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Abstract
A wide runge of social structures can be represented as directed graphs: in order for these graphs to be
compared. however, they must often be labeled in a theoretically meaningful fashion. This requirement
is rarcly met in practice, thus there is a need for an algorithimic approach for labeling and aligning graphs.
In particular, a canonical labeling algorithm is sought which allows for the statistical treatment of
underlying struciural properties. Here, we examine three approaches 1o this problem: a recursive color-
splitting algorithm, a nodal degree ordering algorithm, and an algorithm which orders vertices hased on 2
weighted degree function. These methods are compared against both a random baseline and an optimal
eriterion under monte carle simulations. It is demonstrated that labelings under all three methods
outperform random labelings under Tlamming distance measures, and particular advantages of the

recursive color splitting algerithm for the idenrification of isomorphic graphs are discussed,
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Introduction and Motivation

Even a brief perusal of the empinical literature on social networks suggests a grear deal of
diversity in human social structures: this diversity is present not only in informal networks (e.g.,
friendship relations, acquaintunce chains) or but also in more constrained structures (e.g., familial
ties, authority or reporting relations). Particularly when considered as sociograms o raw
sociomatrices, many networks' appear to be quite distinct. This raises some key questions: in
particular, we require a formal means of establishing whether or not twe or more given structures
are truly different, and of quantifying this difference when present. Similarly, we may wish to
detertnine a formal standard for the identification of changes in social structure - a problem
which ultimately amounts to the same comparison considered above.

One means of answering these sorts of questions is lies in a descriptive index approach. As
noted, many aspects of soeial structure can be represented as sets of networks or graphs with
relationships among these graphs. Among such nelwarks might be those representing
communication or authority relations, resource access relations, mutual affinity relations, kinship
ties, and so forth. Onee a particular structure of interest has been identified, then cach of these
sub-structures can be measured and represented as 4 network or graph. Using a variety of
descriptive indices (e.g., density, span of conirol, centralization, reciprocity), differences or
similarities between these graphs can be measured. By systematically comparing these indices

4cToss structures, it should be possible 10 classify and/or to discriminate between them.

! Here we use the terms network ond graph interchangeably, Howewer, in some litcratres the term “graph” s
restrictedd to binary (and symmetric) matrices and networks to weighted matrices: in this usage, the mujority of the
“networks” we consider would be referred ta as directed araphs.



Unfortunately, there does not currently exist & commonly accepted taxonomy for classifying
social structures, Even in the study of organizations - where one might expeet natural constraints
to facilitate such un endeavor - debate rages over whether or not such a taxenomy is possible, let
alone useful. McKelvey (1982) sees a need for such a taxonomy. Hannan and Freeman {1989),
by contrast, argue that categories of organizational designs should be specified according to the
interests of the rescarcher. Some schemes for elassifying organizations have been based on
strategy (Romanelli, 1989b) or product service (Fligstein, 1985). Other rescarchers have
classified organizations using multiple dimensions. For example, Aldrich and Mueller (1982)
categorize organizations using the dimensions of technology, conrdination, and control. Tn
contrast wilh these previous ciforts, what we wish to suggest is a graph theoretic approach to this
problem. Specifically. we here conceptualize social structures us sets of associated graphs, We
then atrempt to develop a method of distinguishing allernative, and possibly new, configurations
by locating those structures which differ (statistically) significantly from others on a merric
distance measure, under a simple null hypothesis. Particular attention is paid to developing a
graph thearetical procedure for locating common networks und sub-networks. This is critical, as
the ability 1o locate a common network is necessary for developing a mathematical criterion for
determining whether the measures of structure for two different graphs are meaninglully
different. In order to determine whether the difference between structures is significant we will
need to be able to define the distributions of scts of graphs under a null hypothesis and measure
the distance between graphs. Thus, by being able to define distributions of sets of graphs in
terms of such concepts as their central tendency, we hope to answer fundamental methodological

and theoretical questions regarding social architectures.



Problem Background

Network measures can be used o characterize graphs; similarly, statistically significant
differences in these indices can be used 1o indicate differences in structure. At the network level,
measures such as density, hierarchy, and graph connectivity are available for characterizing
graphs (Krackhardt, 1994), (Wassermun and Faust, 1994). While most of these indices can be
applied to any data which can be represented as graphs, whether or ot they are meaningful
depends on the data’s substantive associations. For example, while span of control makes sense
lor directed graphs representing command structures, it makes less sense for graphs representing
friendship ties. Each aspect of a given social structure which can be represented as a graph will
then have its own set of descriptive indices; clearly, we can attempt to contrast graphs on the
basis of differences in these measures, We illustrate this approach in Figure 1. In Figure 1,
eleven hypothetical social structures are shown, and their ratings om a number of dimensions are
indicated”,

<Insert: Figure 1. llustrative Structures and Measures>

It is not our intent in Figure 1 to exhaustively list all descriptive indices that are possible for
these graphs. Rather, we have merely illustrated a few Lypes of measures possible for only one
aspect of the reporting structure. The first point we wish to make is that this deseriptive index
based method is a possible approach for characterizing differences between graphs. Exactly what
the appropriate indices are for any given each aspect of a soeial structure and whether or not any
of these indices are predictive of any behaviors of interest is a separate 1ssue. Indeed, we expect

that many social networks with very different outcome characteristics will be identical on some



dimensions and different on others -- hence, the predictive power af the descriptive index
approach will vary depending on which indices are examined and upon which of the
substructures the indices are based. Consider, for example, two organizational forms that have
identical command structures but different task precedence orderings; though they will almost
certainly exhibit different performance characteristics, a cursory imalysis focusing anly on
authority relations might predict the appasite. Of course, a comparison of social structures
focusing on the correct set of indices and of substructures may well be highly predictive; this
does not, however, detract from our second point that a general and reliahle comparison of social
structure requires a characterization of the underlying distribution of these graphs.

As we have indicated, graphs with widely disparate configurations can look very similar
given a set of network measures. This makes statistical comparison difficult. For example, all of
the graphs in Table | are distinet structures; yet, each pair appears identical on a number of
dimensions. (n the one hand, this problem can be {in theory) resolved by using a suite of
measures for each structure that cover the range of implicit dimensions. Assuming that all
relevant dimensions have been characterized, structures that are meaningtully different should
show up as ditferent on one or more of these measures. The difficulty here, however, lies in
defining 2 set of indices that exhaust all possibilities and so ensure coverage of all of the ways in
which the graphs could differ. Further, this approach is potentially problematic in that it requires
not only knowledge of a wide range of network indices, but also of their distributions and
possible associations (e.g., only certain levels of reciprocity are available at a given level of
network density). At present, such a library of measures and distributions is incomplete at best,

casting doubt on the efficacy of this method.

“ All ties Tor the illustrative structures are considered to be symimetric.



An alternative, structural, approach is to map two graphs onto each other and then to look for
discrepancies in their overall structures, For the special case in which the two graphs to be
compared are uniquely labeled, such a difference between them can be readily captured by the
Ilamming distance (Hamming, 1950). Note that any dichotomaus digraph can be equivalently
represented as a binary matrix M with the number of rows/columns equal to the number of
nodes” and with cell values of M; ;=1 representing the presence of the link from node i to node |
and M=) indicating the absence of such a link, The Hamming distance is simply the nunimum
number of cells whose value needs to be flipped so that the two matrices come o be identical:
ie., the minimum number of links that need to be added/dropped 1o make the two graphs
identical. In Figure 2, the matrices corresponding to several of the networks in Figure 1, and
their Hamming distances from each other are shown. Each of these mairices is an adjacency
matnix indicating those edges or links which are present between nodes (all edges are assumed o
be directed from the lower level to the upper level), Note that, in order to create Figure 2, it was
necessary first to order (or label) the nodes of each digraph; here this labeling was accomplished

using the proposed color-splitting algorithm described below.
<Insert: Figure 2. Hamming Metric and Four Sample Structures>

Previous work has demonstrated that, for sets of graphs in which all nodes are labeled. it is
possible to derive a structural distribution and to identify its central graph. Banks & Carley
(1954 developed a non-parametric network based statistical technigue for identifying the central

graph’, the standard deviation of distances to that graph, and the conlidence intervals about it.

