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Abstract

Inter-structural analysis — the analysis of data sets comsisting of multiple social
structures — is an important extension of classical social network analysis. Building
on past research regarding metric inference and graph covariance analysis, we here
present a general approach to the analysis of social structure sets with arbitrary label-
ing assumptions. We define a family of structural distance and analogous structural
covariance measures, and show that these measures satisfy the conditions necessary
for their use in conjunction with traditional multivariate analysis procedures. Demon-
strations of the use of various exploratory data analytic procedures on inter-structural
data sets are provided, and suggestions are made regarding the further development of
this approach.
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1 Introduction

A central problem for the structural analyst is the comparison of disparate social struc-
tures in order to identify underlying commonalities among them. This is especially true
where large populations of structures are concerned (e.g., group studies (Hare et al., 1965),
organizations (McKelvey, 1982; Hannan and Freeman, 1989)), mental models (Carley and
Palmquist, 1992), or the like); in such cases, it is often reasonable to ask whether there may
be groups of structures which are especially similar to others within the population. Like-
wise, in measuring structural similarity, it is often important to contrast the similarities and
differences which are due to assignment of particular individuals (or types of individuals) to
similar positions, versus similarities and differences which arise from underlying structure.
Such questions, however, raise fundamental issues regarding the meaning of “underlying
structure,” and of “similarity” between structures. These issues, ultimately, are central to
both the theory and practice of inter-structural analysis.

For a variety of problems of interest, there is no theoretical justification for treating some
or all structural elements as d priori distinct from one another. This lack of distinction is
equivalent to a notion of ezchangeability: certain elements may be exchanged within the
structure without doing violence to the theoretical basis for comparison!. This situation,
common as it is, poses serious difficulties for comparative work. In particular, the methods
which exist for directly assessing the differences between structures are based on oriented
representations such as labeled graphs; unlabeled or unoriented structures (the sort implied
above) cannot be treated in this way.

While previous research has given us a valuable set of tools for the dyadic comparison
of social structures and for one type of point estimate of central tendency within graph
sets (the central graph), we have had relatively few techniques for addressing the broad-
er question of general tendencies towards similarity within large graph sets. For instance,
given some large collection of social structures, we would like to be able to determine the
extent to which the larger set may be expressed in terms of a smaller set of highly similar
structures. In traditional data analysis, such questions are commonly answered via methods
of cluster analysis (Johnson, 1967; Ward, 1963), which identify groups of observations satis-
fying various properties of within-group similarity and between-group difference?. Another,
related, question is that of the identification of archetypal structures in terms of which
the structures of a given data set may be expressed; this problem is roughly analogous to
those addressed classically by principal component analysis (Jackson, 1991; Joliffe, 1986).
In general, then, we find that a number of problems arise in social network analysis which
have clear classical analogues, but for which classical methods have not previously been ap-
plied due to their differing assumptions (e.g., exchangeability of observations, distributional

I Exchangeability of observations is a common assumption in classical statistical analysis; the motivation
for this assumption is often similar, though exchangeability of observations and exchangeability of structural
elements have very different implications.

2The various methods of cluster analysis typically vary primarily by the notion of similarity/difference
employed, by the manner in which similarities and differences are weighted, and by whether the procedures
employed are hierarchical. See Romesburg (1984) for a fairly pragmatic overview.



requirements (especially normality), non-permutability of labels across variables®).

Here, we develop a number of techniques whose basis lies in traditional multivariate
analysis for the purposes of analyzing structural data. Unlike typical multivariate analyses,
of course, our “variables” will often represent entire social structures (rather than vectors of
attribute values), a fact which will introduce some special concerns. Nevertheless, we here
demonstrate that multivariate analysis of both labeled and underlying (i.e., unlabeled or
unoriented) social structures is both possible and informative, illustrating the use of several
such methods on a number of classic network data sets.

2 The Problem of Structural Comparison

Just as the analysis of positions within individual social structures poses particular theo-
retical and methodological challenges for the social researcher, so too does the problem of
structural comparison pose difficulties of its own. Here, we briefly consider four basic per-
spectives on the structural comparison problem, along with some of the merits and liabilities
of each. After reviewing these approaches, we will then move to some data considerations
specifically relating to the analysis of multiple distinct structures. The discussion of these
issues — particularly that of theoretical exchangeability of vertices — will provide important
foundational material for the sections which follow.

