
On Coordination Mechanisms in Global Software Development

Marcelo Cataldo1 Matthew Bass1 James D. Herbsleb1 Len Bass2
1 Institute for Software Research
2 Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

 mcataldo@cs.cmu.edu mbass@cs.cmu.edu jdh@cs.cmu.edu ljb@sei.cmu.edu

Abstract

The ability of an organization to successfully carry out

its tasks depends on the appropriate combination of organ-
izational structure, processes, and communication and co-
ordination mechanisms. In this paper, we present four case
studies that exemplify coordination breakdown problems in
global software development. Our analysis showed those
problems took place even in the presence of a collection of
processes, organizational mechanisms and communication
tools established to increases the ability of the teams to
perform their tasks. Finally, we discuss possible solutions
to overcome the identified problems.

1. Introduction

In the system design literature, it has long been specu-

lated that the structure of a product inevitably resembles the
structure of the organization that designs it [5]. Conway [5]
reasoned that coordinating product design decisions re-
quires communication among the engineers making those
decisions. In order to minimize the communication over-
head, products must be split into components with limited
technical dependencies among them, and each component
assigned to a single team. Conway [5] proposed that the
component structure and organizational structure stand in a
homomorphic relation, in that more than one component
can be assigned to a team, but a component must be as-
signed to a single team.

A similar argument has been proposed in the strategic
management literature. Baldwin and Clark [1, page 90]
argued that modularization makes complexity manageable,
enables parallel work and tolerates uncertainty. The design
decisions are hidden within the modules which communi-
cate through standard interfaces. Modularization adds value
by allowing independent experimentation of modules and
substitution [1]. Moreover, Baldwin and Clark [1, page 89]
argued that a modular design structure leads to an equiva-
lent modular task structure. In the context of software engi-
neering, that approach was first articulated by Parnas [20]
as modular software design. Parnas [20] argued that mod-
ules ought to be considered work items instead of just a
collection of subprograms. Development work can continue

independently and in parallel in the different modules. Par-
nas’ [20] views coincide with theoretical arguments from
product design [5] and strategy literatures [1].

The theoretical arguments proposed by Parnas [20],
Conway [5] and Baldwin and Clark [1] rely on two interre-
lated assumptions. The authors assume a simple and obvi-
ous relationship between product modularization and task
modularization. Hence, by reducing the technical interde-
pendencies among modules, the modularization theories
argue, task interdependencies are reduced. This, in turn,
reduces the need for communication among work groups.
The modularization approach is a very useful tool for divid-
ing the development of a complex software system into
manageable units. However, some technical dependencies
will remain, creating task dependencies that could be diffi-
cult to identify and manage. Development teams that coor-
dinate their tasks successfully exhibit better performance
[4, 14, 15]. Moreover, geographically distributed develop-
ment teams are at a disadvantage because of the negative
impact of distance on the engineers’ ability to communicate
and coordinate their work [13]. Hence, we need to com-
plement modularization with appropriate mechanisms to
identify relevant work dependencies and, consequently,
maintain suitable levels of communication and coordination
among teams developing interdependent modules.

One approach is to examine the relationship between
organizational structure, processes and coordination
mechanisms. In fact, the organizational theory literature
suggests that the ability of an organization to successfully
carry out its tasks depends on the appropriate combination
of organizational structure, processes, and communication
and coordination mechanisms [3]. Designing successful
global software development organizations requires achiev-
ing a better understanding of the intricate relationship
among those three elements. Moreover, in the specific con-
text of geographically distributed work, communication
tools play a fundamental role in information exchange, co-
ordination, and communication in general. Research has
shown that numerous factors, such as task characteristics,
urgency of the communication and the social environment,
affect the selection of particular communication means [6,
16]. Therefore an additional important question is how and
for what developers use the host of tools at their disposal

and what set of processes can be used to ensure that com-
munication tools provide the maximum benefit to the de-
velopers and the organization as a whole.

The Global Studio Project [17], sponsored by Siemens
Corporate Research, provided a rare opportunity to exam-
ine the questions raised in the previous paragraphs. In this
paper, we first present four case studies of problems in soft-
ware development projects. We examined the sources of
those problems in the context of a global software devel-
opment effort. Our analysis showed that although numerous
coordination mechanisms were in place to increase the abil-
ity of the teams to successfully perform development tasks,
coordination breakdowns still occurred. In the second part
of the paper, we focus on the role of communication be-
tween remote teams and the patterns of usage of various
communication means to better understand how informa-
tion is disseminated in the development organization and
how existing processes affect the usage of those tools. Our
analysis suggests that in global software development or-
ganizations there is a need for an integrative set of proc-
esses and mechanisms that promote communication and
ensure that appropriate technical information is stored and
disseminated accordingly. Finally, we discuss potential
solutions and future research paths that would be beneficial
in terms of design and management of global software de-
velopment organizations.

2. The Design of a GSD Organization

The Global Studio Project (GSP) [17] was established
by Siemens Corporate Research (SCR) as a test bed to gain
better understanding of the issues associated with global
software development. The project simulated a real world
GSD project by using student teams. The students partici-
pated in the GSP as part of their academic curriculum and
they operated in universities in Ireland, Brazil, Germany,
India and the United States. These students were pursuing
graduate degrees in software engineering or related fields.
The remote members had no previous experience of work-
ing together nor did they meet in person during the project.

