact on the performance of mediation based al-
gorithms, namely mediation session selection rules and me-
diation procedures themselves.

4.1 Mediation Session Selection Rules
The mediation session selection rule described in the orig-

inal APO algorithm is biased toward the selection of larger
mediation sessions. Preliminary work reported in [1] pre-
sented a computational model along with initial results sug-
gesting that, under certain circumstances, focusing first on
smaller sessions can yield significant performance improve-
ments. Intuitively, because mediation sessions may involve
full backtrack search, the complexity of large mediation ses-
sions will tend to dominate that of smaller sessions. Accord-
ingly, focusing first on large sessions will lead to unnecessary
computational efforts, when smaller sessions are sufficient.
In this study we explore the performance impact of media-
tion session size by examining the following two mediation
session selection rules.

• R
APO
≺ : this mediation session selection rule was sug-

procedure broadcast()

for all agents j ∈ Ni do
send ok?(i, xi) to agent j;

end for

procedure resolve conflict()

acceptedi ← ∅;
for agent j ∈ Ni do

send invitation(i) to agent j;
rsvpi ← rsvpi ∪ {j};

end for

when received I : {invitation(j1),...,invitation(jn)}

/* I is a set of n invitations received at the same time */
if agent i is already involved in a mediation session then

send reject invitation(i) to all inviting agents;
else

find invitation(jk) ∈ I specified by selection rule, R≺;
send accept invitation(i) to agent jk;
send reject invitation(i) to all other inviting agents;

end if

when received accept invitation(j)

acceptedi ← acceptedi ∪ {j};
rsvpi ← rsvpi \ {j};
if is empty(rsvpi) then
mediate(acceptedi);

end if

when received reject invitation(j)

rsvpi ← rsvpi \ {j};
if is empty(rsvpi) then
mediate(acceptedi);

end if

Figure 3: Mediation DCSP Algorithm Framework
(procedures not redefined are given in Figure 1)

gested in the original definition of APO. Agents evalu-
ate invitations based on the size of the mediation ses-
sion they would lead to, and pick the invitation corre-
sponding to the largest one.

• R
IAPO
≺ : this mediation session selection rule is the in-

verse of the original selection rule. It instructs agents
to choose the smallest mediation session.

These two rules can be implemented by including the size
of the inviting agent’s neighborhood in each invitation. For
all practical purposes the computational complexity of eval-
uating mediation session invitations using these two rules
can be ignored. The evaluation can be performed by each
agent in time linear in the number of invitations, which does
not exceed the size of the agent’s neighborhood. This com-
putation is typically dominated by the computation per-
formed as part of the mediation procedure itself.

4.2 Mediation Procedures

procedure mediateBB(acceptedi)

let I be the CSP instance defined by acceptedi ;
P ∗ ← a conflict minimizing solution to I using BB;
broadcast-solution(P ∗);

procedure mediateBT(acceptedi)

let I be the CSP instance defined by acceptedi ;
P ∗ ← a feasible solution to I using CBT;
broadcast-solution(P ∗);

procedure mediateABT(acceptedi)

let I be the sub-DCSP defined by agents in acceptedi;
init() ABT on I (as described in Section 3.1);

procedure broadcast-solution(P)

if P 6= ∅ then
for 〈j, dj〉 ∈ P do

send accept value(dj) to agent j;
end for

else
No solution!

end if

when received accept value(d)

xi ← d;
check agent view();

Figure 4: Summary of Mediation Procedures

The mediation procedure originally proposed with APO
involved a mediator (the agent that sent the invitations)
centralizing the sub-problem defined by the agents in the
session, and solving it locally. The mediator used a branch
and bound search to find a solution that minimized con-
flicts with agents outside of the session. In this Section
we describe the original APO branch and bound media-
tion procedure, and propose two new mediation procedures
(summarized in Figure 4). We introduce a backtrack search
mediation procedure to explore the performance tradeoffs
involved in finding a conflict minimizing solution. We also
introduce a novel hybrid procedure where mediation is per-
formed in a distributed fashion using ABT. This hybrid al-
gorithm helps us explore the performance tradeoffs between
concurrency and coordination. The different mediation pro-
cedures we examine require different information to accom-
pany accept invitation messages. The requirements are
described in detail along with the procedures below.