2.1 Four Approaches

Although, as noted, the paucity of large multi-structure data sets has heretofore limited
the need for methods of structural comparison, four primary approaches currently exist in
the network literature. These approaches are comparison of graphs using graph-level indices
(GLIs), comparison via algebraic decomposition, comparison using parameters of fitted edge
models, and direct comparison of edge sets. While certain other methods (e.g., comparison
of node-level index (NLI) distributions, visual inspection and comparison of blockmodels in-
duced by nodal equivalences) have also been employed for purposes of structural comparison,
these applications have thusfar been sufficiently ad hoc to preclude discussion here. Though
all of the methods presented here belong to the fourth category (the direct comparison ap-
proach), it is useful to understand these techniques in the larger context of inter-structural
analytic methods. Each approach to the comparison of social structures has its own advan-
tages and limitations, and the structural analyst should employ the methodologies which
are most appropriate for his or her theoretical problem.

3This generally tacit assumption is routinely violated by exchangeability of structural elements, e.g. in
the case of graph correlations between unlabeled graphs.



2.1.1 Comparison Using Graph-Level Indices

Much of what we shall here call “classical” social network analysis* involves the construction
and computation of structural indices — deterministic functions of graphs or positions which
express structural properties of theoretical interest — and it is therefore unsurprising that
one standard means of comparing structures is by computing one or more such indices and
subjecting the resulting data to statistical analysis. Where motivated by substantive theory,
GLIs such as density, reciprocity, various forms of centralization and hierarchy, number of
components, diameter, etc. can simplify data analysis by permitting direct consideration
of specific structural features (for an experimental example, see Freeman et al. (1980)).
Similarly, specific families of structures may be characterized by a particular set of GLIs,
as with Krackhardt’s set of outtree “dimensions” or organizational structure (Krackhardt,
1994). For problems in which the salient features of network structure are well-known
(and readily quantified), then, analysis of structural populations using indices is an entirely
reasonable approach.

In contrast with the above, however, we cannot always reduce our properties of inter-
est to a small number of unidimensional quantities. Likewise, the behavior of GLIs is not
always conducive to such analyses. Path-based indices, for instance (i.e., betweenness and
closeness distributions (and hence centralization scores), diameter), are sufficiently compu-
tationally expensive to render calculations on large numbers of high-order graphs laborious,
and indeed the calculation of some indices (e.g., clique number) is NP complete. Further-
more, the distributional properties of many GLIs are poor, changing shape dramatically and
losing information as graph size increases (Anderson et al., 1999). These factors limit the
use of structural indices in many real-world contexts, where they may be difficult to calcu-
late® and/or largely uninformative. As many structural indices interact with each other in
complex and decidedly nonlinear ways, analyses of such indices with conventional statistical
techniques must be performed with caution (Anderson et al., 1999). While some specialized,
model-based approaches can aid in disentangling the effects of multiple structural indices
(see below) these cannot completely obviate the problem®, and it is still necessary for the
analyst to specify ex ante a set of GLIs which adequately capture the dimensions on which

4«Classical” social network analysis as we use the term includes visualization of sociograms, utilization of
node and graph-level indices, component/clique/group identification, nodal equivalence analysis, algebraic
decomposition of relational structures, and walk/path distance analysis (see Wasserman and Faust (1994)
for a canonical treatment). Classical SNA has given rise to offshoots such as ego network analysis (which
focuses on local network properties), network statistics (which applies stochastic modeling to problems of
structural inference), network process modeling (which examines processes affecting or affected by social
structures), cognitive social structure analysis (which studies individual perceptions of social structure),
and macrostructural analysis (which considers structural properties of relations on large, spatially embedded
populations). Most later developments in network analysis build explicitly upon classical techniques, but
differ in their adoption of novel approaches designed for particular problems of structural analysis.

50r impossible, in some cases: as conventionally deployed, measures such as closeness are undefined on
disconnected structures, and some others (such as eigenvector centrality) lose their normal interpretations
in such circumstances (Wasserman and Faust, 1994).