The system developed in the GSP, called MSLite sys-
tem, was a unified management station for building auto-
mation systems such as heating ventilation and air condi-
tioning (HVAC), access control, and lighting that will al-
low a facility manager to operate such systems. The devel-
opment effort was divided in 6 iterations of 8 weeks each.
Remote teams had deliverables that included specifications,
functioning code and unit tests at the end of each iteration
and in some cases at the half point through the iteration.

A significant amount of effort was devoted to all as-
pects of the design of the infrastructure, the design of the
organization and planning of the project. Best practices
from the software engineering literature were carefully
considered. The following paragraphs describe the best
practices and processes used in GSD and the rational be-
hind those decisions.

The GSP was organized in a two-level hierarchical
structure. A central team located at SCR was responsible
for requirement specification, overall architecture, project
management, integration testing, process definition and
management and infrastructure. The remote teams were
responsible for detailed design, specification of unit tests,
coding, unit testing, and maintaining related artifacts. The
central team had a Supplier Manager (SM) for each remote
team, who managed the central team interactions with the
remote team’s corresponding local Supplier Manager. This
hierarchical structure has the benefit of centralizing critical
decisions and establishing clear paths of communication
[22].

The central team used the architectural documentation
to identify dependencies among components early in the
development process and represented these dependencies as
a design structure matrix (DSM). Following an analysis
similar to Sullivan et al’s [24], the DSM was used to iden-
tify the set of tasks to be assigned to each remote team that
would minimize the dependencies and consequently, mini-
mize the need for coordination between remote teams.

The central team established processes for communica-
tions and meetings, design and development, configuration
and change management and integration of the code. The
central team also provided access to numerous project
planning documents such as work item assignments, per-
iteration basis project plan and plan calendar. Finally, the
central team emphasized the development and usage of
documentation at the architectural and the design-level. All
these processes and decision followed recommendations
from traditional software engineering literature [2, 21].

Following best practices from the open source com-
munity [12], the GSP provided a wiki web portal which
gave the central and remote team members access to all the
processes and documents described in the previous para-
graphs as well as information about the teams involved in
the project. The web portal also provided access to several
tools such as version control system, discussion forums,
defect tracking system and a daily build system.

Modifications to the software code were managed by a
central version control system. All teams were encouraged
to (a) submit their changes regularly to the central reposi-
tory and to (b) maintain the teams’ local copy of the source
code tree synchronized with the central repository. These
processes increase the awareness of the current state of the
system and the changes made to the source code tree as
suggested by the studies on open source projects [11, 12].

As in successful open source projects [12], a daily
build system ensured that the code compiled correctly and
that unit tests ran successfully. If a problem was encoun-
tered, the build system would send email to the central
team and to the team that made the last submission to the
version control system, who became responsible for resolv-
ing the problem. If the issue persisted overnight, the central
team would revert the changes the following morning.

Finally, the developers in the GSP had at their disposal
several communication mediums. Weekly conference calls
between the central team and each remote team were pri-
marily for gathering status of the tasks in progress and de-
fine the next set of tasks. Email was the recommended
means of communication between central and remote
teams. Discussion forums were the suggested environment
for exchanging technical information about the project.

Table 1: Coordination Mechanisms Used in the GSP

Mechanism Purpose
Centralized Structure

Centralize critical decisions and
establish clear paths of communi-
cation.

Early Identification of
Dependencies

Reduce dependencies amongst
tasks assigned to remote teams.

Documentation

Reduce the need to communicate
amongst remote teams by having
access to detailed design deci-
sions.

Change, Configura-
tion and Integration
Management Proc-
esses

Identify relationships, manage,
control, audit and report on the
changes made to the software.

Periodic Commits

Increase awareness by making on-
going changes to the system avail-
able to all the remote teams.

Daily Builds

Reduce the potential for integra-
tion problems by identifying them
early.

Communication
Tools

Allow for exchange of information
amongst teams when other coordi-
nation mechanisms are not suffi-
cient.

Periodic Meetings

Status and definition of tasks. Re-
lay information from remote teams
to others.

In sum, the software engineering literature would sug-

gest that the best practices chosen (Table 1) in GSP repre-
sent a collection of coordination mechanisms aimed at lay-
ing the ground for a successful project. In the following
section, we discuss several case studies where those
mechanisms failed and coordination breakdown occurred.

3. Examples of Coordination Breakdowns

In this section, we present four case studies that exem-

plify situations in software development projects that tend
to have larger implications in global software development.
The initial data collection was done using an approach
similar to the critical incidents technique [8]. We met with
the members of the central team and we asked them to
identify events during the life of the project that were rep-
resentative of important problems in coordination. The

central teams members were also asked to provide back-
ground information regarding the events they recalled. We
then compiled data associated with the incidents from nu-
merous sources such as technical documentation, version
control system, project plan, meetings minutes, weekly
status reports of the developers, discussion forum, defects
database, email archive and social network survey. The
following sections describe these events in detail.