I the N-modal ease, each dimension represents a given set of acters, Generalization of the Hamming distance to
this case is unproblematic,

W use here the term central graph as we want to emphasize the relationship between this graph and the mean that
ome gets for varable level data. In ather contexts, the terms consensus structure (Krackharde, 1987}, culural



The central graph, which we shall consider al greater length presently, 1s that network containing
the union of the node sets of the graphs Irom which it is constructed and in which two nodes are
adjacent if and only if they have been adjacent in 50% or more of the graphs in the set”. Whether
or not a graph is significantly dilferent than the central graph is assessed by comparing its
Hamming distance from the central graph with that which would be expected under the null
hypothesis. Currently, it is possible to determine whether or not two graphs are significantly
different only for the special case in which all nodes are labeled (each node has a unigue
identifier) and in which hoth graphs share the same label set. This technique further assumes a
null hypothesis in which all links hetween nodes are independent and identically disiributed
(Banks and Carley, 1994). Given these assumptions, it is possible to generate a distribution of
networks from the sample population using non-parametric bootstrapping techniques, determine
the first moment of this distribution by identifying the central graph, and then calculate the
distribution of distances from this central graph using the Hamming metric. A non-parametric
test of means cun then be used to determine whether the distances of the networks in question
from the central graph are sufficiently large to reject the hypotheses that they are the same as the
central graph. The central graph, hence, is the netwark equivalent of a mean for 4 non-petwork
variahle,

In many situations, however, one is forced w0 work with graphs in which nodes are not
lubeled, or for which the labels are not relevant. For example, in one work team two roles might
be labeled Systems Analyst and Team Coordinator; whereas in another these mught be labeled

Systems Engincer and Group Leader. These differences in labels may be due simply to disparate

censensus (Romney, Weller and Baichelder's. 1986), and majority intersection structure (Carley, 1982, 1986) have
been used to denote the same basic idea.
* In other words, it is the mean graph, dichaiomized at the S0% level,



documentation standards and may not reflect real underlying structural differences. Given a set ol
unlabeled graphs it might still be possible (o produce a partial labeling of nodes by "coloring”
them; one might say that those nodes possassing some given characteristic are colored yellow,
while those nodes with another characteristic are red, and so on. For example, in a world system
context one might define all nodes representing core stales as yellow and all nodes representing
members of the periphery as blue. Regardless, given a set of unlabeled graphs, or at best colored
graphs, we might still want to 1dentify any central tendencies present among them,

For colored networks, however, there are many ways in which two networks can overlay,
thus complicating the process of locating the central graph. For example, in Figure 3, a1 and a2
are the same color and therefore interchangeable. Two different matches may be found (simply
in lerms of node a) by either lining up the al’s and a2’s or by lining up the left sides and the right
sides. Still other matches are possible when the nodes of other colors are considered: thus, when
Hnique lubelings are not availuble, there are multiple ways in which the central graph can be

calculated.
<Insert: Figure 3. Two Colored Networks=

One approach to the comparison of unlabeled (or partially labeled) graphs is to re-label the
nodes based on their network properties. Once a unique and complete labeling has been
established, it is possible to use traditional methods for the assessment of structural distance.
The choice of algorithm for labeling the nodes is critical, however: the reason for this is that the
Hamiming merric is sensitive to minor permutations of nodal lahels. An example of this
phenomenon may be seen in Figure 4. For these graphs the three comparisons differ from the

minimum distance of 0 to the maximum distance of 10 - despite the fact that all six graphs are



pertectly isomorphic! This phenomenon suggests that using arbitrary label choices may lead to
poor inferences regarding structural distance: a critical problem for cases in which not all nodes
(e.g., people, resources or tasks) are inlerestingly unique (that is, non-interchangeable in terms of
the theory ol interest). Imagine, for instance, two workgroups, each with a group leader, L, two
analysts (A & B). and two tasks (t1 & t2) such that in the first workgroup A works on tl and B
works on (2 whereas, in the second workgroup, A works on 12 and B works on t1. Though these
waorkgroups are functionzlly identical, a straightforward application of the Hamming metric
would indicate a structural difference between the two. In order to correctly assess the dillerence
between the two graphs, then, nodes of the same "colar” (such as, in this case, analysts working
with the sume group leader) must be treated as interchangeable; treating the structure as a
conventional, pre-labeled graph is not a viable option,
<Insert: Figure 4. Hamming Distances for Permuted Matrices>

I arbitrary labels yield arbitrary distances, what sort of labelings might prove more useful ?
In general, it would seem reasonable to seek a method of labeling nodes such that A) the
Hamming distance between labelings of any two graphs will remain constant across {pre-labeled)
pertmutations of those graphs, and B) the Hamming distance between any two labeled graphs will
be minimized®. Finding a general method of achieving this goal, however, poses several
problems. The first is simply one of combinatorics: for an unlabeled graph with N nodes, the
numker of possible labelings is equal in the number of node permutations’, or N'. While, in

theory, one could exhaustively search the space of labelings for the one which minimizes the

* This follows from the fact that A} we would prefer for isomorphie graphs 1 have & Hamming distance of 0, and B) the
Harnming distance can never fall below the minimum tumber of tic add itivnsfsublractions needed 1o make the twa graphs under
comparison sumorphic, By munimizing the Hamming distanze, we ensare that our comparison is as close as possible o the
1uuilJlr.':iL number of changes required to convent one graph into another,

* More generally, permutations, complete nude orderings, complete degenerate colorings, and complete lubulings of
the node set are all equivalent in this context.



Table 6: Observed Hamming Distances for Isomorphism Experiment

Method
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Wheg
Degree
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RCS 4
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0
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0
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22 70
16 64
4 28
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0 0
0 0
0 0
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53.97
8.183
3.078
2.787
2,694
2,841
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162
158
72

Lo e T e e 4

Max,
496
478
437
204
212
242
196
158
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Given two such labeled digraphs, we may define a metric distance belween them as per
Hamming (1950). Let Hy=Ly{ Gy} and Hy=L,(Ga) with vertex sets such that V;=V-=Vy. (This
does not imply loss of generality, since isolates can be added to veriex sets as necessary.) Now,
define an indicator function 8;(e{v;,v;)) such that

1 if Zelv,v)eH,

0 atherwise

[ 6,,v, ;.}={

The function & permits us to count directed edges within a given labeled digraph. To derive the
Hamming distance between two labeled graphs, then, we simply count the number of dirccted
edges which exist in one graph and not the other. This gives us the following expression for the

Hamming distance:

2] D:HE,Hg)=:‘E§|5,{f(v,,v -5 lelv,.v, )]

[N
The metric distance given by [2] permits us to characterize the difference belween two given
labeled graphs. This distance cannot, however, be directly applied 1o unlabeled graphs due to the
fact that unique identification of vertices is necessary to count the number of disperate edges.
How, then, can we proceed 1o characterize the distance between two unlaheled graphs? Asa
starting point, we observe that
(3] Do{HrH:}: Dr.ll:r1 {l}l)"{“.’.(sz}
where we use Dg to refer lo the “observed” Hamming distance between (n and Gz (the reason
for this change in nomenclature will become obvious presently). Note that, as [3] makes
particularly clear, the observed Hamming distance between two digraphs depends both on their

underlving unlabeled graphs and on the labelings applied to those digraphs. To remove this

comperisons per second would take over 77000 years; this s probably a bit long to wait [or a single data poart,
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dependency, it is worthwhile to consider some function which does net involve both

components; thus, we define the following notion of structural distance:

(4] D:(G,.G, )= min(D, (L, (G, )L, (G))

Because Dy reflects the minimum distance between any labeled digraphs from the set of all
labelings on Gy and G, it depends only on our choice of unlabeled graphs — in that sense, then, it
can be said o characterize an entirely structural distance between graphs, Further, because Ds is
defined as the Dg produced by a particular choice of labelings, Dyg is alse a direct generalization
of the Hamming distance, and is itself a metric®, The definitions from [3] and [4] permit us to
deline vet another quantity. the labeling distance:

5] Df_[Lu(Gl lL_ (Gz})z Du(f-l (GI )*LZ(GE}J_Dx{G 1 ,'ﬂ!:]
which is clearly nothing more than the “extra” observed Hamming distance berween two
digraphs due to the choice of labeling. The form of [5]. then suggests the [ollowing
decomposition:

16 Dy(1,(G, )L, (G, )= D,(G,.G,)+ D, (L (G, L.(G,))
As [6] shows, we may express the observed Hamming distance between two labeled digraphs as
the sum of the structural distance between those graphs’ underlying labeled graphs and the
labeling distance induced by our particular selection of lahels for the vertices of the graphs in
question. Furthermore, [6] allows us to make the [ollowing ohservation, which will prove to be
of greal importance: if two labeled graphs may he relabeled in such a way that the labeling

distance between them is reduced to zero, then the observed Hamming distance between the

o

Clearly, DgG,G =0, DelGuGp=DniGy Gy, and  DelGLG=0 % 0. The trigngle  inequality
D GG DG G2 6 G Gy) % 1,k Tollows from the fact that edge additions/deletions may be performed in uny
order, and thus ane can always map Gy into Gy by way ol Gy il that results in a lower Hamming Distance.

11



relabeled graphs will be equal to the structural distancé between their respective unlabeled
graphs. While we cannot directly observe the structural distance between two unlabeled
digraphs, then, we may nevertheless infer it from the vhserved Hamming distance between
digraphs that have been labeled in the apprapriate fashion.

While the decompasition of [6] is an important tool, it does heg a difficult question: how,
exactly, should graphs be labeled in order to ensure that the labeling distance between the graphs
will be equal to zero? This is not a trivial question: the number of unique labelings of any given
graph is equal to IVI! and it is a priori nonobvious how to identify those labelings which will
minimize the Hamming distance between two graphs. Indeed, the problem is somewhat more
difficult even than the above implies: in order for the decomposition of [6] to permil comparisons
among more than two graphs at any given time, we require a general mechanism of labeling
graphs so as (o cause the labeling distance to be zero for all comparisans'”. Such a mechanism
constitutes a eanonical labeling algovithm, and may be more formally specified as follows''

Definition (Canonical Labeling Criterion): Let a labeling algorithm L be said to

satisfy the canonical labeling eriterion = if and only if Dof(Le(Gi). La(Gh=Ds( Gi.Gj) 7

Gi. Gy

Definition (Canonical Labeling Algorithm): Let a lubeling algorithm Le be said to be

a canonical labeling algorithm if and anly if it satisties *,

As the above definitions make clear, we are secking a labeling ulgorithm which causes ohserved

Hamming distances to be equal to structural distances for all graphs so labeled (an equivalent

" Thus, an adaptive search to find the minimal Hamming distance helween two digraphs would not qualify, although
such a method is wseful for a number of related problems,

" Throughout this paper, all references 1o canonical labeling algorithins concern these meeting the criteria specifizd
below, However. the term may be more generally used w refer to any algorithm which expresses unlabeled graphs in
a canonical labeled form, whether or not Hamming distances hetween labeled graphs are minimized,

12



condition to the minimization of Dy ). Does such an algorithm exist? In order to verify this
proposition, we must first prove some preliminary results:
Lemma 1 (Choice of Labeling): Given some fixed labeling Li(Gy)=H, 3 an Lo(G.):
Do(H,Lo{G2))=Ds(Gy.G2).
Proof: Let || and I, be labelings of Gy and Ga: Dofli{G)L1:(G2))=Dg(G,02). Let R be a

relabeling such that R(,(Gi))=Ly(Gy)=H. Choose L»: Ls(ls(G2))=R(1(G)). Then
lJS'I.“:" % .

