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Abstract: 
Social network analysis has been used to understand groups of individuals and how they 

operate. Most of the literature in social networks has dealt with overt organizations with an easily 
discernable network structure. This paper examines the possibilities of using the inherent 
structures observed in social networks to make predictions of networks using limited and missing 
information. The model is based on empirical network data exhibiting the structural properties of 
triad closure and adjacency. Triad closure indicates that if person i has a dyad with person j and 
person j has a dyad with person k, then there is a higher than chance likelihood that person i and 
person j have a dyad. The model exploits these properties using an inference model to update 
adjacent dyads given information on a reference dyad. The model is tested against several 
networks to understand and discern its behavior. The paper illustrates that if the model is built 
with careful consideration towards the network being predicted, it will assist in making better 
decisions regarding uncertain organizational phenomenon. The method is applied in a covert 
network example, and has been extended to show its usefulness in epidemiological networks and 
improving performance in organizations operating under stress. The paper opens up new avenues 
in the development of models designed to make network predictions and use those predictions to 
make better decisions. 
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Unknown Network Structures 
Social network analysis has been used to understand organizational dynamics in a variety 

of application areas (e.g., epidemiology, technological diffusion, and management consulting). A 
group’s behavior, values, and/or performance can be articulated by understanding the 
relationships that exist within the group. Most applications to date have been on open groups or 
societies in controlled experiments. Currently there have been very few network applications to 
covert or “hidden” networks of interest. Social network measures and tools that could efficiently 
infer “hidden” networks from limited data could allow policy makers to make better informed 
decisions in a variety of applications. 
 This paper presents an empirically-based probabilistic model, grounded on observational 
social networks, to infer network structure using limited and incomplete information. First, 
relative similarity information is used to build a prior probability assessment of who 
communicates with whom. As direct information on dyadic likelihood is received, these priors 
are updated. Adjacent dyads are updated through an empirically based inference model. This 
continues until the likelihood of every dyad in the probabilistic network is inferred and updated. 



The resulting network provides an estimate of the actual network and may be used to guide 
policy analysis. 

Network Properties 
Researchers have uncovered inherent structural properties in social networks (Skvoretz, 

1990). These properties arise from the structure of the network itself and not from the behavior 
of the individuals in the network. They include reciprocity, triad-closure, and triad-closure 
reciprocity. A corollary of the triad properties is an adjacency property.  Simply stated, if persons 
i and j are talkative with each other, then they are likely to be talkative with others.  Formally, if 
A and B are adjacent dyads, then 

if nnEnn AB >�> )( , and 

if nnEnn AB <�< )( , 
where nB is the number of interactions recorded on dyad B, E(nA) is the expected number 

of interactions on dyad A, and n-bar is the mean number of interactions for the whole network.  
In other words, if B has above average activity then the expected value of the distribution of 
interactions for all of its adjacent dyads will also exceed the mean number of interactions. The 
degree to which these properties exist varies from network to network (Krackhardt, 1987). 

Constructing the Model 
The problem domain will determine the relationship of interest (ROI). In most real-world 

situations, only samples of interactions between individuals can be observed. Depending on the 
type of interaction, knowing that i and j interacted will inform our belief about the likelihood of a 
ROI existing between the individuals.  But, what, if any, inference can be made about these 
individuals’  relationships with others in the network?  

For illustrative purposes and to facilitate model development, we focus on one social 
network dataset, Bernard and Killworth’s 1979 observed interactions between 58 fraternity 
brothers at a West Virginia university. Because of the size of this data set, it was not possible to 
develop a robust inference model based on the triad-closure property. Instead, the model is based 
on adjacency properties found in the data. Figure 1 shows this relationship between interactions 
on a reference dyad and the expected number of interactions on an adjacent dyad.  As the number 
of communications for the reference dyad increases, so does the expected number for the 
adjacent dyads. 

 Adjacency Property-A plot of Conversation Counts
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Figure 1—Adjacency Proper ty I llustrated using Bernard and K illwor th Fraternity Data 



Transforming Data 
In order to build a model of dyadic dependency, the network data of “counts of 

interactions”  has to be converted into probabilities that an ROI exists between any pair of 
individuals.  To do so, requires a careful definition of what constitutes an ROI. Two important 
considerations must be made.  