3.1 Event I: Change in a design specification.

Problem: The team in Ireland was responsible for task
A in iteration 2. The team in India was responsible for task
B in iteration 3. Task A consisted of designing several ob-
ject classes and specifying the properties and methods of
those classes. Task B implemented a property editor that
used the object classes defined in Task A. The developers
involved in both tasks participated in three different discus-
sion forums focused on the technical details on the imple-
mentation for task A. All the technical details of task A
were not captured correctly in the design specification
document. This mistake led to a serious mismatch between
the contents of the documentation and the actual implemen-
tation, a perennial problem in software development. The
Indian team worked on task B guided primarily by outdated
design specification which led to integration problems
when they submitted their changes into the version control
system, delaying significantly the completion of task B.

Analysis: Our analysis suggests that some members of
the Indian team were reluctant to make full use to the ver-
sion control system. The time zone difference between In-
dia and the US EST (the location of the central team),
meant that around the time the Indian team was leaving for
the night, the central team would be starting their workday.
The daily builds were done first thing in the morning of the
central team time zone. Hence, if any submission to the
code repository resulted in a broken build, the Indian team
would not have the opportunity to fix the problem before
the central team would revert the changes. Hence, the In-
dian team tended to rely a lot more on documentation and
also tended to make less frequent but much larger submis-
sions to the repository.

This incident highlights several interesting issues.
First, despite the availability of numerous communication
tools (e.g. email, discussion forums, and defect reports),
our analysis indicated that very little lateral communication
between the remote teams took place. Exchange of infor-
mation between the remote teams was limited to discussion
forums early in the life of task A. Secondly, this case sug-
gests that in this project there was some reliance on docu-
mentation as a coordination mechanism and the important
role of documentation might have not been clearly commu-
nicated to all the remote teams. In addition, the reliance on
documentation might also stem from the problems with the
daily build processes as discussed next. Finally, the case
exemplifies the role that processes play in shaping the be-

havior of certain developers and, ultimately, the coordina-
tion of activities. Although nightly builds are considered an
effective practice, the consequences that resulted from
breaking the build diminished the value of this process.

Take-away Points: There were two coordination
mechanisms, documentation and daily builds, in place that
should have eliminated the occurrence of this type of prob-
lem. If documentation is to take such an important role in
coordinating amongst remote teams, there is a need to en-
sure that the divergence between the source code and the
documentation is minimal or ideally non-existent. One ap-
proach could be to review the documentation as part of the
code review done when a work item was finished or at the
end of the iteration.

The data suggested a reason why some teams did not
follow the processes limiting the effectiveness of the daily
build process could have been the wide range of time zones
separating the remote teams. Then, it is important to under-
stand the implication of the processes in the local context of
each remote team as processed are designed and defined.

3.2 Event II: Modification of a major interface.

Problem: A team in a US university was responsible

for implementing a data access interface that all other com-
ponents of the system depended on. One of the require-
ments of the data access module was to uniquely identify
instantiated objects. The developer responsible for the task
evaluated the original design specification done by the cen-
tral team and determined that the interface needed to be
modified in order to satisfy the requirement to generate
unique object identifiers. As required by the design and
development processes, the developer sent a proposal for
the design change to the central team. However, that took
place two days before the deliverables were due. Since
there was no reply from the central team, the developer
submitted the modifications proposed in his design to the
version control system two days later. These actions re-
sulted in some major modifications in various parts of the
system causing delays and frustration on the other remote
teams. The following email trace shows all the information
exchanged between the developer team (named Team X)
and the central team regarding this issue:

To: ALL TEAMS
Subject: Access Control Modifications
All,
As you may already have noticed the Access Control component
underwent some changes to incorporate … In order to integrate
the changes, some teams’ code may have required slight modifica-
tions which were carried out by the team X. These changes were
authorized by the central team and were essential for successful
server-side integration. Please review your code to ensure all
changes were satisfactory.
Thanks and best regards,
Central Team SM

-----Original Message-----
From: Team X
To: Central team SM
Subject: AccessControlResultSet design
All,
Attached is the detailed design of the AccessControlResultSet and
the updated detailed design of the AccessControl component.
Please review and have comments to me before Mondays telecon-
ference meeting. best regards, Developer
-----Original Message-----
From: Central Team SM
To: Team X
Subject: FSS .NET Remoting Failing test
Thanks. Can you update me on your progress?

Analysis: This incident is a good example of several

related problems. First, we have a change to an interface, a
syntactic dependency, that becomes a major problem be-
cause the interface is used many times in all the compo-
nents of the system. Furthermore, the semantic of the func-
tionality also changed (generate and return a unique identi-
fier), augmenting the scope of the change. Syntactic de-
pendencies tend to be misleading because they are typically
considered simple issues. This example shows that certain
types of dependencies (e.g. numerous modules depend on
the same interface that returns a critical data type) require a
lot more attention than others, particularly during the de-
sign phase. Early identification of such types of dependen-
cies can also help focus the efforts of management in the
most critical aspects of the project. Another interesting is-
sue highlighted by this incident is the impact of lack of
contextual information and conflict. After the central team
announced that major changes would take place in the
code, several teams expressed frustration against team X
because the changes to be made would delay their current
work. However, none of the remote teams had a complete
understanding of why the changes were necessary.