Branch and Bound (APO-BB): The branch and bound
mediation strategy was the method originally proposed with
APO. When using this mediation strategy, a mediator must
gather all of the information about the local sub-problems
of agents involved in the session (the agents that accepted
the invitation) including:

• the set of constraints, Cj , that apply to agent j’s vari-
able,

• the entire domain of agent j’s variable, Dj ,

• and a label function defined on agent j’s domain, Lj :
dj → {k1, . . . , kn | agent ki will be conflicted with dj},
that indicates all of the agents known to be in conflict
with each of j’s values.

This information is used by the mediator to perform a
branch and bound search. This search finds a feasible solu-
tion, if one exists, to the sub-problem pertaining to agents
that are part of the mediation session. The solution mini-
mizes the number of constraints violated for agents outside
of the session, which can be determined using the label func-
tions. In terms of measuring computation, the branch and
bound procedure uses constraint checks as it proceeds to
construct all solutions that cannot be ruled out by bound-
ing. However, it does not use constraint checks to determine
how many external violations a partial or full solution results
in. The number of external violations is simply the size of
the set returned by the label function.

Backtracking (APO-BT): This mediation procedure
proceeds exactly as the BB variant, except that the media-
tor attempts to find any feasible solution. The solution may
not minimize conflicts with out-of-session agents. Using this
mediation procedure, agents need not send fully labeled do-
mains to the mediator3. In terms of measuring computation,
the backtracking mediation process uses constraint checks in
the same fashion as the branch and bound process, except
it short-circuits computation as soon as a feasible solution
is found.

Asynchronous Backtracking (APO-ABT): We intro-
duce this mediation procedure as a novel hybrid between
APO and ABT where mediations are performed using the
ABT protocol. This mediation strategy downplays the im-
portance of the mediator, who no longer needs to collect
local constraint information from the other agents involved.
Because agents can be involved in one session at a time
APO-ABT synchronizes the overall problem solving process,
while exploiting opportunities for concurrency at the lower
level. The ABT mediation process uses constraint checks as
described in 3.1.

Any of these three mediation strategies can be used with
either of the mediation session selection rules, making for a
total of six proposed configurations. Also, each of the medi-
ation procedures uses the values of agents at the time of the
mediation as arbitrary starting values. This was suggested
in the original specification of APO and helps to respect
work done during earlier sessions.

5. EMPIRICAL EVALUATION

5.1 Empirical Setup
The experiments in this paper are intended to compare the

performance of the six mediation configurations outlined in
the previous section (five of which represent novel configura-
tions), and ABT. We present results from two different sets
of experiments, one involving random solvable distributed
3-coloring (D3C) problems and another on random binary
DCSP instances. A D3C problem involves each agent choos-
ing one of three colors. The problem is satisfied if no two
3Agents may, however, need to inform the mediator of a con-
flict after assignments have been dictated. This allows the
mediator to add an out-of-session agent to its neighborhood
to ensure completeness.

agents connected by a constraint share the same color. A
random binary DCSP problem involves arbitrary random
constraints between pairs of agents. In all of our experi-
ments all of the algorithms were provided with the same
instances and initial random values for variables.

Random binary CSP instances are typically characterized
by the number of variables, n, the number of values in each
variable’s domain, k, the density of the constraint graph,
p1, and the tightness of the constraints, p2 [9]. Our ran-
dom DCSP experiments use n = 10, and k = 10. p1 speci-
fies the probability that a constraint exists between any two
agents. In this paper we fix p1 = 0.7, a relatively high den-
sity value, behaviors on problems with different values of p1
result in similar observations. We vary p2 = 0.1 to p2 = 0.9,
which specifies the probability that two values in constrained
agent’s domains are in conflict. We draw at least 100 in-
stances for each value of p2, and about 500 instances near
the phase transition where p2 ∈ [0.4, 0.6]. The “phase tran-
sition” refers to an area of the problem parameters where
problems transition from being under-constrained, and thus
easy to solve, to over-constrained but still difficult to prove
infeasible [9].