Do H,La{G2))=Do(R(L (G )R (1(G2) )= izﬂﬁ. (elnr Vo -85 vy v )]
[

=Dolli (G, 1(G))= Ds(G.G2) m
Lemma 1 simply demonstrates that it is not necessary to control the labelings of bath graphs
simultaneously 1o find the minimal Hamming distance between two digraphs. This result is an
important one lor our suhsequent argamentation; also important is Lemma 2:
Lemma 2 (Failure Condition): If and only if the labeling algorithm L fails to satisfy
¥ then 3 G Ga Gs, Gy DolLed G Le(Ga))=Ds(GLGy =
Dol Le(Ga) Lo(Gah)=Ds( GGy,
Proof: (Necessity) Assume that 8 Gy, Ga, G, Ga Do(Le(G)),LelGal)=Ds(G) .Cra) =
Dol Le(Gad Le(Ga))>Ds{(G3.Ge). - Then DofLe(Gs).Le(Ge)=Ds(Gs,Gs) ¥ Gs,Gy, which
(by definition) implies that Le satisfies *.
(Sufficiency) I 3 Gy, Ga Gi, Gi  DolLe(G)Lo(G2))=Ds(GLGy) =
Do(Le(G), Le(Gali=Dy( G, Ga), then it is not true that De(Le(Ga), Lol Gy))=Dy(Gr Ga} 7

Gs, Gy, and thus L cannot satisfy *, m

13



Lemma 2 shows that the canonical labeling eriterion can be fulfilled if and only if there is no case
for which there are mutually exclusive optimal labelings. This, combined with Lemma 1, gives
us the basis [or our proof of the existence of a canonical labeling algorithm as we have defined 11,
Theorem 1 (Existence of a Canonical Labeling Algorithm): 3 a labeling algorithm
Le: Le satisfies ®.
Proof: Assume that 3 a labeling algorithm L: L does not satisfy *. By Lemma 2, 3 G,
G>, Ga, Gar DolLiG)LIG2))=Ds(G,G2) = Do(LiG),LiG)=DsiG.Gy).  Now, let
Li{G )= and L{G:)=H- and modily L as follows:

1 If Gi=Gy, fix L(G:)=H;. By substitution, LiG;)=L(Gs)=H;. From the metric
property  of the Hamming distance, Do(H3,Ha=0=Do(LiG3), LiGy)), and
Ds(Gs,Gy)=0. - L fails the criterion of Lemma 2, and thus satisfies *.

e GazGy, Gi=(3;, and Gy=Gy fix LiGa=H;. By our earlier assumption,
Do LiGy L LiGa)=Dg(H,, Ha)=Dy(G,,G1). Substituting for Ga and G, we can see
that Do(LIG: LG )=Da(1 4G, 1G)1=Do(Hy, Ha)=Ds(Gy.Ga)= Ds(Ga, Gyl Thus,

L Tails the Lemma 2 eriterion and must satisfy *.

i) If GGy, Gi=Ge, and Ga=Gs, we substitule 18 above, Thus, we can see that
Do(LiGsLLIG))=DolL{G2). (G 11=Da(lz,  H}=Dg(Ga.G)=  Ds(Ga.Ga). I
therefore fails the Lemma 2 criterion and satisfies *.

ivi  If G=Gy, G,=Gy, and Gy2G,, subslitute to ahtain L{Gy=H,. By Lemma 1,
we can choose Hy: Dy(H L(G:))=Ds(G4,Ga). By the Lermuna 2 criterion, then, L

satisfics #,




VI Gs#Gy, G1=Ga, and G#Ga; if GGy, G+=Gy, and G20y or if Gy#Gy, Ga=Ga,
and G0, we substitute and employ Lemma 1 as per (iv) above.
vi) IF GGy, Gi#Ga, Gi#Gs, G22Gs, and Ga#s, lix LiGs)= Ha. By Lemma 1,
we can choose Hy: Dyg(H L(Gs=Ds(G3,Gy).  This causes L to Fail the Lemma 2
criterion, and thus to sarisfy =,
As the ahove cases cover all choices of Gy, Ga, Gs, G2, we conclude that the condition
of Lemma 2 is not satisfied ¥ [ . 3 some labeling algorithm Le: Le sutisfies * m
Thearem | above demonstrates that there exists some canonical labeling algorithm; it srill
leaves many questions unanswered, however. Given that some Le exists, what can we say about
it? While Theorem | could be used to construct a functional algorithi, such an algorithm would
be computationally infeasible. This lollows from the fact that the substitutions relied upon in the
above proofs require the identification of labeled graphs with their isomorphism classes: while
this is muthematically reascnable, it imposes the computational requirement of searching through
the space of graph labelings. As noted, the cardmality of such a space is equal 1o [V! for any
given graph, making a standard search prohibitive. Adaptive technigues might he applied to
obtain a heuristic solution, but the difficulty of the search task suggests that this may be
computationally difficult as well. In this paper, then, we will not pursue this particular avenue in
allempting to identify a cananical labeling algorithm,
Another set of important issues concerns the effects of canonical labeling on other tools for
network comparison, such as the central graph. As has been noted, the central graph is derived
Irom Hamming distance measurements, and as such cun only be calculated from laheled graphs.

While this poses no dilliculties for analyses in which graphs have been prelabeled in a




theoretically meaningful fashion, this is not the case (as we have scen) for arbirrarily labeled
structures. Will our canonical labeling algorichm permit us to find a central structure which is
meaningful for unlabeled graphs? To see this, we first must define the central graph in terms ol
the observed Hamming distance. Following Banks and Carley (1994):

Definition (Central Graph): Given a set of labeled digraphs Hy, Hy, .. H, defined on

the vertex set Vi, let the central graph be that labeled digraph He which minimizes
" .2

2. (P, (H. H,)) .

=l

From this definition, then, we mav substitute to find the expression for the sum minimized by the

central graph in terms of labelings of unlabeled graphs,

(1 X0, H,) =3 (0,0, 6 )L,(6,))
i=l i=1
306610, (L, 6L E)
Recall, however, that by definition a canonical labeling algorithm requires that Dy=0 for all graph

comparisons. Therefore, for the case in which the set of labeled digraphs Hy, Hz, ... H,, ure

relabeled using a canonical labeling algorithm Le, [7] reduces to
n z M 2
(8] E (Ds (G oG )+ y (L‘;(G.; )-Lc (Gn }D = Z (D.: (Gt:-ﬂi J,}
il =]

which is precisely the quantity which would be minimized by a central graph defined only on the
underlying, unlabeled graphs. Clearly, then, one useful side effect of the cananical labeling
algorithm is the fact that it permits the generalization of the central graph to cases in which the

digraphs 1o be examined do not possess theoretically meaningful labels.




The above discussions have centered on two extreme possibilities: either a digragh is
concerved of as being uniquely labeled, or it is considered to have no lahels ar all. As has been
indicated, however. it is often the case in network analysis that certain groups of vertices may be
considered to be interchangeable without permitting interchange among all vertices. Such graphs
may be said to be partially prelabeled, or nondegenerately calored, and it is reasonable to
guestion whether the above results can be applied to such graphs. As it happens, the definitions
of structural distance, labeling distance, and central graph can be unproblematically extended o
cover nondegenerately colored digraphs'®, and the results based on these definitions (including
the theorems given above) should hold for this larger class of graphs. Formul extension of these
results will not be given here, although an outline of the process is suggested in the above notz.

To summarize the results of this section, we may express the ohserved Hamming distance
between twa labeled digraphs as the sum of the structural distance hetween the digraphs’
respective unlabeled counterparts and the surplus distance induced by the choice of labeling, A
canonical labeling algorithm of the type we consider here reduces this labeling distanee to zero
for all pairs of graphs, thus permitting us to infer the structural distance belween unlabeled
graphs from the observed Hamming distance hetween unlabeled graphs. A secondary
implication of this fact is that central graphs defined on canonically labeled sets of graphs
correspond o the central graphs of their respective unlabeled graphs. Though we have proven
the existence of a canonical labeling algorithm with the abave properties, we have not yet
identilied one that is computationally feasible (nor have we shown that such exists). In the
sections which follow, then, we shall examine several heuristic alternatives which fulfill the

canonicul labeling eriterion to varying degrees. Our goal shall be to identify, if possible, one or

" This process starts by defining limitations on the set of possible lahelings, and redefining the terms of the
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more algorithms which serve reasonably effectively as canonical laheling algorithms, and which
are sufficiently computationally facile to be serviceuble in a rypical research context. We shall
also consider, by the same token, the estimated error produced by nor emplaying a canonical
labeling algorithm, and shall examine the elfects of our proposed alternatives on the distribution

of distances about the central graph.