Take-away Points: A growing body of work suggests
that the identification of dependencies is a challenge in
software development organizations, particularly in those
that are geographically distributed [7, 10, 13] and this case
provides an example of the implications of such a problem.
There are proactive steps that managers or other stake-
holder could followed. For instance, one approach would
be to identify interfaces that would affect teams at different
sites and dedicate more effort to validate those interfaces.
However, there is still a need for developing mechanisms to
aid the process of identification of dependencies, particu-
larly in early stages of the project.

3.3 Event III: Circular dependency between com-
ponents.

Problem: One US university team was responsible for

task A due at the midpoint of iteration 3. Another team
from a different US university was responsible for task B
due at the end of iteration 3 of the project. The information

in discussion forums and email indicated that the teams had
extensive exchange of technical information associated
with interfaces developed as part of task A and that the
component developed as part of task B would depend on.
These interfaces represented a case of syntactic dependen-
cies between two components (A B). Upon completion
of task A, the central team and the development team did a
detailed code review and the modifications were approved.

Analysis: Unfortunately, the architectural documenta-
tion also revealed a more complex semantic dependency
through a publisher/subscriber mechanism that would need
to be resolved as part of task B (B A). This dependency
went undetected during the code review and this oversight
resulted in major modifications to the component devel-
oped in task A during the execution of task B. Code re-
views are well known practices in software engineering.
Although code reviews are commonplace, they do not typi-
cally involve an analysis of dependencies to determine ap-
propriate set of developers to participate in the review [26].
This incident shows how important it is to identify all the
dependencies among components in order to have the code
reviewed by the relevant developers. Distance and the cen-
tral management approach tend to augment the impact of
this type of mistake because impromptu and lateral com-
munication paths are limited.

Take-away Points: Traditional software engineering
practices might need adjustments in order to successfully
apply them in the context of global software development.
For instance, decentralizing code reviews by allowing
member of other remote teams to participate could poten-
tially help in the identification of problems with the exist-
ing implementation as well as dependencies with other
modules that are responsibility of other remote teams. Re-
mote team members bring diverse sources of knowledge
about the system and diversity in knowledge tends to im-
prove the performance of group-level tasks [27].

3.4 Event IV: Significant delays in the implemen-
tation of a complex module.

Problem: The development of a low priority but com-

plex component was originally scheduled for iteration 3 to
be done by the Irish team. Modules developed in iteration 5
were dependent on this component. The Irish team was not
able to finish the design of the component so the design and
development was re-scheduled for iteration 4 to be done by
the group in Brazil. Shortly after the Brazilian team did the
preliminary analysis and estimated the effort to complete
the component, the Supplier Manager for the Brazilian
team got sick and communications with the central team
dropped almost to a halt. Ultimately, the task had to be re-
scheduled again for iteration 5 and this time one of the US
universities teams would be responsible.

Analysis: The delay in the implementation of this par-
ticular component changed the dynamics of the coordina-
tion required between the teams. A fairly loose coupling

(Team A implements the module, then during a subsequent
iteration, Team B uses it) became a very tight coupling
(implementation and use are concurrent). The development
teams involved are located one in the US and one in Ger-
many. The need for fluid exchange of information and tight
coordination are critical as the design decisions made by
one team could have implications in the other team’s de-
velopment efforts. Our qualitative analysis revealed that
little lateral communication took place between the remote
teams. Moreover, numerous modifications to the code had
to be reverted because the changes broke the build. This
situation escalated to a clear point of frustration as the fol-
lowing message in a modification to the code indicates:

r1901 | Central team SM
Changed paths:
 M /MSLite/MSLite.Rules/ConditionEvaluation/Evaluator.cs
 ….
 D /MSLite/MSLite.Tests.Rules/RuleEngineTests.cs
Reverting repository revisions 1898 and 1897 by “Developer A”
in attempt to successfully build integration server – AGAIN

Take-away Points: As changes in the schedule occur,

it is important to adapt the communication and coordination
patterns to the new needs. The transformation from a
loosely-coupled relation between the tasks into a tightly-
coupled situation increased the interdependency between
the two remote teams. Hence, coordination mechanisms
such as lateral communication ought to be promoted to
handle the higher levels of interdependency [9].

3.5 Conclusion

The collection of events presented in the previous

paragraphs suggests that the coordination problems encoun-
tered in global software development project depend on an
intricate relationship of several factors. First, elements that
influence how closely-coupled the work is, such as com-
plexity and uncertainty of the interfaces, as well as whether
the work is carried out sequentially or concurrently. Sec-
ondly, factors that influence the ability to communicate and
coordinate, such as geographic separation, whether com-
munication is direct or through an intermediary, and the
quality of documentation play a important role. Finally,
organizational factors such as processes, structure and goal
alignment are significant mediators as well.

4. Understanding Interaction Patterns in
GSD

In the case studies presented in section 3, one issue re-

peatedly came up in the analyses, the need to communicate
amongst remote teams. Communication and coordination
amongst workgroups that develop pieces of a system that
are interdependent is crucial for a successful outcome of
the development effort [4, 13, 14]. In the organizational

literature, particularly in organizational design, the idea of
division of labor into interdependent units is a well devel-
oped idea and mechanisms for coping with the varying de-
gree of interdependency have been proposed. For instance,
Thompson [25] argued that highly interdependent tasks can
be coordinated by mutual adjustment which “involves the
process of transmission of new information during the
process of actions” [25, page 56]. Galbraith [9] argued that
as the level of interdependency increases additional mecha-
nisms are required such as slack resources and lateral
communication. In sum, the need to communicate amongst
remote teams should not be neglected, in fact, it should be
promoted whenever is appropriate.