The D3C instances are characterized by two parameters,
the number of agents involved, n, and the number of con-
straints per agent m. Since we are looking at solvable D3C
problems with no phase transition effects, we do not see
a need to vary problem density and instead fix m = 2.7
(typically considered high density). We vary the number of
agents from n = 15 to n = 60 in increments of 9 (these
values must be multiples of 3 to properly guarantee solvable
instances). With these instances we examine how the algo-
rithms scale to larger problems that are guaranteed to be
solvable. We draw at least 100 instances for each value of
n (although some algorithms are removed as they become
incapable of scaling based on a 5 minute cpu-time cutoff per
instance) according to the method provided in [7], for some
larger values of n we draw up to 500 instances to ensure the
statistical significance of our results.

The results presented indicate the mean number of mes-
sages and non-concurrent constraint checks (NCCCs) used
by each algorithm across the different simulations. The NC-
CCs are measured using the techniques described in Sec-
tions 3 and 4, and [6]. We provide 95% confidence intervals
when necessary, results missing intervals can be assumed to
be significant.

5.2 Results on Random CSP Instances
The NCCC results on random CSP instances are shown

in Figures 5(a) and 5(c). Examining these results, we can
see that the phase transition is clearly accentuated when
p2 = 0.5 for all the algorithms. Before this point problems
are relatively easy to solve and there is little difference ob-
served. When p2 = 0.5 we can see that ABT, with the
improvements described in Section 3.1, uses about 30,000
NCCCs on average, which is consistent with results reported
in [13]. In addition the APO-ABT and IAPO-ABT hybrids
both use about the same amount of NCCCs as ABT it-
self (see Figure 5(c)). This is not surprising, since about
half of the problems in this area require a mediation of the
entire network to prove infeasibility, and the hybrid algo-
rithms reduce to running ABT on the whole problem at
that point. The branch and bound based algorithms, APO-
BB and IAPO-BB, perform poorly during the phase tran-

sition, requiring about 200 times more NCCCs than ABT.
This is due to the fact that many of these problems must be
fully centralized with these procedures to prove infeasibility,
and finding the solution that minimizes external conflicts
amounts to exploring nearly the entire search tree during
each mediation. The backtracking based mediation algo-
rithms, APO-BT and IAPO-BT, require nearly 100 times
fewer NCCCs than the branch and bound algorithms, show-
ing that finding external conflict minimizing solutions costs
a significant number of NCCCs and provides far less less
benefit on random problems. However, the ABT based algo-
rithms use significantly fewer NCCCs than the backtracking
ones, showing the cost of centralizing the problem solving
effort.

The performance in terms of communication requirements
on random instances is shown in Figures 5(b) and 5(d).
These results are basically a mirror image of the NCCC re-
sults, with ABT and the ABT based mediation algorithms
requiring on average about 30 times more messages than
the other algorithms (again this is consistent with results
reported for ABT in [13] and [5]). Additionally we can see
from the results in Figure 5(d) that the mediation tech-
niques with the IAPO preference rule use about twice as
many messages as those with the APO preference rule. This
is not surprising considering that the IAPO preference rule
chooses smaller sessions and therefore needs more of them.

5.3 Results on Solvable D3C Instances
The NCCC results for solvable D3C instances are shown

in Figure 6(a). These results provide some very interesting
contrasts with the random CSP NCCC results. The algo-
rithm that performs best on the solvable D3C instances by
a large margin is our IAPO-BB algorithm. This algorithm
was the only one capable of solving 60 agent problems within
an allotted 5 cpu-minutes per instance, and it was able to
solve smaller instances orders of magnitude faster than the
other algorithms. Recall that on the random CSP instances
the branch and bound based algorithms performed nearly
200 times worse than the other algorithms, yet on the high
density solvable instances our IAPO-BB scales extremely
well. What we are seeing is that on high-density solvable
instances the benefit of finding solutions that minimize con-
flicts outside of a mediation session far outweighs the extra
work necessary to do so.