8The problem being largely that it is meaningless to speak of “independent” effects of structural indices
which are inherently related to one another; see Anderson et al. (1999) for a discussion of this issue.



the graphs in question are to be compared.

2.1.2 Comparison via Algebraic Methods

Another approach to the problem of inter-structural comparison is algebraic; algebraic meth-
ods (as we use the term here) attempt to express certain members of a graph set in terms of
a set of operations applied to other set members, and/or attempt to find common algebraic
constraints within structures which are shared by many members of the graph set. These
approaches have seen their most complete development in research on kinship networks
(White, 1963; Boyd, 1969, 1990), where the technique has been used to develop algebraic
characterizations of cultural norms regarding family structure (Boorman and White, 1976),
but have been applied to a number of other areas including organizational structure (White,
1963) and interactions among elites (Breiger and Pattison, 1978). More limited variants in-
clude the familiar work on structural equivalence (Lorrain and White, 1971), transitivity
(Holland and Leinhardt, 1971), and structural balance (Harary, 1953). As these examples
suggest, the great strength of the algebraic paradigm is its ability to precisely define struc-
tural constraints which are at once general (being applicable to a wide range of structures at
multiple scales) and precise. Where algebraic reductions exist, one can very parsimoniously
express the relationships among multiple structures, and in some cases it may even be possi-
ble to identify a set of basic structural elements from which (by application of the algebraic
operators) an entire set of structures may be formed. In certain instances, shared internal
algebraic constraints (e.g., obeyance of transitivity) may provide clues as to the processes
from which networks arise, and/or cultural or other constraints (e.g., marital taboos) faced
by actors within the social system. When applicable, then, it is quite clear that the algebraic
approach to inter-structural comparison can be quite powerful.

Historically, the greatest difficulty with algebraic analysis of graphs has been its inflex-
ibility; even minor deviations can be sufficient to “break” a hypothesized pattern. This
situation may be changing: recent work by Pattison et al. (2000) has provided a basis for
statistical inference of approximate algebraic structure within graphs, which will doubtless
increase the empirical viability of this approach?. Nevertheless, there are many contexts
of theoretical interest in which algebraic decomposition seems unlikely to prove helpful.
Sets of independently collected group structures, for instance (e.g., organizational forms,
friendship patterns in small groups, etc.) are unlikely to be algebraically related, and yet
analysis of such structural populations is clearly motivated by problems in neo-institutional
theory, human factors and organizational design, group behavior, and the like. Questions
of central tendency, graph distribution, and underlying dimensions of structural similarity
cannot readily be posed in an algebraic framework, and there do not currently exist feasible
exploratory methods for detecting nontrivial algebraic structure within graph sets. In the
absence of such techniques, algebraic relations must generally be postulated and evaluated
by the researcher on a case-by-case basis. This, and the above considerations, limits the
utility of the algebraic approach to inter-structural comparison in most current research

7See also the additive models implied by structural regression, described below.



settings.

2.1.3 Model-Based Comparison

Yet another approach to the problem of inter-structural analysis is that of model-based
comparison. Methods of this family involve the specification of a specific stochastic model
by which the structures in question are presumed to be well-predicted; this model is then fit
to the data, and variations in model parameters across graphs are used to assess differences in
structure (Feinberg et al., 1985; Wasserman et al., 1990). The most well-known model family
which can be deployed for this purpose is the log-linear formulation known generically as p*,
along with its logistic variants (Wasserman and Pattison, 1996; Pattison and Wasserman,
1999; Robins et al., 1999). Under the p* family, edge set probabilities are modeled as
exponential functions of a linear predictor, the elements of which can include both structural
indices (GLIs and NLIs) and supplemental covariates. (In the logistic variant, the log-odds
for each edge are modeled by the change in the linear predictor induced by said edge’s
presence or absence (holding all other edges constant). Given certain regularity conditions,
this model converges asymptotically to the full log-linear formulation. (C. Anderson et al.,
1999).) Another very large family of stochastic models is based on the Bernoulli graph
formulation, in which edges are taken to be independent Bernoulli trials conditional on a
(possibly dependent) matrix of edge probabilities. Many of the biased-net formulations of
Rapoport (1957; 1979), Fararo (1981; 1983; with Skvoretz, 1984), and Skvoretz (1985; 1990)
are of this type, as are the spatial network models of Butts and Carley (2000). In all of these
various guises, model-based comparison techniques can serve to connect theories regarding
structural influences and/or constraints with structural data sets. Given an appropriate
model, the researcher may infer the effects of particular predictors on network structure
(e.g., homophily, distance, or popularity). Likewise, where competing explanations are
present, model-based comparison allows for alternatives to be explicitly formulated and
compared side-by-side. In this respect, then, model-based comparison in the context of
inter-structural analysis is no different from the use of explicit stochastic modeling in other
scientific contexts.

