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1 Introduction

A ventral problem for the structural analyst is the comparison of disparate social structures
in order to identifv underlying commonalties between them. 'This is especiallv true when
large populations of structures are concerned; in such cases. it is often reasonable to ask
whether there may be groups of structures which are especially similar to others within
the population. Such questions, however, raise fundamental issues regarding the meaning
of underlying structure, and of similarity between structures. These issues, nltimately, are
central Lo the problem of describing the distribution of structures within a population.

In a variety of problems of interest, there is no theoretical justification for treating strue
tural elements as d priort distinet from one another, This lack of distinction is equivalent
to a notion of interchangeability: certain elements may be exchanged within the structure
without doing vielence to the thearetical basis for comparison, This situation, common as it
is, puses serious difficulties for comparative work. In particular, the methods which exist for
directly assessing the differences between slructures are based on oriented representations
such as labeled graphs; unlabeled or nnoriented structures (the sort implied above] cannol
be treated in this way,

Previous work by Banks and Carley (1994) and Butts and Carley [1998) has used the
Hamming distance (Hamming, 1950) as the fundamental basis for comparison of directed

graphs. The reasons for this choice have been detailed elsewhere, and will not be considered




at length here; however, it is worth noting that the Hamming distance forms a metric an
the set of labeled digraphs, and that the properlies of the Hamming distance with respect
to various stroctural measures (such as the central graph) are reasonably well-understood
(see (HBanks and Carley, 1994; Butts and Carley, 1998) for move details). Work by Butts
and Carley (1998} has further shown that the observed Hamming distance is an unreliable
indicator of the difference between labeled structures, and have defined a emphstructural
distance measure {elosely related to Lhe Hamming distance) which is applicable to unlabeled
or partially labeled struetures. Identifying the structural distance betwoen directed graphs
can be accomplished in a number of ways, including heutistic search and canonical labeling
approaches; the identificd pattern of distances may then be used in identifving the central
graph, or inother analyses (Butts and Carley, 1998).

While previous research, then, has given ns a valuable set of tools for the dyadic compar-
ison of social structures and for the identification of central tendencios within collections of
such structures, we do nou have, as vet, technigues for addressing the mare general question
of weaker tendencies towards simi larity within large graph sets. In particular, given some
large collection of social structures we would like to be able to determine the extent to which
the larger set may be expressed in terms of a smaller set of archetypal struetures. In tradi-
tional data analysis, such questions are commonly answered via methods of cluster analysis

(-lohnson, 1967}, which identify reductions of data which can be accomplished with minimal




introduction of error. Here, we will attempt to follow a similar approach, using techniques
derived from traditional cluster analysis to characterize social network data, OFf conrse, in
our analyses each "data point™ will in fact represent an entire social structure {rather than a
vector of attribute values), a fact which will introduce some special concerns. Nevertheless,
we expect to be able to demonstrate that a cluster analysis of underlying (Le., unlabeled
or unoriented] social structures is both possible and informative, using a sample analysiz of

data collected on work teams in a Carnegie Mellon Universily information systems DrOETam.

2 Methodology

Following earlier work by Banks and Carley (1994] and Butts and Carley (19958), we here
emplay the Hamming distance (Hamming, 1950) as our basic mensure of difference between
structures. In particular, given two labeled digraphs, H; and H; with vertex sets 1] — Vi=
Vir and edge sets E; and E; respectively, we may define a metric distance between therm as

per Hamming {1930). Tirst, we define an indicator function 6, i, y) such that

) 1 i e (v, v,) € By
B (2, ) = (1)
0 stherwise
The function § permits us to count directed edges within a given labeled digraph. To derive
the llamming distance between our two labeled digraphs, then, we simply count the number

of directed edges which exist in one graph and not the other. This gives us the following
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expression for the Hamming distance:
[V [V |
D (H;, H) = rz_:l;l'i () — & (x, 4} (2)
As noted above, previous work hy Butts and Carley (1998) has shown that the observed
Hamming distance between two labeled graphs may be decomposed into a minimal, strue
tural distance which depends only on the underlying unlabeled graphs, and an additional
labeling distance which is a funection bolh of the underlying uulabeled graphs and their re-

spective labelings. For H; — LilGi) and H; = Li(Gj) (where L represents a labieling on the

unlabeled graph G, this decomposition gives us

Do (L: (Gy) . 1; (Gy)) = Ds (Gi, Gy) + Dy (L, (Gil), L; (Gy)) (3)

where Dy, represents the labeling distance and the structural distance Dy is given by
D_-,- (G;‘ GJ,I = I_J;Jigl {f}g U_—.ﬂ IG,:.I s fq\ (GJ”J I'ilzl
W,

Minimization of the labeling distance {{3) between pairs of graphs can be achieved
as described above via a canonical labeling algorithm, bul other approaches are available
for problems of dyadic comparison. As Butts and Carley (1998) suggest, heuristic search
techniques such as Monte Carlo sampling and genetic algorithms provide passible alternatives
for finding the structural distance between a given pair of graphs, and have the distinet
advantage of being tunable to adjust performance based on the problem under study.