1. The number of interactions needed to define when a ROI exists 
2. The marginal increase of each additional interaction towards the probability of a 

ROI existing 
We also need to establish the functional form that relates additional interactions to the 

probability of ROI.  In this paper, we are assuming a concave function (marginal decreasing 
value). A standard exponential functional form is used: 
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where dij is the probability of the relationship of interest, λ is the shape parameter of the function 
(higher values more concave), xij is the interaction dyadic data, and max(xij) is the ROI threshold 
value. For this model, a ROI threshold of 21 interactions and a λ value of 0.14 were used. The 
21 interaction threshold value was chosen so that strong relationships could be modeled and that 
a large distribution of reference probabilities could be considered. The 0.14 λ value was chosen 
as a moderate value to attain some concavity to the curve.  

Building a Model of Dyadic Dependency 
The dependency relationship between dyads can be illustrated by plotting adjacent dyads’  

probabilities against reference dyads probabilities, for all dyadic pairs.  Figure 2 shows the 
percentile contours for the transformed fraternity data. Note that the percentile contours are 
generally increasing with probability. 
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Figure 2---Raw Fraternity Data Showing the Dependency Relationship Between Dyads 

 
By fitting lines through these data and smoothing the parameters, the dependency 

between dyadic probabilities in the fraternity data can clearly be shown. For this application, the 
relationships shown in the plots were modeled using a neural network. (Freeman and Skapura, 
1991) The neural network consists of 9 nodes and 3 layers. 



Implementation 
Priors to dyads may be assigned using homophily (McPherson and Smith-Lovin, 1987, 

McPherson, Popielarz, and Drobnic, 1992, Valente et al., 1997) and a database of social 
relationships and attributes such as the PCANS methodology (Krackhardt and Carley, 1998). As 
an observation comes in to inform the model, Bayes Rule performs the direct update and the 
inference model can then propagate the information to update other relationships in the network. 
Suppose that Iij is the event that an interaction is observed between nodes i and j. Suppose also 
that Lij is the event that the ROI exists between nodes i and j. P(Iij|Lij) and P(Iij|Lij

C) can be 
assessed for each piece of incoming information. Then the conditionals can be used to update the 
probability of the reference dyad, P(Lij). 
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Once the probability of the initial dyad is calculated using Bayes Rule, there are several 
choices for how to propagate the update through the rest of the network. In this paper three 
alternative models are considered: 

1. Bayes Rule is used to update only the reference dyad. 
2. Bayes Rule is used to update the reference dyad.   A secondary round of 

updates are applied to the dyads immediately adjacent to the reference dyad, 
using the inference model. 

3. Bayes Rule is used to update the reference dyad.   A secondary and tertiary 
round of updates are applied to the dyads immediately adjacent to the reference 
dyad and adjacent dyads using the inference model. 

Decision Analysis-Covert Networks 
Consider a subpopulation of conspirators is being examined to determine its network 

structure and who to target in that population with an unknown network structure. Borgatti 
(2002) identifies a key player metric for network analysis that we use to develop inoculation 
strategies. Suppose that resources are available to remove 7 out of the 20 individuals. We can 
examine the efficacy of the recommended strategy by comparing the recommended strategy 
(developed from a network prediction after 100 updates) to that of the real network. Minimums, 
averages, and maximums for the 20 simulation runs under models 1, 2, and 3 are plotted in 
Figure 3. 
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Figure 3---A compar ison of models for  cover t networks; for  all possible isolations, model 2 has a 

higher  average value for  the number  of fragments created 
 



Table 1-- Evaluation of models for  cover t network scenar io showing the expected values of fragments, given 
different models, and EVPI 

 

total isolates subgroups
perfect information 12 11 1
E(Model1) 4.9 3.45 1.45
E(Model2) 5.4 3.6 1.8
E(Model3) 4.9 3.55 1.35

Fragments

 
Figure 5 and Table 1 indicate that on average, model 2 is best at breaking up the network, 

but model 3 attains a maximum number of fragments that is higher than model 2 for isolates and 
total number of fragments. Comparing these values to what they would be with perfect 
information we see that model 2 performs best of all the models, but none of the models perform 
as well as perfect information. None of the models for any runs attain the perfect information 
values. The results in Table 4 indicate that on average, model 2 will result in 0.5 more total 
fragments than either model 1 or 3. But there is uncertainty, as choosing model 3 might yield a 
better result than model 2. 
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