While model-based comparison is a powerful and useful approach to inter-structural
analysis, it has certain limitations as well. Most important among these is the specification
of the model on which the analysis is based. Log-linear models, for instance, rest on the
assumption that a linear predictor can be related (via the appropriate functional form) to
edge probabilities; where the relationship between covariates and edge probabilities cannot
be specified in this fashion, such models will produce misleading results. Similarly, failure to
specify the appropriate set of covariates can result in biased estimation of coefficients, and
high degrees of multicollinearity between certain types of covariates (e.g., multiple centrality
measures®) can lead to unstable coefficient estimates for insufficiently large structures (as

8Tt is well-known that average correlations between centrality measures are quite high for most graphs,
an effect which can worsen with increasing network size; recent work by Everett et al. has, in fact, suggested
that this effect is reliable enough to allow degree to be used as an effective proxy for betweenness in certain
large structures.



well as biased estimates in the presence of measurement error). For this reason, model-
based comparison is most appropriate where structural processes are well-understood and
hypothesized effects are clearly specified. Other approaches may be more appropriate for
the initial, exploratory stages of research.

2.1.4 Direct Comparison of Edge Sets

A fourth approach to graph comparison attempts to treat the problem by establishing a
mapping between the edge sets of graph pairs and then proceeding to evaluate the simi-
larities or distances between the sets; as the edge sets contain the structural information
of the graph, such an approach provides a direct means of assessing similarities and differ-
ences between structures. Currently, the best-known methods in this family are the graph
correlation and network regression? techniques introduced by Krackhardt (1997, 1998) for
the analysis of labeled graphs, themselves closely related to the methods of cophenetic cor-
relation employed in numerical taxonomy for comparing classification structures (Farris,
1969). More recently, work by Banks and Carley (1994), Sanil et al. (1995), Butts and
Carley (1998), and Butts (1998) has focused on the use of metric distances (particularly
the Hamming distance) as a useful tool for comparing both labeled and unlabeled graphs.
What both of these lines of research share is their focus on the copresence of edges, and
their treatment of structures as whole entities rather than as collections of indices and/or
model parameters.

The edge-set comparison approach is powerful, but (as currently implemented, at least)
it has limitations of its own. Because these methods seek to compare graphs in toto, they are
not attuned to particular structural properties; thus, an analyst who knows ez ante which
properties are of theoretical importance for his or her purposes might be better served by
an approach (such as direct index comparison or model fitting) which examines only these
dimensions. The methods presented here, in particular, are primarily data-analytic, and are
best suited for exploratory analyses. After general distributional patterns have been assessed
(e.g., by the identification of clusters of typical structures or of canonical sub-structures),
more focused tools can then be employed to tease out specific interstructural relationships.

2.2 Data Considerations for Inter-structural Analysis

The grist for the proverbial mill of inter-structural analysis consists of one or more sets
of social structures, representing various relations among various objects of sociological
interest. Throughout this paper, we shall refer to the set of structures to be examined
as the structure set, S, whose elements are taken to be graphs (G). (Except as noted
otherwise, we will take the term “graph” here somewhat generically to refer to simple
graphs, directed graphs, and valued graphs, with or without loops; in particular we will

9Tt might be noted that the inferential (as opposed to data-analytic) use of network regression is also a
model-based technique (and is somewhat related to p*, in particular); thus, the categories we have imposed
here should be thought of as at least somewhat permeable.



assume directedness and allow loops unless otherwise indicated!?.) In order to compare these
individual structures, we must consider certain properties of the graphs in question which
do not commonly arise in classical network analysis: exchangeability of vertices (non-unique
labeling); exchangeability of edge variables across structures; edge value distributions; and
heterogeneity in network size. Before advancing to the proposed methods, then, we first
examine some preliminary considerations regarding data to be employed for inter-structural
analysis.