As we indicated in section 2, in the GSP, developers
and members of the central team had several means of
communication to share technical information, discuss de-
sign issues, discuss technical problems, and coordinate
their efforts such as a discussion forum tool, email, and
instant messages. The central team defined guidelines re-
garding the usage of the various communication means.
Those guidelines were available on the wiki web portal and
they are summarized in table 2.

Table 2: Communication Means and Rules of Usage

Communication
Means

Recommended
Rules of Usage

Weekly
Conference Calls

“… are either proposed by the central
team or the remote team(s) to talk
about the status of the project and
clarify questions, or they take place at
dates specified in the project plan,
usually to discuss deliverables …”

Discussion Forum “… All discussions on any aspect of
the GSP or MSLite system must take
place on the dedicated discussion
forum …”

Email “… 1) all communications with the
Supply Manager … 2) all
communications over email within
the remote teams … 3) all cross-team
communications will use a specific
mailing list …”

Instant Messenger
(IM)

“…can be used as a last resort at
critical stages of the MSLite project
… All IM conversations are to be
logged …”

As the case studies suggested, the availability of the

communication tools and the usage guidelines did not di-
rectly translate into remote teams using those tools to
communicate amongst themselves in all the instances that it
was required. Motivated by those findings and previous
research that has shown that multiple factors affect indi-
viduals’ choice of using particular communication means
[6, 16], we examined how and for what purposes develop-

ers used the various communication mediums at their dis-
posal. In order to perform this analysis, we developed a
codification scheme to categorize the content of the interac-
tions or discussions across the various communications
means. In the following sections we describe the frame-
work in detail and we present the results of our analysis.

4.1 Framework for Content Analysis

4.1.1 Information sharing and acquisition: This cate-
gory refers to interactions that intend to provide or seek
technical information related to the system design and im-
plementation and development environment and infrastruc-
ture. We separate the interactions in three groups and we
provide a representative example for each group:
• Information seek: “…How should I write sanity tests for

methods? …”
• Information post: “…The CreateAlarm receives now

one IToken and one IAlarmRule as arguments …”
• Information seek-reply refers to information seek inter-

actions that received one or more replies: “… Developer
A: How do we check our code for remote access? ….
Developer B: how to do this ... Copy the instance vari-
ables, first and last fixtures …”

4.1.2 Task-related interaction: This category refers to an
interaction that intends to define aspects of a particular de-
velopment task or seek actions or decisions on a particular
task. We separate the interactions in four groups:
• Task negotiate refers to an exchange of information and

options to collaboratively define a particular task: “…
Developer A: As I understand it the UL iteration 3 deliv-
erables do not include the LnRRuleEngine or the Alarm-
RuleEngine as these are iteration 4 deliverables … My
question is this, does IIITB need this for the current itera-
tion presentation system rule edits or are they using a
mock-up? … CT member: The interfaces listed on <arti-
fact> will be implemented by your team in this iteration.
… Developer A: That makes sense to me …”

• Task seek decision refers to a request to clarify and/or
confirm the definition of a task to perform: “…The ac-
ceptance tests for our current component (rules object
model) are not that thorough. Is it desired to have cover-
age beyond the specified by the acceptance tests? …”

• Task notify decision refers to a reporting action that a
particular task definition has taken place: “…Regarding
the scope of your component you just need to develop
the rules processor for L&R and Alarm rules. The alarm
processor deals with alarm objects … and is not part of
this iteration …”

• Task seek action refers to a request to perform a particu-
lar task: “… The function GetAlarmRules(token) in
MSLite.Interfaces.Data.DataAccess does a validateAcess
… hope u do understand the requirement and reflect the
changes as soon as possible …”

• Task notify status refers to a report of progress in a par-
ticular development task: “… Team A has finished the
implementation of the Rule Editor …”

4.1.3 Design-related interaction: In this category, we
group interactions where the content relates to design deci-
sions about the system. We defined three groups:
• Design negotiate refers to an exchange of information

and options to collaboratively make a particular design
decision: “… Developer A: This means that ALL value
updates after this initial setup are done through the Pub-
Sub. Therefore, this method should NOT enforce prop-
erty access rights since it is not called by the user… De-
veloper B: Adding a method to allow the VirtualFSS to
call at init time is probably the correct way to go … De-
veloper A: In fact there's no need at all to have the new
method I proposed. Only a rename of the actual method
is fine … Developer B: Ok, if you feel that everything is
fine, go ahead and commit …”

• Design seek decision refers to requests to clarify and/or
accept a design decision: “…We think this is good ap-
proach and we like to know the central team opinion …”

• Design notify decision refers to a message that informs
that a particular design decision has been made: “…We
pretty much knocked the idea of one manager for two
caches anyway. So we'll have a new class diagram on its
way to you soon …”