Another interesting result on the solvable D3C instances is
the benefit of the IAPO selection rule over the APO selection
rule. All of the variants with our IAPO selection rule used
significantly fewer NCCCs than their APO-based counter-
parts. Favoring smaller mediation sessions over larger ones,
as IAPO does, helps mediators avoid solving unnecessarily
large problems until absolutely needed. Our results suggest
that on solvable D3C instances it is often not necessary to
mediate over larger groups, and consequently IAPO avoids
some of the unnecessary computation of APO. These find-
ings are consistent with preliminary results we had reported
in [1].

When we look at the handful of algorithms that were able
to solve 51 agent instances we can see that only the ABT-
based algorithms remain along with IAPO-BB. Among the
ABT-based algorithms it is interesting to note that both
our APO-ABT and IAPO-ABT hybrid algorithms require
much fewer NCCCs than ABT itself on average (the IAPO-
ABT algorithm requiring significantly fewer). This begins to

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 0.2 0.4 0.6 0.8 1

N
on

-C
on

cu
rr

en
t C

on
st

ra
in

t C
he

ck
s

(N
C

C
C

s)

Problem Tightness (p2)

Random CSP Instances

APO-BT
IAPO-BT

APO-ABT
IAPO-ABT

APO-BB
IAPO-BB

ABT

(a) Mean NCCCs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 M

es
sa

ge
s

Problem Tightness (p2)

Random CSP Instances

APO-BT
IAPO-BT

APO-ABT
IAPO-ABT

APO-BB
IAPO-BB

ABT

(b) Mean Messages

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

N
on

-C
on

cu
rr

en
t C

on
st

ra
in

t C
he

ck
s

(N
C

C
C

s)

Problem Tightness (p2)

Random CSP Instances

APO-BT
IAPO-BT

APO-ABT
IAPO-ABT

APO-BB
IAPO-BB

ABT

(c) Mean NCCCs with 95% confidence intervals
(zoomed from Figure 5(a), p2 = 0.4 to p2 = 0.6)

 0

 200

 400

 600

 800

 1000

 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

N
um

be
r

of
 M

es
sa

ge
s

Problem Tightness (p2)

Random CSP Instances

APO-BT
IAPO-BT

APO-ABT
IAPO-ABT

APO-BB
IAPO-BB

ABT

(d) Mean Messages with 95% confidence intervals
(zoomed from Figure 5(b), p2 = 0.4 to p2 = 0.6)

Figure 5: Performance on Random DCSP Instances, (n = 10, k = 10, p1 = 0.7)

show the benefits of partially synchronizing problem solving
efforts on solvable D3C instances to cut back on the amount
of backtracking in ABT. The fact that all three of these
algorithms perform significantly better than the BT-based
algorithms shows the benefit of distributing work load on
larger problem instances.

When we look at the performance in terms of communica-
tion requirements for solvable D3C instances in Figure 6(b),
it is not surprising to find that all of the centralized ap-
proaches use significantly fewer messages than the decen-
tralized ones. What is interesting is the fact that our APO-
ABT and IAPO-ABT hybrid algorithms both used fewer
messages than ABT itself (recall these two used fewer NC-
CCs as well). Not only that, but the IAPO variant, IAPO-
ABT, used fewer messages than the APO variant, whereas
on the random instances the opposite was true. Both of
these observations are due to the fact that the mediation
based techniques required less backtracking than ABT and
among the mediation based techniques, the IAPO variant

required less backtracking than the APO variant. On the
solvable D3C instances the decrease in backtracking during
problem solving led to less communication as well.

6. CONCLUSION
In this paper we provided a comprehensive abstraction for

the space of DCSP mediation based approaches. In the pro-
cess we identified gaps in existing frameworks, and proposed
new effective strategies to fill them. The new strategies in-
clude a mediation session selection rule that favors smaller
mediation sessions, a centralized mediation approach that
shortcuts a significant amount of excess computation on ran-
dom instances, and a decentralized asynchronous mediation
strategy based on ABT.