2.2.1 Exchangeability of Vertices (Labeling)

As we have suggested, a potential complication of inter-structural analysis lies in the fact
that the elements represented by vertices — be they human actors, organizations, articles,
groups, or any other objects of theoretical interest — are not always distinct with respect to
substantive theory. A structural theory of gendered interaction, for instance, will certainly
treat males and females as distinct, but may not discriminate between particular males or
females. Similarly, a Marxist analysis may treat individuals as interchangeable within social
classes, and a general theory of group structure may consider all actors to be interchangeable!
The same, of course, goes for organizations: one may have an a priori reason to view non-
profit corporations, government agencies, and for-profit firms as qualitatively distinct classes,
but one’s theory may not make differential predictions regarding structural elements within
these classes. In the most extreme cases, we may in fact be interested only in underlying
structures corresponding to the unlabeled graphs associated with observed structures. In
the unlabeled case, obviously, no vertices are distinct.

Such circumstances suggest a form of exchangeability among vertices: on the basis of our
substantive knowledge, we cannot always identify a uniquely permissible labeling of vertices
within the networks under study. While this might not seem problematic at first blush,
it is an unfortunate fact that many theoretically reasonable means of comparing structures
(including Hamming distances and graph correlations, as we shall see) are extremely sensitive
to vertex labeling. To appreciate why this is so, one need only recall that a relabeling of
vertices within a graph is equivalent to a permutation of the rows and columns of said graph’s
adjacency matrix!!. Any measure, then, which can be affected by such a permutation will
be sensitive to choice of labeling, and an inability to identify a unique vertex labeling will
thus imply a lack of unique values on these measures as well.

Having set out a motivating intuition, we now proceed to describe the vertex exchange-
ability problem in more formal terms. We begin with the concept of exchangeability itself,
as it applies to the inter-structural comparison problem. As described above, our notion of
exchangeability is built on the idea of theoretical interchangeability; thus, we assume that
we possess some a priori theory which makes predictions on some set of observables (here
referred to as the theory’s scope), conditional on the observed structure(s). Two vertices,
then, will be exchangeable if and only if “swapping” them within the structure does not

10Tn symmetric and/or loopless cases, the relevant edges should be omitted from the analysis.
11 And, in fact, we shall use the terms “labeling” and “permutation” interchangeably throughout this

paper.



alter the predictions of the theory of interest. Formally, we define our notion of theoretical
exchangeability as follows:

Definition 1 (Theoretical Exchangeability). Assume a graph G = {V, E} and a theory
T, and let L(G) represent a permutation (relabeling) of the vertices of G such that L (v;) —
vj and L (v;) — v; for some v;,v; € V(G), and such that L(v) - vV v :v e V(G),v ¢
{vi,v;}. The two vertices v; and vj, then, are said to be theoretically exchangeable iff
py|L(G),T)=p(y|G,T) V observables y within the scope of T.

Note that the above can be seen as being closely related to the more standard notion of
exchangeability, wherein parameters 61,6,...60,, are said to be exchangeable in their joint
distribution if and only if p (61,65, ...6,) is invariant to all permutations of the 1...n sub-
scripts. Our application is less restrictive in that only the conditional distributions of the
observables need be invariant, and in that we explicitly condition on our prior theory in all
cases. Note too that our concept of “theory” can be thought of as resembling a Bayesian
notion of prior knowledge combined with a set of scope restrictions on the predicted observ-
ables'?, although the prior “knowledge” in this case is taken to be hypothetical (possibly
reflecting mere working assumptions) and is not assumed to reflect the actual beliefs of any
particular observer. With these notions, we can proceed to develop a number of definitions
which will aid in clarifying the analyses which follow.

Having defined what we mean by theoretical exchangeability of vertices, we now find
it helpful to consider a logic-valued function which, when given some pair of vertices, will
indicate the truth of the proposition that they are interchangeable. We call this function a
discrimination function'®, given explicitly in Definition 2 below.