4.1.4 Defect resolution interaction: This category fo-
cuses on interactions where the content refers to exchanges
of information and discussion about problems encountered
in the product and how to resolve them. We grouped the
interactions in two different sub-categories:
• Problem-solution exchange refers to a discussion where

options of the potential sources of the problem are pre-
sented but no resolution or outcome is reached: “… De-
veloper A: Instead of using Client Code We could use a
configuration file and the code looks like this … Devel-
oper B: I did the experiment to show that Config file
does not work for more than 1 client instance …”

• Problem-solution negotiate is an exchange of informa-
tion and options that leads to a resolution of the reported
problem: “… Developer A: the interface IRuleId does
not contain any attribute as of now … Developer B: I
was not aware of this. I think this interface should be
changed to derive from the IObjectID interface … CT
member: I think it should be a matter of adding the re-
quired attribute to the IRuleID interface … Developer B:
A solution has been committed today…”

4.2 Results of Content Analysis

In order to understand how and for what purpose re-

mote developers used the various communication means,
we examined the content of discussion forums, meeting
minutes and emails. The data indicated that the usage of
instant messaging (IM) was very limited. There were 7 IM

discussions over a period of 2 days and they only involved
3 developers. These 7 interactions had logs. We also iden-
tify 9 additional IM interactions where the content of the
discussion was not logged. These 9 IM interactions in-
volved 2 developers from different teams and they corre-
sponded to a single work item from iteration 2 of the pro-
ject. We think that the IM interactions are not representa-
tive of patterns that could be generalized to the whole pro-
ject. Hence, we did not consider them in our analysis.

We focused our analysis in a period of 5 months from
December 2005 until early May 2006 for several reasons.
Three out of the six development iterations took place dur-
ing those months, representing a significant part of the de-
velopment effort. During the period of time we studied, all
six remote teams were participants in the project. Prior to
December only three teams were part of the project for an
average of 1.5 months and only one development iteration
took place. After May, only two teams remained until the
end of the project working on the last two iterations.

Phone-based Meetings: The central team had phone-
based meetings with each remote team almost on a weekly
basis. The central team defined the main purpose of those
meeting as to get status on the progress of the development
tasks assigned for a particular week and determine the ac-
tion items for the next week. There were 112 phone-based
meetings between December 2005 and May 2006. Each
remote team met with the central team an average of 19
times (min: 15 times and max: 22 times). Using the meet-
ings minutes, we examined the activities carried out in
those meeting to understand the role they play in the devel-
opment process. Table 3 summarizes the results of the codi-
fication process.

As it was originally intended by the central team, the
phone-based meetings were primarily used for gathering
status of the tasks and defining the set of tasks to perform
on a weekly basis. The data also showed that the central
team used these meetings to relay status information from
remote teams. Table 3 indicates phone-based meetings
were also used to seek and share information (28% of the
meetings) between the remote and the central teams as well
as to discussed design decisions (17% of the meetings).

Email Interactions: In the December-May period of
time, there were 5486 emails that corresponded to 2443
interaction threads. We eliminated 481 email threads be-
cause they were not related to the development activities of
the project. The discarded emails contained information
such as welcoming messages and action items related to the
research activities of the project (e.g. request to fill up sur-
veys and interactions of central team members with re-
searchers). Then, we examined 1962 email threads. As ta-
ble 3 shows the majority of the emails iterations were re-
lated to information post and information seeking and shar-
ing activities. It is important to highlight that the informa-
tion post pattern was so pervasive because 678 out of the
709 emails threads were status emails issued automatically
by the defect tracking system.

Table 3: Patterns of Usage of Communication Mediums

 Teleconference Email Discussion forum
 Occurrence Occurrence Occurrence

Topic Category # % # % # %
Information seek 0 0 0 0 7 7
Information post 1 1 709 39.6 22 21
Information seek-reply 31 28 299 16.7 41 39
Task negotiate 112 100 146 8.2 8 8
Task seek action 10 9 209 11.7 6 6
Task seek decision 0 0 0 0 3 3
Task notify status 112 100 278 15.5 0 0
Task notify decision 0 0 14 0.8 1 1
Problem-solution exchange 5 4 137 7.7 11 10
Problem-solution negotiate 5 4 7 0.4 2 2
Design negotiate 19 17 38 2.1 10 9
Design notify decision 3 3 30 1.7 6 6
Design seek decision 1 1 0 0 9 8

The central team recommended that all technical issues
related to the GSP project were brought up in the discus-
sion forum (see table 2), which would allow the informa-
tion to be available to all team members. However, the data
suggests developers relied also heavily on email for infor-
mation acquisition (299 email threads), limiting the possi-
bility of that information to be available to all the teams.
The results from table 3 also show that 633 emails threads
(35.4%) were for task-related activities suggesting emails
were an integral part of maintaining status on the tasks in
progress and to request specific actions of tasks (e.g. “…
work on defect 45 …”). Moreover, only 7.7% of the email
interactions involved problem-solving activities. The cen-
tral team established a mailing list specifically for inter-
remote team communication. The data showed that only 32
(1.6%) email threads were cross-remote-teams interactions.

Discussion Forum: In the December-May time frame,
we identified 113 topics created in the discussion forum
tool. We discarded 7 topics because their contents were not
related to development activities (e.g. welcoming messages
or notifications maintenance activities in the tool). Then,
we considered 106 topics in our analysis. Table 3 summa-
rizes the results of applying our content analysis scheme to
the discussions.