1




With the above in mind, we here employ a genetic algorithm (Holland, 1975) to search the
space of labelings to find the structural distance between unlabeled graphs. The particular
algorithm in question operates via sequences of paired “switches” feg, 1 =22+ 1)
which may vary in length up to a maximum of (for this sample) 100 such exchanges. The
population far the algorithm is of size 30, with 50 generations permitted per search and 3
searches attempted per distance measwred. The sclection mechanism for the algorithm is
double tournament selection®, with fixed-point crassover and a Hat mutation rate® of 0,10,
The algorithm in question was evaluated on a number of sample graph sets, and was generally
found to identify the structural distances within those sets?.

Given the estimates of the structural distances (Fs) hetween graphs ablained via the ge-
netie algorithm, we may construct a two-dimensional matrix of distances between all praphs

within the set under analysis. This distance matrix, because it reflects a metric on the space

"Thal is, for each member of the new population, two pairs from the ald popnlation are selected {with

replacement). the hetter of each acting as input for the erossover routine.
*Fach mutation replaces au exchange instruction with one drawn from a uniform distribution of possible

instructions.

*Although the search heuristic did prodace some error in identifying the minimal structizal distance,
thwese prrors were generally small in comparison Lo the correct distances. Tn the results presented beve, these
errars have been further minimized by applving 2 minimum symmetry rule to all distance matrices prior to

final analysis.




of unlabeled graphs!, can he unproblematically used as input data to standard cluster anal-
ysis roulines (as might be Euclidean distances in a more conventional analysis). While a
wide range of analyses could he emploved {including multidimensional scaling, hierarchical
clustering, K-means clustering, etc.) in order to characterize the extant similarities among
graphs, we shall here utilize only hierarchieal clustering, The algorithm used in this case is
that of Johnson; culy average-link clusterings will be examined in detail, although single-
link and complete-link clusterings have also been considered. Extension of these methods to

other algorithms should be olwious.

3 The IDS Data Set

The data for this analysis is drawn from an ongoing study of [DS® majors at Carnegie Mellon
University {see Carley et al., 1993). As part of the DS training program, advanced studentls
are assigned to four to seven member project teams which must over & one year period design
and implement an information system in order to meer the needs of an external client®, These
sroups are graded based on their ability to meet elient requirements, and sneeessful project

completion is critical both to the awarding of degrees and to future job placement. For

“This result is shown in Butts and Carley (1998),
Mnformation and Decision Svsleins
"These clients are external Lo the IDS program, and often to Carnegie Mellon University itself. Tocal

busineases, administrative departments, and the like are typical examples,




these reasons, the IDS work teams are highly motivated to be successful, and have strong
meentives to accurately report their team structure’ .

As has been noted. data is collecled on the TDS teams throughout the course of their
training program. For our purposes, the data which is the most relevant are the responses to
the sovizl network questionnaires which are administered at three times during the training
period. These instruments focus on three basic relations: ego’s reporting being dependent
on alter; ego's reporting alter's being dependent on ego; and ego reporting having worked
with alter. Responses to these surveys are indicated on a scale rangiog from 0 (lowest value)
to 5 (highest value), and are collected for each member of each group with respect to each
other member of that group.

The sample we will consider here consists of the set of Junior-year work teams for the
year 1990, During this year, there were eight such teams, six consisting of five members
and two consisting of four. These eight groups were messured using each of the three
instruments at three points during the project development cyele, resulting in a total sel
ol seventy-two social structures. Although extensive information for each team (including
performance, allocation of responsibility, and the like) is available, we shall here restrict

ourselves to a simple exploratory examination of the unlabeled team structures within the

"Peer review is a part of the student evaluation process; students are familiasized with these praciices in

carlier TNS courses.




nine conditions, While this is [ur from adequate to characterize this data set. it is hoped
that such an illustrative analysis will demonstrate the manner in which clustering methods

may be applied to the examination of soei] structural data.