Definition 2 (Discrimination Function). Let the discrimination function, Fp (z,y|T ),
for theory 7 and graph G = {V, E}, take z,y € V(@) into the set { TRUE, FALSE} such that
Fp (z,y|T) = TRUE iff z and y are exchangeable with respect to theory T,V z,y € V(G).

The discrimination function has a number of properties which are important for our
development of the exchangeability problem. Of particular import is the fact that, when
taken as a binary relation on the vertex set, the discrimination function forms an equivalence
relation. This result is shown in Lemma 1 below.

Lemma 1 (Fp Forms an Equivalence Relation). Given a graph. G = {V,E}, and a
theory, T, the discrimination function Fp forms an equivalence relation on V (G).

Proof. As any relation which is reflexive, symmetric, and transitive is by definition an
equivalence relation, we proceed to show that Fp applied to V (G) satisfies each of these
properties.

121 is not our intention to argue here regarding the generic adequacy of this concept of “theory”; we have
kept our specification of the term minimal for the purpose of this particular application.

13This notion clearly bears some resemblance to the concept of the discriminant function, and technically
could be thought of as a special case of the latter. In common usage, however, the latter term is strongly
associated with a particular set of classification methods which are not pertinent to this discussion (see, for
instance, Dillon and Goldstein (1984).



(Reflexivity) Fp (v,v|T) =TRUEff p(y |G, T) =p(y|G,T) V y in the scope of T. As
the latter is trivially true for all v € V (G), it follows that Fp is reflexive.

(Symmetry) Let L (G) be a relabeling of the vertices of G such that L (v;) — vj, L (v;) —
v;, and L(v) = vV v & {v;,v;}. By definition, then, Fp (v;,v; |T) = Fp (vj,v; |T) iff
PWI|G,T)=pWI|L(G),T))© PWYIL(G),T)=p(y|G,T)). This is true by the reflex-
ive property of equality, and therefore Fp symmetric.

(Transitivity) Let Ly, (G) be a relabeling of the vertices of G such that Lgp (vg) — vp,
Lop (vp) = vg, and Lgp (v) = v V v & {v,, v}, for any a,b € V (G). Then assume that
there exist three vertices v;,vj,vx € V (G) : Fp (v;,v; |T) = Fp (vj,v,|T) = TRUE. By
the definition of Fp, this implies that p(y|G,7T) = p(y|Lij (G),T) = p(y|Ljx (G),T).

pILa (G),T) =

and, therefore, Fp (v;, v [T ) = TRUE. Fp is hence transitive on V (G).
Because Fp applied to V (G) is reflexive, symmetric, and transitive, it follows that Fp
forms an equivalence relation on V (G). O

With the discrimination function, we can proceed to determine the exchangeability of
vertex pairs. Since such exchangeability has been shown (by Lemma 1) to form an equiv-
alence relation on such pairs of vertices, it follows that we can use this relation to define
equivalence classes on the vertex set. These classes will then correspond to groups of mutu-
ally exchangeable nodes. The set of these classes (a set of sets of vertices) is referred to here
as the exchangeability set, and is a useful means of summarizing the information of Fp. We
define this set as follows:

Definition 3 (Exchangeability Set). Given a graph G = {V, E} and a discrimination
function Fp for theory T, let the ezchangeability set Eg be defined by £ = {e : e CV (Q) , Fp (vi,v; |T) = TRUE Vu;;

Observe that, trivially, the exchangeability set will be defined for all graphs and will
form a partition on the vertex set of G: since Fp is reflexive, every vertex will be in a
set containing at least itself; and because Fp is also symmetric and transitive, no vertex
can be in more than one set (as this would require there to be some pair of other vertices
exchangeable with the initial vertex but not exchangeable with each other)'. With this
partition in hand, we are now ready to move from considering the exchangeability of pairs
of vertices to defining the associated set of relabelings — or, equivalently, permutations —
implied by our theory of interest. We refer to these permutations as being accessible, in the
sense that they can be thought of reflecting possible microstates of the structural system

M This is a general property of equivalence relations, but we describe it in fuller detail here for reasons of
clarity.