Our empirical results represent the first truly comprehen-
sive view of the tradeoffs between backtracking and media-
tion based approaches for DCSPs. We tested the different al-
gorithms on solvable 3-coloring and random binary DCSPs.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 10 20 30 40 50 60

N
on

-C
on

cu
rr

en
t C

on
st

ra
in

t C
he

ck
s

(N
C

C
C

s)

Number of Agents (n)

Solvable D3C Instances

APO-BT
IAPO-BT

APO-ABT
IAPO-ABT

APO-BB
IAPO-BB

ABT

(a) Mean NCCCs with 95% confidence intervals

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 10 20 30 40 50 60

N
um

be
r

of
 M

es
sa

ge
s

Number of Agents (n)

Solvable D3C Instances

APO-BT
IAPO-BT

APO-ABT
IAPO-ABT

APO-BB
IAPO-BB

ABT

(b) Mean Messages

Figure 6: Performance on Solvable D3C Instances, (m = 2.7)

Our results confirmed that our newly proposed strategies in
this paper dominate previous techniques under some circum-
stances. Specifically, our mediator selection rule that favors
smaller sessions, IAPO, dominates the previously used rule
that favors larger ones, APO, in computational complexity
across all instances. IAPO also dominates APO in commu-
nication complexity on solvable D3C instances. Addition-
ally, our hybrid decentralized mediation strategy based on
ABT is as good as ABT in communication and computa-
tion on random instances, and strictly better in both areas
on solvable D3C instances. This suggests that the benefits
of synchronization for DCSPs reported elsewhere [5, 13] may
exist primarily on hard solvable instances.

7. ACKNOWLEDGEMENTS
The research reported in this paper has been funded by

the National Science Foundation under ITR Grant 0205435.
The authors would also like to thank Roie Zivan and Amnon
Meisels for their help calibrating the NCCC metric.

8. REFERENCES
[1] M. Benisch and N. Sadeh. How (not) to choose

mediators for distributed constraint satisfaction. In
Proceedings of LSMAS at AAMAS’05, 2005.

[2] C. Bessiere, A. Maestre, and P. Messeguer.
Distributed dynamic backtracking. In Proceedings of
DCR Workshop at IJCAI’01, 2001.

[3] Y. Hamadi. Distributed interleaved parallel and
cooperative search in constraint satisfaction networks.
In Proceedings of IAT’01, 2001.

[4] L. Lamport. The parallel execution of do loops.
Commun. ACM, 17(2):83–93, 1974.

[5] R. Mailler and V. Lesser. Using Cooperative
Mediation to Solve Distributed Constraint Satisfaction
Problems. In Proceedings of Third International Joint
Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2004), volume 1, pages 446–453,
New York, 2004. IEEE Computer Society.

[6] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan.
Comparing performance of distributed constraints
processing algorithms. In Proceedings of DCR
Workshop at AAMAS’02, 2002.

[7] S. Minton, M. D. Johnston, A. B. Phillips, and
P. Laird. Minimizing conflicts: A heuristic repair
method for constraint satisfaction problems. Artificial
Intelligence, 58(1-3):161–205, 1992.

[8] P. J. Modi, M. Veloso, S. Smith, and J. Oh. Cmradar:
A personal assistant agent for calendar management.
In Agent Oriented Information Systems, (AOIS) 2004,
2004.

[9] B. M. Smith and M. E. Dyer. Locating the phase
transition in binary constraint satisfaction problems.
Artif. Intell., 81(1-2):155–181, 1996.

[10] K. Sycara, S. F. Roth, N. Sadeh, and M. S. Fox.
Distributed constrained heuristic search. IEEE
Transactions on Systems, Man, and Cybernetics,
21(6):1446–1461, December 1991.

[11] M. Yokoo. Asynchronous weak-commitment search for
solving distributed constraint satisfaction problems. In
Proceedings of the First International Conference on
Principles and Practice of Constraint Programming,
pages 88–102, 1995.

[12] M. Yokoo and E. H. Durfee. Distributed constraint
satisfaction for formalizing distributed problem
solving. In 12th IEEE International Conference on
Distributed Computing Systems, pages 614–621, 1992.

[13] R. Zivan and A. Meisels. Synchronous vs
asynchronous search on DisCSPs. In Proceedings of
the First European Workshop on Multi-Agent Systems
(EUMA), 2003.

[14] R. Zivan and A. Meisels. Dynamic ordering for
asynchronous backtracking on discsps. In Proceedings
of CP’05, 2005.