More than one-third of the topics created in the discus-
sion forum were related to information seeking activity and
developers responding to those requests. Topics that were
just disseminating information accounted for 21% of the
total number of topics created between December and May.
Design-related interactions, seeking a confirmation on de-
sign decisions or negotiating those design decision repre-
sented 17% of the topics. Finally, our analysis show that
developers tended not to use discussion forums for “prob-
lem-solution negotiate” type of interactions. That is, ex-

changes information about solutions to problems found in
the system that reached a resolution were not common in
the discussion forums.

The data also showed that overall there were only 27
topics (25.5%) that involved more than one remote team.
The central team was involved in the discussions on 60 out
of 84 topics of non-information-post type and of the other
24 topics only 7 involved more than one remote team.
These results suggest that lateral communication between
remote teams was limited in this communication means.

We also classified the contents of the discussion fo-
rums based on the responsibilities that the central team and
remote teams had as described in section 2 (see table 4).
We found that about half of the discussions were related to
design issues and 27% of the discussions had architecture-
related content. Moreover, discussions that contained archi-
tectural aspects of the system tended to evolve from an
initial discussion regarding detailed design. Architectural or
detailed design activities usually require high-bandwidth
means of communication because of the extensive usage of
graphical representations to convey key pieces of informa-
tion and the need to deal with conflict arising from compet-
ing solutions [18]. In distributed development teams, the
requirements for rich communication could be addressed
by collocating architects and engineers in the early design
phases of the project. However, our findings show a sig-
nificant part of the detailed design and architectural defini-
tion exchanges took place well into the development stage.
Then, our findings raise questions regarding the adequacy
of the communication tools used in the project given the
information exchange requirements of design activities.

4.3 Conclusion

The availability of several communication means and
the guidelines suggested by the central team intended to
promote information and knowledge sharing among teams
and, through the usage of a discussion forum tool, provide a
globally accessible repository of additional technical in-
formation for the project. Our analysis suggests the guide-
lines were not particularly followed and there was evidence
of limited communication amongst the remote teams. These
findings argue in favor of an integrative set of processes
and mechanisms that to promote communication, contribu-
tions and ensure that appropriate technical information is
stored and disseminated accordingly.

Table 4: Responsibility-related Discussions

Occurrence Task
%

Requirement Specification 6 5
Architecture 30 27
Design 58 51
Coding 14 12
Maintenance 6 5
Specification of Tests 9 8
Unit testing 4 4
Integration testing 1 1
Project Management 6 5
Process 14 12
Infrastructure 11 10

5. General Discussion

In this paper, we have presented a qualitative analysis

of events that are common to software development pro-
jects but we see their impact is much higher in geographi-
cally distributed software development. Moreover, provid-
ing a set of communications tools to the developers might
not be sufficient to achieve the necessary coordination and
exchange of information that interdependent development
tasks might require. Our analysis showed that in several
instances processes were not followed. Although, a tradi-
tional argument in software engineering would say “you
must follow processes”, we face the crude reality that in
real organizations processes might be partially followed or
not followed at all. Then, the important question as re-
searchers is what we can do to overcome those limitations.
In the following paragraphs, we discuss managerial pre-
scriptions as well as issues to consider in future research.

Promote lateral communication: the organizational
theory literature suggests that lateral communication is the
appropriate coordination mechanism as level of interdepen-
dency increases [9]. In our analysis, we found cases where
lateral communication could have been beneficial even in
cases where low levels of interdependency existed between
remote teams. Then, technical leads and managers ought to
promote lateral communication. Site visits and face-to-face

meetings have been found to be successful mechanisms for
developing an enduring relationship that facilitate exchange
of information and knowledge and collaboration [19]. In
other words, the goal should be to promote the develop-
ment of an informal network of ties that can overcome the
constraints that formal communication paths established by
the organizational structure might impose on the develop-
ment organization.

Identification of dependencies: Early could increase
the likelihood of success of a global software development
project by allowing managers and other stakeholders to
design the appropriate organizational structure to carry out
the tasks and identify the necessary set of mechanisms to
facilitate coordination and flow of information. Unfortu-
nately, identifying dependencies in an early stage of the
project is not a trivial process. Currently, it is a manual
process that requires deep domain knowledge. Identifica-
tion of dependencies is further complicated by their dy-
namic nature. The coordination needs amongst the devel-
opers change over time as modifications are made to the
software system [4]. Therefore, global software develop-
ment organizations would benefit from mechanisms that
allow the identification of the changes in dependencies
such that manager and developers are notified of those
changes and can react accordingly.

The documentation-source code gap: Agile methods
argue that documentation should not play an important role
in the development process because it is always outdated
[23]. However, documentation has the potential to be a
useful coordination mechanism in geographically distrib-
uted software development organizations. The main chal-
lenge, then, is devising mechanisms that could ensure that
the gap between the contents of the documentation and the
actual source code implementation is closed. Some steps
towards that goal could be implemented as part of code
reviews where verification of the documentation is an inte-
gral part of the code review process.