4  Data Analysis

In arder to analyze the 1990 junior-year IDS work team struetures, it was first necessary to
dichotamize the survey data: this necessity sternmed from the definition of the Hamming
distance, and from the conceptual tools described above. In arder to reduce the data to
adjacency form in a uniform fashion, all ties were defined to exist if and only if the reperted
tie strength from the initial survey was 3 or greater, This dichetomization divided the data
at the midpoint of the reporting scale, and thus seemed to be a theoretically reasonable
simplification. Other thresholds, of course, conld be chosen for this analysis, but as our moal
is to illustrate the methodology of graph clustering rather than to perform an in-depth anal-
yeis of the IDS data set, the simplicity of the midpoint threshold appears a sensible choice.
After dichotamizing the network structures about the midpoint of the survey reporting seale,
the aforementioned genetie algorithm was emploved on each dyadic comparizon within every
condition in order to find the structural distances between the unlabeled tram structures.

From these distance counts, it was ossible to construct generalized distance matrices repro-
, P A !




senting the relationships between all graphs within each sel. Three such matrices are given

in Table 1 below:
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Table L= Structoral Distance Mabrix for the “Depends On® Belation, Reporting at Thres 'Time Steps

Iable 1 presents the distance matrices for the first network survey question at all three
time points. Note that, as distance matrices, all are forced to be symmetric, with 0 distance
on she diagonal (all groups are isomorphie to themselves). Note too that there are ispmorphic
structures within the sample: groups two and five, for instance, have identical dependency
relations® at time zoro, As can be seen, distances vary appreciably both between pairs of
groups and over time. While there appears to be some tendency for very similar or disparate
BrOUpS to remain so over time, this is not always the case: teams six and seven, for instance,

have quite similar dependency relations in the first rime step, and become dissimilar over

*Based on the underlying, unlabeled structures,




time.

Another Iook at dependency can be seen from the data presented in Table 2, below,
This set of distance matrices is derived from ego reports of alters” depending on ego (as
opposed to ego reports of depending on alters, which we have seen abave). Naively, one
would expect for the graphs of this second question to be close to those of the Grst; after
all, the relation being reported continues to be dependency. and ene might suppose that
actors would have a fairly high degree of agreement as to who depends upon whom. As
it happens, however, this is not the case. Comparison of the distance matrices in Table 2
with those in Table 1 reveals a substantially different distribution of structural distances
between groups, which im turn implies that the underlying dependency structures of many
(if not all) IDS teams are reported quite differently under the two instruments®. While
interesting, this finding is not overly surprising; numerous previons studies (c.g., (Bernard
et al, 1984), (Krackhardt., 1987)) have demonstrated that social struclures derived from
disparate positions are unlikely to be similar. A perhaps more subtle result in the same vein,
however is that there is no obvions relation berween trends on the two measures over time:
teams six and seven, for instance. which appear to become increasingly dissimilar based on

ego reports of dependency, appear to maintain roughly similar distances with respect to ego

“This could be further investigated by estimating the structural distances hetween team reports for the

two instruments at identical time steps.
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reports of alters’ dependency on ego. While morve rigorous, quantitative technigques would
need to be applied in order to verify these initial observations, then, we can immediately see
that the matrix of structural distances is a potentially powerful toal for answering a variety

ol questions regarding structure and structural change,
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Table 2: Structural Distance Matrix for the "epends On" Felation, Heporting at Three Time Stops

With respect to variance in distance both within and between Lime steps, the data of
Table 2 appears to show roughly the same behaviors as that of Table 1. The “Works With”
relation reported in Table 3 (below) is not entirely novel, by comparison. but nonetheless has
a few interesting features which bear pointing out. The first of these is the high prevalence of
isomorphism on this relation: in the initial time step, two clusters of isomorphic groups are
clearly present, with a smaller number of unique team structures distributed about them,
This highly homogeneous state appears to break down over time: while some isomorphism
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is present in later time steps, there is a clear reduction in the number of isomorphie team

structures as early as time step 1.
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Tahie 3: Structural Distance Matric for the “Works With” Relation, Reporting at Thres Time Stape

Another notable (if perhaps less encouraging) feature of the data in Table 3 concerns

a side effect of graph isomorphism: what might be called “meta-structural” equivalence.

Consider two isomorphic graphs; by definition, the structural distance between such graphs

is 0. From the metric property of the structural distance, however, we can see that the

underlying unlabeled structures associated with these graphs must be identical - as a result,

the structural distances belween the isomorphic structures and all other stroctures must be

identical as well. This relationship, then, is a distance equivalent of structural equivalence,

in that it is a condition which is fulfilled if and only il the relations between the equivalent

structures and all other structures are identical.
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Such an equivalence relation is an interesting consequence of the nature of izomorphism
in this context, and surely poses no problems; what is somewhat discouraging is the fact
thal this equivalence is not perfectly observed in Table 3. To see this, consider the rows
and columns of two isomorphic groups (e.g., teams two and three at time (). By our above
argument, the second and third rows (and columns) of the distanee matrix should be iden-
tical. In [act, however, there are differences between the distances from proup twe to other
graphs, and from group three to those same alters; this is a theoretical impossibility, and
thus indicates that our heuristies for identifying the minimnm Hamming distance between
structures have not always been successlul. On that paint, it should be noted that these
errors cannot be due to mistakenly identifying dissimilar structures as being identical. From
the decomposition of the Hamming distance given in (3), we can see that failure to prop-
erly label the graphs can only result in an fnerense in the ohserved Hamming distance; an
observation of zero distance, then, must be correct.