Three Approaches to the Labeling Problem

There is no known technigue for locating the optimal"* match between rwo colored networks,
let alone locating the central structure based on the optimal match on a set of structures, which
does not involve exhaustive search procedures. Heuristic approaches to this general problem —
canonical labeling algorithms — have been developed by researchers working in a number of
disciplines, including computer scicnce, electrical engineering, chemistry, mathematics, and
physics, This previous work has focused on the discovery of canonical labeling algorithms for
isomarphism testing ((Luks, 1982), (Babai & Luks, 1983)), graph identification ((Cai et al,
1992)}, characterization of regular graphs (Kucera, IY87), constructive enumeration ol structures
((Pospichal & Kvasnicka, 1996), (Read, 1978), (Skvaoretz, 1996)), and representation of
cunonical transformations (Lim, 1989). Unfortunately for our purposes. these developments have
tended to focus on true graphs (as opposed (o directed or multigraphs), regular graphs, and
graphs of restricted valence. Social networks do not generally salisty these strict conditions in

theory or in practice, and hence there is some difficulty in applying some of the previous results

decomposition in [6] using these new definitions. The cther results follow.

13 a ' . T - . . v e

* That is, one which satisfics the minimal Hamming distance criteria; heneeforth, these comprises our definition of
“optimal™,




io the present problem' . Furthermore, our task is a bil more complicated than simply mapping
graphs to their isomorphism classes: we must minimize the Hamming distance between labeled
graphs in general, and minimize the mean Hamming distance to the central graph of an
arbitrarily chosen graph set”. To our knowledge, this has not been previously attempted, nor
have existing algorithms been shown to satisfy these requirements,

To approach the particular problem of Hamming distance minimization in social networks,
we here describe three “matching™ or “alignment™ heuristics for producing canonical labelings of
graphs, along with a random baseline. These lubeling algorithms should work in such 2 WAy s
1o, ideally, locate the optimal malch between a set of unlabeled or colored netwaorks; in the lerms
of our carlier decomposition (see equation [6]), these labeling algorithms should minimize the
laheling distance Dy in order to permit the observation of the structural distance D¢ from the
observed Hamming distance Dy, Once optimal labelings for the networks are determined, the
previously described techniques lor locating the central graph and determining differences among
networks can be applied.

The approach and tools for generaring these distributions and locating the central araphs
should generalize for networks with other constraints and colorings than those we examine:
hypergraphs, for instance can be losslessly transformed into bipartite graphs prior to the
application of the labeling process. Likewise, many of the methods used here may be applied,
with some modification o valued or weighted graphs. Nevertheless, caution should be exercised
when attempting to utilize these methods to analyze structures which are non-dichotomous, or

whose structural properties otherwise differ greatly from those considered in the experiments

" Although one shauld note that it is possible to losslessly convert irregular graphs to regular ones via a simplo
algorithm, and that bounded valanee is not a problem in the event that the labeling to be derived is o be used on a
graph set with a consiraimed number of nodes (.., not an open-ended intertemporal data set).
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which [ollow. Although these algorithms may continue to function on such graphs, we cannot be
certain how they will behave; such extrapolations require further testing to be considered

completely sufe.

The Recursive Color-Splitting Algorithm (RCS)

The first approach to the labeling problem which shall be considered here consists of a
recursive algorithm which splits sets of identically colored nedes into maximal subsets of
recolored nodes such that all nodes with each set are members of the same color class, and such
that no color class contains members in more than one subset, Nominally, this process
terminates when no subsets (or, by extension, color classes) with more than one member remain,
thus producing a complete graph coloring. (As we shall see, the algorithm will be unable to splil
certain color sets - the impact of this facr for algorithmic perlormance will be discussed.) The
method by which subsets are recolored is based on an ordering principle which sorts nodes based
an both local {e.g., degree) and global (e.g.. connection o high-degree alters, number of directed
walks to other nodes) network features: hence, the algorithm may be applied to individual graphs,
and works independently of any within-color preliminary ordering,

This color-splitting algorithm works by “feeling out™ a graph’s structure; lience, one of the
key elements used in this process is the set of paths between nodes. In particular, we shall be
interested in the number of directed walks herween nodes in the graph given by adjacency matrix

A" which follow specific trajectaries. Formally, let 4 Tepresent a frajeciory vecior consisting

. Isomorphism testing corresponds to the minimization ol Dy, when D=0, in our notation,
i - Wil : k : y . .
" Throughou this discussion, we shall reat directed graphs and their scciomatrices as interchangeahle,
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of d elemenls, each of which is a member of the set {0,1}, which has value v where value is

aiven by

il

0] v=3t,2
=R

Each given v and 4, then, describes a unique t (which can be thought of as the binary expression
of vin d digits). Each vector t, in turn, represents a particular family of walks on the graph given

by A. In particular:

o
[10] “‘r:,,, = r[ ([d-[i]AT F {1 =baun :lA)

i
gives us the total number of directed walks following the trajectory vector tgy for all vertices in
A. As [10] implies, the trajectory parameter o refers to the total length of the trajectory, while
the trajectory’s value (v) expresses, via a series of binary digits, a set of “instructions” regarding
walks on the ingoing and outgoing edges of A. This last follows from the scalars of A and AY
contained within the product term of [ 10]: when tag, is erqual to 0, the product element as a
whole is equal 1o A {thus tracing outgoing cdges), and when tang 15 equal to 1, the product
element is equal to AT (tracing ingoing edges),

As has been noted, the basic problem of finding a reasonahle labeling rests on using
structural properties ol the netwaork to produce a unique crdering of nodes. One such property is
the geometry of walks un the digraph; another which might be considered in this context is the
row sum, ar outdegree. (In an autherity or reporting structure the outdegree of a node would be
the number of others to which sach node reporls.) Because outdegree follows directly from the
graph structure, it is invariant under permutation; furthermore, it is simple to calculate and

compare. Unfortunately, however, most networks involve numerous nodes with identical

21




1) Let d4=0

2) Let w=0

3) Given a maximal set of identically colored nodes, @,
recclor members as follows:

1) (For all i and 7 in @): If SR:(d,v)>ER;{d,v) then

SK{i)=8K{7); else if SRi{d, vi<3Ri{d,v) then SR{i)<&K(7)

n

{For all 1 and 7 in @ such that Ry (d, v}=8Rsid,v)): If
SCi{d, v1=8C: (4, v) then SX({i)=SK(7); elsa if

8Ci{d, v)«8C,(d, v) then SK(i}<8K(J)

6) If (v<2-1) then (for all i and § in G such that

SR {d, v =8R; (4, v) and 8C; (4, v) =8C;i(d.,v)): let wv=v+1 and
goto (3} for all subsets @,...8, such that SE{k]=3E(l)

for all k and I in @, and SK(k}#8K{l) for all k in @, and

1 in Gun In-1%h<m-n), for all n in 1..m

K

If (wv=2%1 and d=<N-1}) then (for all i and 7 in @ such
that SRiid, v) =8R;i{d,v) and SCi{d,v)=5C1{d,v)}: let d=d+1
and goto (2) for all sets G;...G@, such that SE(Kk)=8K(1}
for all k and 1 in G, and SE{kI#8K (1) for all k in G, anc
1 in Guy (n-1ghsm-n), for 21l n in 1..m

8) If (v=2"-1 and &=N-1] then (for all i and 7 in & such

that SR;(d, v} =5R: |d,v) and sC;(d,w) =5C5{(d, v

SK (1} =SK(7)

ability fur many retationships
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91 End
(Note that all explicitly set orderings arc permanent; i.e., if SK(i)=8K(j) in iteration 1, then
SK(=5K(/) for all future iterations. Obwiously, the initial coloring of nodes is ot permanent. as

it is not set within the algorithm itself.)

Once the structural characteristic coloring has been found, we can easily label the network in
question by assigning node numbers in descending color order. 11 the graph still contains some
identically-colored nodes, their specific ordering is irrelevant (so long as they are properly
ordered with respect to all differently-colored nodes). In many cases, such non-degenerate color
sets are due Lo structural equivalence (Lorrain and White, 1971): hence, their orderings will not
affect the Hamming metric'®. It is possible, however, for algorithmic failures (o cause non-
unique labelings of seme non-equivalent nodes'®. The degree to which this affects assessments

of Hamming distance can vary, but (as with any hevristic method) caution is advised.

Hiustrative Application of the Caolor-Splitting Algorithm
Figure 5 presents a simple directed graph. Given that the graph is uncolored (or l-colored),

how would the foregoing algorithm determine a unigue labeling?
<Insert: Figure 5. A 1-Colored Graph with Arbitrary Labels=

To determine this, let us “run through™ the instructions and observe the results. The

intermediate results are also shown in Figure 6. Initially, our G consists of the nodes A-I (30, dis

Sructurally equivalent actoes have identical relaions with identieal {in this case, identically-colored) alters.  Thus, their
urdering cannol change the velue of any entry in g seeiomatris so leng as they ure A) pam of a coherent block which U is in the
same position vis A vis all other nodes.

L o P i . P - .
Informal nhservation seems (o indicate that the algorithm is paticularly vulnerable to regular equivalence,
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equal to 0{1), and v is cqual to 0 (2). Proceeding to step (4), we note that: SR(0,0)=3;
SRu(0.0)=1; SR{0,01=0; SRn(0,00=2; SRe(0.0=1; SRE0,0)=1; SRa(0,01=1; SRu(0.0)=0;
SRy0,0=3;. Thus, we can already split G into [AJ}, (D}, [B.E.F.G}, and {C.H).

In (5), we now attempt to split the identically-colored subsets, observing that: SC,(0,0)=2;
SCH0.0=2; SCrI0M=1; SCE0M=1; SC0,=0; SCG(0,00=2; SCHD.0=0: and SCy(0,0)=3,
Applying the same ordering rule as we used in (4), we arc able 1o arrive at the division { A},
(D). {G}. {B.E}, (F}, {H}, {C}.