Architectural/high-level design activities: Change is
inevitable in a software development project, consequently,
architectural definition or high-level design activities could
take place in various points in time in the lifecycle of the
project. Our analysis showed a significant amount of the
communication in discussion forums had to do with design
and architecture. Those findings highlight the need for
communication tools that provide higher levels of richness
in the information exchanges. More importantly, our find-
ings suggest the need for mechanisms to identify communi-
cations that involve architectural definitions or high-level
redesign and facilitate organizational awareness of such
situations in order to appropriately address the implications
and impact of such changes.

6. Acknowledgements

The authors gratefully acknowledge support by NSF
grant IIS-0534656, the Software Industry Center and its

sponsors, particularly the Alfred P. Sloan Foundation, the
Software Engineering Institute, the US Department of De-
fense, NSF IGERT program 9972762 and the CASOS cen-
ter at Carnegie Mellon University.

7. References

[1] C.Y. Baldwin and K.B. Clark. Design Rules: The Power of

Modularity. MIT Press, 2000.
[2] L. Bass, P. Clements and R. Kazman. Software Architecture

in Practice, 2nd Edition. Addison Wesley Publishing, 2000.
[3] R.M. Burton and B. Obel. Strategic Organizational Diagno-

sis and Design. Kluwer Academic Publishers, 1998.
[4] M. Cataldo, P. Wagstrom, J.D. Herbsleb and K.M. Carley.

Identification of Coordination Requirements: Implications
for the Design of Collaboration and Awareness Tools. In
Proceedings of the Conference on Computer Supported Co-
operative Work (CSCW’06), Banff, Alberta, November
2006.

[5] M.E. Conway. How do committees invent? Datamation, 14,
5 (1968), 28-31.

[6] R.L. Daft and L.K. Trevino. The Relationship Among Mes-
sage Equivocality, Media Selection, and Manager Perform-
ance. Research in Organizational Behavior, 6, 1987.

[7] C.R.B. De Souza. On the Relationship between Software
Dependencies and Coordination: Field Studies and Tool
Support. Ph.D. dissertation, School of Information and
Computer Sciences, University of California, Irvine, 2005.

[8] J.C. Flanagan. The Critical Incident Technique. Psychologi-
cal Bulletin, 51, 4 (1954).

[9] J.R. Galbraith. Designing Complex Organizations. Addison-
Wesley Publishing, 1973.

[10] R.E. Grinter, J.D. Herbsleb and D.E. Perry. The Geography
of Coordination Dealing with Distance in R&D Work. In
Proceedings of the Conference on Supporting Group Work
(GROUP’99), Phoenix, 1999.

[11] C. Gutwin, R. Penner and K. Schneider. Group Awareness in
Distributed Software Development. In Proceedings of the
Conference in Computer Supported Collaborative Work
(CSCW ’04), Chicago, 2004.

[12] T. Halloran and W. Scherlis. High quality and open source
practices. In Proceedings of the 2nd Workshop on Open
Source Software Engineering, Orlando, 2002.

[13] J.D. Herbsleb and A. Mockus. An Empirical Study of Speed
and Communication in Globally Distributed Software Devel-
opment. IEEE Transactions on Software Engineering, 29, 6
(2003), 481-494.

[14] R.E. Kraut and L.A. Streeter. Coordination in Software De-
velopment. Communications ACM, 38, 3 (1995), 69-81.

[15] T.W. Malone and K. Crowston. The interdisciplinary study
of coordination. Computer Surveys, 26, 1 (1994), 87-119

[16] M.L. Markus. Towards a Critical Mass Theory of Interactive
Media Universal Access, Interdependence and Diffusion.
Communication Research, 14, 5 (1987).

[17] N. Mullick et al. Siemens Global Studio Project: Experiences
Adopting a GSD Infrastructure. In Proceedings of the Inter-
national Conference on Global Software Engineering, Flori-
anopolis, Brazil, 2006.

[18] D.E. Perry, N.A. Staudenmayer, and L.G. Votta. People,
Organizations, and Process Improvement. IEEE Software,
11, 4 (1994), 36-45.

[19] C. O’Dell and C.J. Grayson. If Only We Knew What We
Know: The Transfer of Internal Knowledge and Best Prac-
tices, Free Press, 1998.

[20] D.L. Parnas. On the criteria to be used in decomposing sys-
tems into modules. Communications ACM, 15, 12 (1972),
1053-1058.

[21] R.S. Pressman. Software Engineering: A Practitioner’s Ap-
proach, McGraw-Hill, 2004.

[22] W.R. Scott. Organizations: Rational, Natural and Open
Systems, 4th Edition, Prentice-Hall, 1998.

[23] M. Stephens and D. Rosenberg. Extreme Programming
Refactored: The Case Against XP, Apress, 2003.

[24] K.J. Sullivan, W.G. Griswold, Y. Cai and B. Hallen. The
Structure and Value of Modularity in Software Design. In
Proceedings of the International Conference on Foundations
of Software Engineering (FSE ’01), Vienna, Austria (2001),
99-108.

[25] J.D. Thompson. Organizations in Action: Social Science
Bases of Administrative Theory. McGraw-Hill, 1967.

[26] K.E. Wiegers. Peer Reviews in Software: A Practical Guide.
Addison-Wesley, 2001.

[27] K.Y. Williams and C.A. O’Reilly. Demography and Diver-
sity in Organizations: A Review of 40 Years of Research,
Research in Organizational Behavior, 20 (1998), 77-140