As our observations from Tables 1 through 3 suggest, it is possible to derive a great
deal of uselul information simply from an examination of the distance matrices in various
eonditions.  Nevertheless, there are limits to the inferences which may be drawn in this
fashion: in partieular, it can be difficult to detect similarities among more than two Zroups
at any given time, especially when those groups are not isomorphic. In order, then, to more

carcfully examine the distribution of structures in the IDS data set, we ulilize the ahove
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distance matrices to perform an average link hierarchical clustering {Johnson, 1967) on the
struetures derived from the “Depends On” relation at each {ime SEe.

The first such clustering is given below in Table 4. At each step in the clustering al-
gorithm, exactly two existing clusters are merged; the clusters chosen are those with the
lowest mean structural distance between them, Examination of the hierarchical clustering
at various levels thus sugzests the relative similarity of team structures, with the associated
stress measure as an indication of the average number of ties which must be changed in
each graph from the first gronp to map it onto the seeond'® Fram Table 4, for instance. it
can be seen that two major clusters (gronps 0, 2, and 5, and 3, 6, and T) exist at the 2.0
distance stress level. This suggrsts that these groups are in fact quite similar at time 0, and
that they are more similar to each other than to the members of the other cluster {or to the
two outliers). Such a finding of uniformity in the initial time step was not obvious from a
simple examination of the distance matrix; i was revealed by consideration of the clustering

process.

YWThis follows from the definiticn of the .s[.]“u[_'l.ura] distance.
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Hierarchical Clustering

“Depends O™ Time 0
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Table 4: Average Link Hiorarchical Clustering of “Depends On™ Relation al Time 0

Continning with our examination of the dependeney relation. we present the clustering
at time step 1 in Table & below. Immediately, the high stress levels induced by even modest
clustering suggest to us that the IDS work teams have become substantially more diverse
since the first survey was administered. Furthermore, the partieular pattern of similarities
has changed: groups 0 and 2 are still together, but new group 5 is more similar to 6 than
to its former cluster members, and both 3 and 7 have become highly nnusual relative Lo the
distribution of structures. Interestingly, even as much has changed, some things abide: for

instance, team 1 is still an outlier at time 1, as it was in time 2.

15




Hierarchical Clustering
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Table &: Average Link Hierarchical Clusterlng of “Depends On® ltelation at Time 1

The autlying behavior of group 1 extends into time 2, as can be appreciated from the
vlustering in Table 6 below. Here, the teams as a whole appear to Lave become more similar
once again''. Minimal clustering is found here; instead, chaining from a single, central
structural type appears to dominate the pattern of similarities. One small exceplion to this
lies ironically in groups 1 and 6, which {although fairly resistant to clustering) are more
similar to cach other than to the central cluster. Otherwise, it would seem that the [DS
teams have, by time 2, begun to converge towards variants of a single structural archetype,
While further analyses can be done to verify this observation more formally, cven a simple
perusal of the clustering patterns ean tell us much ahout the distribution of IDS work team

structures and their evolution over thmne.

11 Although this could simply reflect incressed orrar rates at time 1.
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Hierarchical Clustering

“Depends On™: Time 2
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Table 6: Average Link Hiecarchical Cluseering of “Depends On® Relstion at Time 2

5 Conclusion

As we have seen, a viahle approach to characterizing the distribution of social structures
exists which draws upon the structural distance metric to establish a matrix of distances
between unlabeled graphs. This distance matrix can then be used as an input to various
techniques of cluster analysis, many of which have been well-developed in previous work. By
exainining one such analysis of information systems work teams over time, we were able to
draw preliminary inferences regarding the relationships between structures al various points
in time, and across various measures, as well as within particular conditions, Further ox-

tensions to this methodology might include the use of multidimensional sealing techniques,
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K-means clustering, or other methods to abtain more formal characterizations of the dis-
tribution of structnres. Similarly, the clusters which are discovered in this Fashion may be
directly characterized via their central graphs, permitting the use of traditional network anal-
vals techniques on the summary structures to better understand network properties which are
commaon across members of a large population. By continuing to develop methods of cluster
analysis on unlabeled structures, we enhance our ability to characterize, and ultimately to

predict, fundamental features of social structure.
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