At this point (6), we note that ¢<N-1 and our ordering is not degenerate, but v=2"-1; thus, we
fail the condition of (6) and proceed to (7), where we let d=1 and return the two sets Gy={ A1)

and Gx={B.E} to step (2) (set v=0).
<Insert: Figure 6. A Sample Color-Splitting Process>

For (4) Gy, we can see that: SR, 1,00=8; and SR(1,00=7. This splits Gy into {A}, {1},

For {4} Gy, we find that: SRu( 1 ,0)=4; and SRg(1,0)=3. This final division splits G into [B).
{E}.

Al this point, the ordering {A}. {1}, {D}, {G], [B]. {E}. {F}, {11}, [C} is degenerate, and
we are finished. The descending-order labeling which results from this pracess can be seen in

Figure 7.

<Insert: Figure 7. Sample Graph After Labeling>

The Special Case of Structural Equivalence
Structural equivalence, as has been noted, poses a special problem for the Recursive Calor-

Splitting Algorithm: because structurally equivalent actors have the same relations with the sume



alters, the structural row and column characteristics of those actors must be the same for any
depth. Because of this, the RCS algorithm will be unable ro establish a non-arbitrary labeling of
structurally equivalent nodes; further, the algorithm will have to traverse the enlire set of walks
before discovering this. While the latter is an issue of some concern in implementation, the
former is not, as it turns out, a problem for our analysis. Due (o the aforementioned definition of
structural equivalence, rows and columns of equivalent actors must be identical (Ap=Ag,
A=Ay ¥ ke A} 1l this is the case, then the order of structurally equivalent actors cannot affect
the Hamming distance between two matrices: since the actors are structurally identical, no “flips”
of matrix entries are needed to map one onto the other. The fact that the algorithm cannat
discriminate between these actors, then, is of no consequence.

[t should be pointed out thal the same cannot be said of other sorts of equivalence, which may
or may not affect the RCS algorithm (depending on the maximum depth of recursion, the
structural properties of the network, cte.). Regularly equivalent actors, for instance. may in some
cases be reordered in ways which do not minimize Hamming distance. {An example of this may
be seen in Figure 8.) More wark is required to identify the specific network leatures which cause
RCS (or the other algonthms here considered) to fail in producing canonical lubelings.

<Insert: Figure 8. An Example of Orderings Produced Under Regular Equivalences

The Nodal Degree Ordering Algorithm

As has been indicated, we are here interested in algorithms which will produce a unigue
labeling of nodes given some initial eoloring. As this labeling is to be cananical, it must exploit

particular features of the individual graph which is the subject of the labeling process, One
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category of features which suggzests itself for such a pracess is the degree centrality of nodes
within the digraph: considered separarely as indegree and outdegree, this measure is cquivalent to
the column or row sums (respectively) of a particular node. Our second method, then, for
labeling graphs is an ordering based on nodal degree alane, without concern for path structure
(unlike the RCS algorithm). As we shall see, this omission limits the ability of the nodal degree
ordering to exploit subtle differences between graphs, but greatly simplifies it computationally™,
To wilize nodal degree in the lubeling process, we may hegin simply by sorting nodes within
color groups. While this may be implemented in 1 number of ways, we shall here consider only
ascending orderings sorted primarily on indegree and secondarily on outdegree. That is, we say

that given

”5] Ru :i!\u.i’ Rﬁ =in"~i
f=] =l
I b
(6] C,=XYA,. C=YA,
Jml 1=l

the erdered colering k is defined on the nodes & and b according to the following algorithm:

1} . If Ry=R., kialz=k(h): if Ha<Bp, ki{al<ki(b); else (2)
2) . If Cu=Cu, kilay=k(b); if Ca=Cp, ki{al<k(bk); else (3}

3r. kia)=kib)

This degree-based labeling has cerlain practical advantages. First and loremost, it is
computationally facile, both in terms of difficully of implementation and in speed of execution.

Secand, both indegree and outdegree are well defined for all manner of networks (including

* In faet, the nadal degree ordering corresponds to a degencrate case of RCS in which only strugtural characteristics
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continuous or multiply valued networks), and their distributions can be calculated
mathematically given some basic assumptions. Unfortunately, however, the technique has some
drawbacks as well. Highly stuctured networks (such as organizational charts) often exhibit very
low variance on indegree and outdegree, thus limiting the discriminatory power of this measure.
Further, because the nodal degree labeling considers only a local property of nodes. it is unable o
identify structural differences that manifest only in non-local patterns (e.g.. regularly equivalent
nodes which are not strueturally equivalent.). For these reasons, we should expect the nodal
degree method to be of little use when comparing highly structured, self’ similar networlks, but to
be reasonably effective when comparing highly diverse networks (e.g., weakly constrained

random graphs).

The Weighted Degree Ordering Algorithm

The nodul degree ordering algorithm, above, uses the structural property of nodal degree 1o
effect a labeling, but does not discriminate between degrees save via raw magnitude. RCS, as an
extension of this nation, also gives weight to walks throughout the graph, but is relatively slow.
Given the apparent desirability of drawing on network properties other than raw degree, is there a
simple weighting system which might be used to effect an ordering of nodes? One precedent for
such an approach can be taken frem previous work in this area. In his 1996 paper, “An
Algorithm to Generate Connected Graphs,” Jahn Skvoretz draws upon an algorithm of Read
(1978) to establish a canonical labeling of directed graphs (Skvoretz, 1996) which maps

isomorphism classes onto unique representations. Simply stated, this algorithm attempts to

of distance 0 are considered.
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identily the permuration of a dichotomous sociomatrix which maximizes its value when
expressed as a binary number, More particularly, if we define the value function ¥ of a

permutation matrix P such that

07 v(e)=3 3 (AR), 2070

T
then we attempt to find that P lor which V(P) is maximized. Under this representation, then, the
problem of canonical labeling is mapped onto a problem of lexicographic sorting (Cai el al,
1992). In his paper, Skvoretz proposes using an exhaustive search to identi [y the proposed
canonical labelings of all (small) connected graphs. Unfortunately, however, Lhis process is of
order N, and is hence not feasible for networks of significant size. While various alternative
methods may be used 1o search the space of permutations for one which muximizes the proposed
value function, we here will consider a very simple heuristic which is closely related to the nodal

degree ordering. Given
4 w-i) 13 }
18] VR, = ZA” 2040 R = Z,\big[n B
i=l i=1

N : N .
9] ve, =Y A,2% % ve, =¥ A, 20
=

we may define the ordered coloring k on the nodes ¢ and b according to the follewing algorithm:

L}. Tf VEa>VR:, klalzk(b); if VR.<VRas, kial<k(b); else (2)
2) . If VC,»VCh, k(a)>k(b): if VC.<VCh, k{al<k(b); else {3}

3V, kla)=kib)



This heuristic, then, is not an implementation of Read’s lexicographic sorting, nor is it intended
as such: instead, it is an attempt at using the binary value representation as o mechanism for
weighting the indegrees and outdegrees of individual nodes. The results reported here should
thus be interpreted as following from the particular weighting algorithm rather than the previaus
lubeling approach, Nevertheless, the two are alike in af least two respects: both attempt to
concentrate the 1's of the sociomatrix in a particular location within the matrix, and both are

quite sensitive to relatively small differences in graph structure.

The Random Permutation Algorithm

While we may in many cases have a best-case criterion against which to judge algorithmic
performance, it is also critical that we have a reasonable worst-case estimate. One such estimate
may be achieved via the random permuration algorithm; a process that randomly allocates labels
to nodes within initially specified color groups. While a random selection from the space of
permutations is unlikely to produce 1 labeling which actually meximizes the hamming distance
between any two matrices (the true worst-case), it provides 1 useful base-line performance level
by avoiding any optimization of node labeling whatsoever. It is expected that all three of the
alternative algorithms presented will outperform the randoimn permutation algorithm on all

effectiveness metrics,

Comparison of the Labeling Algorithms



All of the proposed cancnical labeling algonithms are generally effective at producing unigue
labelings of N-colored graphs. However, as we noted earlier, if the goal is to compare and
contrast graphs it is not sufficient to merely label the nodes. Rather, the labelings that are
produced must satisly (or at least approximate) our criterion for canonicality with respect to the
structural distance. This is especially true for cases in which the graphs to be compared are
known to differ in some way: ideally, there will be a strong linear relationship between this
underlying structural difference and the observed Hamming distance between the two networks.
{Indeed, optimally the two quantities should be equal after labeling.)

Toveffect a preliminary test of the validity of the three labeling algorithms for this specialized
purpose, we ran a series of three tests. First, we performed a virtual experiment in which we
generated a large number of graphs which were more or less typical of what might be expected
for social structures with 1 small 1o moderate number of nodes. Each of these graphs was then
copied and “tweaked™: that is, some number of ties (chosen at random) were “flipped”, so as 1o
produce a slight, known difference between the two networks. Afier being modified, the copied
graphs were randomly permuted, and the three labeling algorithms (along with the random
permutation algorithm) were executed on each. Once the graphs were Iabeled, the Hamming
metric was used to find the observed distance between the two graphs (the original and the
permuted tweaked graph): this distance was then compared to the criterion (tweak) distance and
t the distance produced by the random permutation algorithm, Our second assessment, unlike
the first, focused on isomorphic graphs which were randomly prelabeled. For each of the
conditions from the first virtual experiment (excepting the omission of the tweak treatment), two
identical copies of a random graph were given arbitrary labels, the labeling algorithms were

applied to each, and the observed Hamming distance between them was measured. This distance
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wits then compared to the ideal distance of zero for all cases, in order to assess the elfectiveness
of the labeling algorithms at mapping all members of an isomorphism class onta a single laheled
graph. Our third, and final, test of the labeling algorithms exumined the ability of the algorithms
to produce maximal clustering (i.e., minimal mean distance) of central graphs under varving
conditions. For this assessment, monte carlo methods were used to produce a variety of graphs
with particular propertics; in each case, these graph sets were labeled and their central graphs
identified. The distribution of distances ol matrices from the central graph was then examined in
order to compare the degree Lo which algorithms were able to induce clustering.

In all of the above tests, our primary interest is in comparing the relative effectiveness of
these algorithms to a random labeling of nodes. In two of the tests, we are also able to directly
and systematically evaluate algorithm effectivencss against a known perlormance criterion (the
minimal Hamming distance): in one of these, we know the criterion precisely and without error.
There are, of course, a variety of other assessments that one might seek to perform in evaluating
these labeling algorithms. For instance, one might focus on networks with particular properties
ie.g., those found in cognitive or ego networks), or to evaluate central eraph identification against
dmore precise criterion. Furthermore, there are other potential labeling methods to those
deseribed here, each of which having its own advantages and disadvantages® . Our analysis
sheuld be viewed, then, as preliminary; future rescarch into allernative methods and standards of

evaluation 1s encouraged.

Random Graph Comparison
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Qur first comparison of the labeling algorithms involves our most basic functional
requirement: the ability to minimize the labeling distance between matrices. To investigate this
arcz of performance, we employed a virtual experiment involving a large number of random
graphs preduced under various constraints matching those typically found in social network
research. In each case. the graphs were created, copicd, and “tweaked™; that is, one of the copies
was aliered by randomly flipping (0—1. 1—0) a prespecified number of ties. Each COPY Wils
then randomly permuted and individually labeled using one of the three coloring algorithms {and
the random coloring algorithm), At this point, the Hamming distance between the newly labeled
copy and the re-labeled initial graph was found, and compared to the eriterion (the number of
flipped ties) and to the baseline (the Hamming distance of the random permutation algorithm).
By considering the resultant distribution of Hamming distances across 2 range of conditions,
then, we hope Lo be able 1o assess the cifectiveness of the three proposed labeling heuristics at
aligning graphs for maximal similarity,

<Insert: Table I: Conditions for the Virtual Experiment>

The conditions for the virtual experiment are given in Table 1. As can be seen, graph size
and structure were varied slong several dimensions, with a total number of 420 different
conditions. Further, six different levels ol tweaking were examined for each structural condition,
and 25 matrices were independently drawn from each of these cases, resulting in a total of 63,000
observations on 2,520 conditions per labeling method (the randem haseline was computed for
cach other method’s sample, and on its own: RCS was limited 1o o search depth of five hops for

compulational reasons). Due to natural limitations, some densities precluded the examination of

Mo ; ; : - " i ;
OF particular long-term interest might be dynamic methods which use penetic algorithms, simulated annealing, or
other spproximate optimization methads 1o search the space of permutations for optimal labelings,
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sOme reciprocity \-'alucr;gz; in these cases, the closest achievable value was substituted. As these
represent regions of the parameter space for which no observations can exist, these “omissions”
should not substaniially affect our findings.
<Insert: Figure 9. Boxplots of Hamming Experiment Duta>

Preliminary examination of experimental data for all conditions indicated extreme skew and
generally poorly behaved distributions on most distanee variables (see Figure 9 above). To
counteract this, a logarithmic transformation was applied to all varizbles prior to regression, Oul
of those transformations tried, the natural loganthm appeared to induce the best fit (as measured
both by R* and by examination of residuals) in the final models; this transfarmation also had a
natural interpretation in this case — that of the power law — which was sensible in light of the
underlying phenomenon of interest. Examination of regressor variables for multicollinearity
tound no scrious problems, as expected due to the nature of the experimental design,

<Insert: Table 2: Prediction of Structural Distance from Observed Hamming Distance=

In order to assess the effectiveness of the proposed canonical labeling algorithms, we seek to
relate the observed Hamming distance to the “real”, underlying structural distance. Ideally, these
two would be the same, or nearly so; in fact, however, we expect that imperfections in the
labeling algorithms will prevent the labeling distance (Dy ) from taking its minimal value {0) and
that the observed Hamming distance will thus be increased by a certain amount. How, then, can
we characterize algorithmic performance? One, very simple method which we might employ to
gain a general idea of the way in which the algorithms behave is a univariate regression of
structural distance on the observed distance after labeling. While such a regression has hittle

explanatory value (it cannat, for instance, tell us why a particular algorithm performs in 1 given

* For instance, 4 density of D8 precludes a reciprocity of 0.0,
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fashion), it can give us an overall impression of the degree to which a direet, “najve” application
of the labeling algorithms is likely to overstate the actual Hamming distance between graphs.

The mest basic results from this analysis of the virmal experiment are given in Table 2,
which lists the coefficients, R, residual standard errors, and correlation coefficients for the four
regressions. Due to the fact that these regressions are intended primarily to model the effect {in
terms of degree of overstatement of structural distance) ol direct use of the labeling algorithms,
all models in Table 2 are constrained to pass through the ongin. Although a rough analysis, such
models are valuable because they provide a prediction of raw performance in the absence of
additional information - a worst-case scenaric. As can be seen from the included coefficients, the
RCS algorithm is most effective at producing Hamming distances close to those expected from
an ideal model (in which case the coefficient would be approximately 1.0°), and has the highest
overall R*, lowest residual standard error, and highest correlation coefficient. The nodal degree
ordering is the next most effective algorithm, followed by the weighted degree ordering; all,
however, outperform the random permutation algerithm both in terms of magnide of
eoellicient and in terms of variance explained. That said, the differences between algorithms are
not large (although all differences between residual standard errors are significant), and none of
those we consider approach optimal performance.

<Insert: Table 3: Prediction of Hamming Distance by Condition>

While these results are suggestive, they are admittedly imprecise: they tell us nothing
regarding the sensitivity of the labeling ulgorithms to various experimental conditions.
Information of this sort cun be found in Table 3, which presents a series ol regressions of

observed Hamming distance on various experimental parameters using the following model:




[20]log(D, +1)= 4, + b, og(N +1)+ B, log(Den+ 1)+ £, log(Recip+ 1)+ b, log(D; + 1)+ b, log(Color + 1)+

{where £ is assumed to be approximalely normally distributed). Note that this model corresponds
to the following nonlinear equation:

20 o, = et N+ ly" {Uen+ l}a’ I:Rﬁa:'!'p+|:'ﬂ' {Ds + t}ﬁ' (L'u.!m’+ []ﬂ‘ e -1
Thus, negative coefficients signify tendencies towards lower Dy values, but do not imply
Hamming distances which are themselves negative! As hefore, we should expect the structural
distance coefficient to approach 1.0 as effectiveness increases; we should bear in mind, however
that we are here actually postdicting observed Hamming distance from the structural distance
vather than the other way around. The qualitative inlTuence of various factors on algorithm
performance can be assessed based on the information in Table 3. In particular, we find that all
algorithms see an increase in observed Hanuning distance as a function of N (roughly on the
order of N'): this may reflect the fact that the error cost of suboptimal orderings can he expected
to be on the order of the number of nodes™, and that the number of potential ties 1o be flipped is
equal to N*. Likewise, increasing density appears to increase observed Hamming distance, while
increasing reciprocity decreases it very mildly. Although this apparent favoritism for highly
symmetric, sparse matrices is not fully obvious, it most likely results al least in part from the
natural distribution of Hamming distances™. The fact that these results are present in the random
permutation case further supports this line of reasoning. The finding that two-colored graphs

result in lower Hamming distances than their one-colored counterpars across methods is

' In practice, some deviation from 1.0 will be observed due to the randomized implementation of tweak, and from
the simll but nonzero probability that a series of tweaks will map a graph onto one of its automorphisms,

* This can be scen from a worst-case scenario in which an all-Q nede and an all-1 node are switched: the added
Hamming distance will be approximately 4N-2,

36




likewise suggestive: as two-colored graphs have considerably smaller permutation spaces than
one-colored graphs, we would expect the nature of the search task to be inherently easier for
these cases,
<Insert: Table 4: Diagnostic Error Regression=
Another means of addressing the question of what determines algorithmic behavior is an
error regression; that i, a model which attempts to predict the absolute difference hetween the
structiral distance and the observed Hamming distance from experimental conditions. Such a
model has been fitted in Table 4 above:
[22] log(D, — D |+1)= 8, = B, log(N +1)+ A log(Den+1)+ 5, log(Re cip+ 1)+ B, log(Coler +1)4 &
As the Table reveals, the results of this regression are quite similar 1o the previous one. Graph
size and density have strong positive effects, while reciprocity and two-coloring are more weakly
tegative on all madels. As above, we find that those methods whose performance is the most
mediocre are those whose behaviors are mast eusily prodicied; across all cases, however,
goodness-ol-fit is reasonably good. This last suggests that it may be possible to use these
regressions in conjunction with the algorithms themselves o arrive at more effective estimates off
the structural distance generally; while this is an idea with a great deal of promise, it is beyond
the scope of this paper.
<Insert: Table 5: T-Tests of Adjusted Errors Across Methods>
Having exarnined the relationship between our experimental conditions and the observed
Hamrming distance, we now seek to bolster our analysis by investigating the error rates produced

by the various labeling methods. In particular, we wish to verify here that the labeling heuristics

The distribution of Hamming distances berween any two matrices is not normal, and varies greatly with size and
density. While this lessens (he power of our regression, we employ it here as a firs step, in the obsence either of
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are significantly better than random labelings on identical samples™ . Likewise, we would like to
make comparisons of error rates across samples, in order to compare the proposed canonical
labeling algorithms with each other. Table 5 explores this question by presenting a series of 1-
tests ol the errors produced by labeling algorithms versus the errors produced by random label
assignment and versus the other methads, across all conditions. Note that, for purposes of this
test, we have adjusted the errors produced on each observation (as used in the above regression)
by dividing them by the square of the graph size at that observation. The rationale for this is
clear: since we have seen that the magnitude of error scales in N°, normalizing the errors by this
quantity prevents large graphs from dominating the sample. As it happens, this transformation is
somewhal superfluous; the results reported in Table 5 were typical of those found using raw data,
log transformed data, cte.”” As can be seen from Table 3, all three methods produced
significantly fewer errors than the random permutation algorithm - this reinforces our earlier
[inding that prediction of structural distance [rom observed Hamming distance was more
accurare when labeling heuristics were employed. The proposed labeling algorithms were also
significantly different from each other, with RCS outperforming nodal degree ordering, and both
surpassing the weighted degree ordering. Thus, our earlier impressions as to the efficacy of the
libeling algerithms are confirmed by a direct comparison of absolute errors under identical

conditions.

[somorphic Structures

fetler wools or of detailed distributional information.
“As opposed o equivalent samples, as were considered previously.
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between algorithmic performance and search depth; both because of the computational expense
of high-depth RCS labelings and because of the fundamental relationship between the nodal
degree ordering and RCS, these issues were felt to be important ones.
<Insert: Figure 10. Order Statistics of Observed Hamming Distance for Isomorphic Graph
Experiment>

The order statistics of the observed Hamming distance, by method, are presented in Figure
10. As expeeted, the random permutation algorithm generally did not minimize the Hamming
distance between matrices, es evidenced by its high levels of error throughout the distance
distribution. The weighted degree ordering, also as expected, exhibited noticeably and
consistently superior performance to the random labeling, but fell substantially behind the other
algotithms. Herein lies the most striking finding: dramatic improvements in labeling were had
by employing the degree ordering and RCS algorithms, and RCS error was neplipible for all hut
the worst cases as early as depth 2! This finding is confirmed by the values in Table 6 below,
Even at the initial stages of the RCS process, the degree of error in classification falls ofF quickly,
and substantial errors are restricted to the fourth quartile of the total distribution by the second
arder recursion. .

<Insert: Table 6: Observed Hamming Distances lor Isomorphism Experiment>

In addition to calculating the error in specification of the Hamming distance, it is also
possible to simply count the raw number of eccasions in which the observed Hamming distance
is positive. Such events are instances of labeling failure, in which the canonical labeling

algorithm has failed to identify a labeling such that the Hamming distance is minimized.

differed significantly from the random baseline under all transformations atiempied, however.
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Because labeling failures may involve a wide range of crror magnitudes, then, they provide an
alternative measure of algorithmie effectiveness,
<Insert: Figure 11. Total Number of Labeling Failures for Isomorphic Graph Experiment>

Ohbserve the failure rates for Degree and RCS algorithms depicted in Figure 11, As with the
distribution of Hamming distances, we find that the failure rate [alls off sharply with increasing
search depth, with marginal gains diminishing quickly afler a depth of two haps. More
imterestingly, we find a clear nonlingar pattern in the relationship between graph size and labeling
fuilure: initially, increasing size appears to increase the failure rate, which then begins to peak
and fall off slowly after passing 1ls maximum (gencrally between 10 and 20 nodes). The “peak
value™ of the failure rate seems to depend on the search depth; deeper searches lead to early,
small peaks and more rapid falloff, while shallow searches have longer and steeper ascents. The
nodal degree ordering algorithin (corresponding to RCS at depth 0} is particularly notable in this
tespect. From our sample, it is not obvious that the failure rate of the degree ordering algorithm
falls oft in the limit of large size; we should expect, however, that this will oceur for theoretical
reasons. Given the shape of the curve in question, then, a reasonable prediction would anticipate
a gradual falloff of the degree ordering Failure rate, beginning perhaps by the size=50 mark. Such
a prediction may be tested in future rescarch. Specific values for failure counts by graph size and
search depth are listed in Table 7, below,

<Insert: Table 7. Number of Failures under RCS (and Degree)>

The implications of these findings are quile significant, particularly in light of the previous
experiment. Despite the fact that none of the algorithms considered - including RCS — were
highly effective at minimizing the labeling distance for the general case. it is apparent that RCS

at the least does map members of isomorphism classes onto unique representations with a high




degree of reliability. Given this apparent disparity, then, we must conclude that the problem of
dentifying isomorphism classes is actually a very different one from the general distance
minimization problem, and that the class of algorithms which can satisfy the former problem may
not typically be terribly useful with respect 1o the Jatter™. This in twrn suggests that techniques
which have been developed to conduct isonorphism testing (e.g. (Luks, 1982), {Babai and Luks,
1983), (Kutera, 1987)) may prove ineffectual at facilitating comparison of unlabeled graphs in
the general case. On the other hand, the suceess of the RCS algorithm at matching isomorphic
graphs without extensive searching is quite promising. For short maximum depths, RCS is not
terribly expensive, and it would seem that (for this sample, in any event) only a relatively small

number of walks must usually be considered in order to classify vertices effectively.

Central Graphs

As noted, the central graph (Banks & Carley. 1994) is that graph which contains those edges
in 50% or more of the set of graphs on which it is caleulate. It is also analogons to the mean for
variable level data, in that it can be considered an estimator which minimizes the sum of squared
Hamming distances between graphs within the set on which it is defined, After labeling the
nedes for the sample graphs given in Figure 2, for example, we ealeulated the central graph, This
central graph is shown in Figure 12. For the four original graphs, their Hamming distance from
this graph is {clockwise in Figure 2) 0, 8.4, and 4. In this case, this gives us the minimal set of
Hamming distances of these graphs from the central graph — the choice of labeling has allowed

us to minimize Dy for comparisons within this set.

o8 Althowgh the latier algorithms must, in the ideal case, be capable of satisfying the farmer problem.
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<Insert: Figure 12, Central Graph for Four Sample Graphs>

This example serves to indicate our more general goal: here, we are interested in
investigating the properties of the three proposed labeling heuristics with regards to the
identification of central graphs in a variety of contexts. To accomplish this goal, we here
consider a large number of randomly generated graphs. In each case, by examining the degree o
which the algorithms are able to induce clustering (ihereby minimizing the mean distance from

the central graph) we are able to evaluate the properties of each.

In order to effect the test described abuve, we considered a large number of randomly
generaled graphs whose properties were varied systematically. For each condilion, we labeled
the total set of matrices using each of the shove labeling algorithms, and then found the set’s
central graph. Once the central graph was identified, it became possible to find the Hamming
distunce of each matrix in the set from the set’s central graph; the distribution of distances thus
generated was then analyzed in order to evaluate algorithmic performance,

Tahble 8 shows the set of conditions for the central graph experiment. Three different graph
sizes and three density settings were specified, for a total of nine conditions (one of which was
omitted due to computational constraints). For cach condition, 100 matrices were randomly
produced, for a total of 800 matrices. The matrices within each condition were laheled and
stacked, and the central graph analysis was applied to these stacked matrices: this avoided
possible confounding effects from mixing matrices across conditions. The distribution of
Hamming distances was analyzed both within condition and across all conditions, although the

results which follow consider only the latter. The within condition results were consistent with




the aggregate results for all conditions, although some results did not reach significance in the
former case.
<Insert: Table 8: Conditions for the Central Graph Experiment>

The aggregate results for the central graph analysis are given in Table 9. As can be scen, the
same basic performance pattern observed elsewhere holds in this case, with nodal degree
ordering and RCS significantly outperforming the weighted degree ordering and the random
permutation algorithm. The lower mean Hamming distance and tighter dispersion of the three
labeling algorithms demonstrates that they do indeed induce clustering and facilitate the
identification of central graphs. This performance characteristic can he expecied 1o benefit other
methodologies (c.g., consensus structures, mean graphs) which attempt to identify common
structural characteristics of malrix sets as well.

<Insert: Table 9: Central Graph Analysis - Cumulative Resulis>

Discussion

In this paper, we have attempted to take an initial approach to the problem of identifying
central features of unlabeled graph sets. We have defined o mathematical framework which
draws upon the notion of the Hamming distance to constroet theoretically meaningful measures
of structural distance, and have shown that there exists 2 particular type of canonical labeling
algorithm which permits the direct inference of structural distance from the Hamnming distance.
Following this, we have considered several potential canonical labeling algorithms, and we have
tested the elfectiveness of these algorithms at minimizing the labeling distance between directed

graphs under various conditions. Although we have found fairly consistent results across tests, a
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number of questions remain. In particular, computational limitations forced us to examine only a
relatively small subset of the set of possible graphs: very large and very dense graphs, for
example, were not considered. Likewise, in sampling across dimensions such as size, density,
and reciprocily, we have not performed a detailed examination of algorithmic performance
within categeries; since some social structures (e.g., authority relations, familial ties) have very
specific propertics, it would be useful to have more complete information on algorithmic
hehavior for these “special cases™,

Another area in which more work is clearly needed is in understanding the effects of
preliminary coloring on algorithmic performance, and on Hamming distance generally. Although
non-degenerately colored graphs are not the norm in social research, there are excellent
theoretical reasons for employing them; our methods, alas, have thusfar barely begun to address
this class of problems. As more is learned regarding the effects of coloring on network varinbles,
and as more statistical tools hecome available 1o deal with this issue, it is anticipated that this
means of representing social structure will become more widely used. This paper, hopefully,
adds 1o this literature by presenting a general means by which unlabeled graphs may he
transformed for use by conventional, lnbeled methods,

Insofur as we deal with specific algorithms, a number of issues are rajsed regarding both
elfectiveness and efficiency. While we found that, overall the RCS algorithm was most effective
at minimizing Hamming distance between sociomatrices (particularly in the case of isomorphic
graphs) and inducing clustering in eentral graph analysis, we also found the method to be

extremely compulationally expensive. While various means are available of improving
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performance™, it is notable that the nodal degree ordering algorithm (a degenerate form of RCS)
was nearly as effective over a range of conditions, and at dramatically reduced cost. This
suggests that, at least for relatively heterogeneous populations of networks, legree may be
preferable to the more thorough — but slower — RCS method. On the other hand, our failure
analysis of isomorphic graphs appears to indicate that (for random graphs, in any event) a search
depth of only two hops is sufficient to gain most of the performance advantages of RCS. Ag this
is not rerribly costly, such an abbreviated RCS process may be an effective compromise for a
wide variety of circumstances. The weighted degree ordering algorithm provides yet another
alternative, but was not found to perform as well as the other methods in our study. This may be
due to the manner in which the heuristic was implemented: it is possible that a more
suphisticated weighting system would yield increased effectiveness. While more work should be
done to consider when and where the a simple weighted degree heuristic should be used, it seems
important to note that, by placing disproportionate weight on certain partions of the network,
such algorithms may be expected to have difficulty with noisy data, Given our findings vis a vis
isomorphism testing and more general canonical labeling, it is suspeeted that this is a serious
[law with the weighting upproach as we have here conceptualized i1

In addition to considering these questions relating to dyadic comparison, we have considered
the relationship between our proposed canonical labeling algorithms and the central eraph. As
we have indicated, 4 prudent choice of labels permits the inference of central structures which
reflect the underlying distribution of structural distances between graphs rather than the surface
distances (which are influenced by arbitrary choice of node labels). Empirical tests using our

proposed labeling algonithms confirm this intuition, indicatin £ significantly lower distances to

* Such as identifying and flagging structurally equivalen nodes prior o labeling,
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the central graph after labeling than previous to it. Further work in this area should consider
other extensions of this type: application of the results of this paper to algorithms for classifying
populations of networks via clustering methods; generalization of the central graph to other
graphical estimators; and extension of the distance metric to permit the definition of measures on
the space of graphs, are all potential areas of development which could henelit from access to
effective canonical labeling routines,

As a final, theoretical note, it is important 1o emphasize that the priority given here to the
elimination of distance cffects due to labeling does not imply that labeling distance is simply
“noise” to be removed in all circumstances. Understanding the ways in which labels affect graph
comparison may result in advances on a number of fronts, not the least of which being the
eximination of meaningfully prelabeled structures. Development of the Hamming
decomposition, by the same token, is a possible avenue for future rescarch, The distribution of
the labeling distance, for instance, is clearly related (o graph automorphisms, and likewise 1o
methods such as the Quadratic Assignment Procedure (Krackhardt, 1988) which explore the
space of permutations in order to compare similarities. The importance of labels for inference
should not be underestimated: at the same time, however, we must endeavor to chouse our

pracedures — and our labels — with care so as not to ask the wrong questions of our data sets.

Conclusion

We have considered here three heuristic algorithms for labeling unlabeled or colored graphs:
arecursive color-splitting algorithm, a nodal degree ordering algorithm, and a weighted depree

ordering heuristic. Labeling graphs implicitly aligns their structures, mapping graphs onto
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canonical tepresentations of their isomorphism classes. Once the graphs are labeled in this
fashion, similaritics and differences can be measured and the central graph calculated using
standard methodologies. Given the central graph, it is then possible to generate other features of
the distribution of structural distances and to statistically evaluate differences and similarities
between graphs. Such technigues are useful in deiermining differences in those aspects ol social
structures that can be represented as directed graphs, and can similurly be used to identily
commonaltics between social structures across a wide range of settings. Ullimately, it is hoped
that the basic framework and tools developed here will further the creation of a unified set of

statistical methods for the representation, characterization, and comparison of structural data.
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Figure 3. Two Colored Networks
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Figure 5. A 1-Colored Graph with Arbitrary Labels
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Figure 8. An Example of Orderings Produced Under Regular Equivalence
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Table 1: Conditions for the Viriual Experiment

Treatment Values
N 5. 10,15, 20, 25, 30

Density 005,001,015, 0.2, 0.3, 0.5, 0.8

Reciprocity® 0.0,0.25,0.5,0.75, 1.0
Tweak Rate 0.0035, 0.01, 0,05, 0.1, 015, 0.25

Coloring Condition 0: 1-Colored digraphs

I 2-Colored digraphs

_Matrices per condition: 25

" Some densities precluded sume levels of reciprocity; in these
cilses, the closest possible value was used,
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Table 2: Prediction of Structural Distance from Observed Hamming Distance

¥ X i & Residual SE n o
Struet Dist®  Deg Method 033397 63.66% 37.51 53000 0.6731
Struct Dist ~ RCS Method 033597 64.01% 37.36 62692 0.6776
Struct Dist  WDeg Method  0.2909°  57.81% 40.42 63000 0.6061
Struct Dist  Rand Method  0.2854""  57.44% 40.59 63000 0.6010

Tpe],” pe0ns, T pe00n, " pet.on]
* All samples independently drawn.
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Tuble 3: Prediction of Observed Hamming Distance by Condition

Coefficients Log{Deg+1

Intercept -2.4156
Log(N+1) 2.0213
Log(Den+1) 1.1617
Log(Recip+1) -0.1802
Log(StrDist+1} 0.2234
log{Colar+1) 01158
R’ 91.11%
Residual SE 04230

LogfRCS+1)

-2.3686
1.9683
L1350

-0.2440
0.2619

-0.1125

B9 745
0.4624

Log{WDeg+1]

-2.5059
2.1643
1.4358
-0.2123
0.1360
-0. 1408
91.83%
04028

All regressions and cocfTicients significant below the 00001 level.

LoglRand+ 1)

-1.99260
20376
1.3608

-0. 1685
0.1023
-0.0508
93.44%
0.3304




Table 4: Diagnostic Error Regression

Coefficients  Log(Deg Error+1)

Intercept -3.8347
Log(N+1) 2.4954
Log(Den+1) 19869
Log(Recip+1) -0.3236
Log(Color+1) 0. 1460
R’ 79.67%
Residual SE 07197

-3.8577
2.5054
1.9811

-0.4064

-0.1435

T8.50%
0.7483

LogiRCS Error+1)

Log{WDeg Error+1)

-3.7440
2.4972
2.3205
-0.3446
-0.1957
80.95%
0.6987

All coefficients significant below the 0.0001 level.

Log{Rand Error+{
-2.9404

22440
22113
-0.2766
-0.0774
sO06%
0.6487
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Table 5: T-tests of Adjusted Errors Across Methods

Method  Mean Adj Ervor Method-Deg  Method-RCS Method-Whep  Method-Rand”

Deg 0.1619 =6.2248""7  1=45.52965  t=-153.34345

RCS 0.1582 t=-6.2248""" 1=-51.1143""" t=
152.4636"7"

Wheg 0.1909 1=45.5296"""  1=51.1143"" t=-76.9855""

* All Rand comparisons reflect paired observations, ® df=123600 © df=125008 #4+ P 001

il
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Figure 10. Order Statistics of Observed Hamming Distance for Isomorphic Graph
Experiment
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Table 6: Observed Hamming Distances for Isomorphism Experiment

Method
Rand
Wheg
Degree
RCS 1
RCS 2
RCS 3
RCS 4
RCS 5

Mir.

=

== 0

0

=]

0

Tt Ou. Median
22 70
16 64
4 28
1] 0
0 0
0 0
0 0
{0 1]

Mearn
107.5
101.7
53.97
8.183
3.078
2.787
2,694
2,841

Ard On.

162
158
72

Lo e T e e 4

Max,
496
478
437
204
212
242
196
158
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# Failures. by Maximum RCS Depth and Graph Size

Figure 11: Total Number of Labeling Failures for Isomorphic Graph Experiment
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Table 7: Number of Failures under RCS (and Degree)

N

10
15
20
25
30

[#
318
1209
1521
1586
1645
1671

i
172
444
529
562
336
504

RCS Search Depth
2 4
177 155
282 270
275 231
249 205
217 187
|70 135

4
156
268
236
196
161
135

138
280
244
199
172
130
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Figure 12, Central Graph for Four Sample Graphs

7l




Tuble 8: Conditions for the Central Graph Experiment

Consiraing Values
N 59,13
Density" 0,25, 0.5, 0.75
Coloring Condition 1-Colored matrices
Matrices per condition: 100
* The N=9, d=0.75 condition was emitted due to computational
constraints.
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Table 8: Central Graph Analysis - Cumulative Results

Hem Dist Rand Deg RCE Wheg
Mean 27.62875 24 57875 24.56625 26.19875
Stdev 2191383567  18.9185408 18963125 20.6012685
Skew 0.811268223 0.54034 0.5401834 0.69140274

T-Test’ Rand Deg RCS Wheg
Rand
Deg p<0.0001
RCS p<0.0001 p<0.86

WDeg  p<0.000]  p<0.0001  p<0.0001
N=800, m=100, n=5,9.13, d=0.25, 0.5, (.75, "Paired ohservations
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