10



which are consistent with the constraints imposed by the a priori theory®. This is specified
formally by Definition 4:

Definition 4 (Accessible Permutations). Given a graph G = {V, E} with permutation
group (labeling set) Pg and exchangeability set g, the set of accessible permutations, Pg,
is given by Pg = {p € Pg : p(v;) = v iff Vv; € V(G) Je € Eg : v;,v; € e}.

The set of accessible permutations, like the discrimination function, turns out to have
a number of interesting and useful mathematical properties. In particular, it happens that
the set of accessible permutations must always be a permutation group; this is trivially true
when Pg = Pg, but is less obvious in the general case. We state this result formally in
Theorem 1:

Theorem 1 (Accessible Permutation Group). Given a graph G = {V, E}, the set of
accessible permutations, Pg, where combination of two permutations is interpreted as ap-
plying them successively, forms a permutation group.

Proof. First, we note that proving that Pg together with the combination operation (denot-
ed P, o P,) forms a permutation group requires only proving that it satisfies the definition
of a group (because the elements of Pg are permutations). We then proceed to show each
required property in turn.

(Identity) As noted above, g covers V(G). Therefore, the trivial automorphism Py =

(} ; o Iggg;}) must be a member of Pg. Because PfoP = Po Pp = P for all P € Pg, Pr

acts as an identity element under combination, and thus the identity property is satisfied.

(Inverse) Assume that there exists some P € Pg : AP' € Pg : PoP' = P'oP =
P;. Then it follows that there must exist some v;,v; € V(G) : Fp (vi,v;|T) = TRUE,
Fp (vj,v; |T ) = FALSE. This violates the symmetric property of Fp (shown in the proof of
Lemma 1), however, and thus there exists no permutation in Pg without an inverse.

(Associativity) Since the elements of Pg are permutations, it is a standard result that
their combination is associative.

(Closure) Assume that there exist two permutations P;, P; € Pg : PjoP; € Pg. From this
it follows that there must exist vertices v;,v;, vy € V (Q) : Fp (v, |T) = Fp (vj, v |T) =
TRUE but Fp (v;,vg |T) = FALSE. As we have seen in the proof of Lemma 1, however, Fp is
transitive, and this therefore implies a contradiction. Thus, Pg is closed under combination.

Finally, as Pg together with the operation of combination satisfy all of the above prop-
erties, we conclude that they comprise a permutation group. O

We now have all of the elements needed to treat formally the problem of vertex exchange-
ability. Within the group of possible permutations (Pg) on G, only some are legal given our
prior theory 7. These accessible permutations form a group, Pg, whose members comprise
the total set of vertex exchanges which are consistent with our theoretical assumptions.

15This usage is intentionally allusive to the concept of “accessible states” within statistical mechanics
(Kittel and Kroemer, 1980), to which it is roughly analogous.
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Maximal sets of vertices which are not theoretically distinct from one another comprise e-
quivalence classes under the discrimination function Fp, and each such class is an element
of the exchangeability set (£g). The members of Pg are thus those of Pg which exchange
vertices only within the elements of £g. For an extremely restrictive 7 — such as a theory

of interaction postulating individual differences'® — the accessible permutation group may

comprise only the identity permutation, (} g - }“;gggi ) At the opposite extreme, a theory

concerned only with underlying structure (e.g., the baseline structural theories of Mayhew
(1984)) would implied an accessible permutation group equal to Pg, the entire permutation
group on the vertices of G. In between these extremes, a wide range of theories may posit
different sets of exchangeable actors, each implying in its turn a particular accessible per-
mutation group. By working with all graphs labeled under Pg, then, we can accommodate
a wide range of theoretical assumptions within a single unifying formalism.

2.2.2 Exchangeability of Structures

In addition to the theoretical exchangeability of vertices, we generally assume that edge vari-
ables are exchangeable across structures. Note that this assumption is not actually required
for a strictly data-analytic interpretation of the analyses considered here, but is generally
necessary if one wishes to draw inferences on structural populations from structural samples.
Since the distance methods considered here are nearly always employed in an exploratory
fashion, exchangeability should rarely be relevant to their use. The structural correlation
and covariance methods discussed, by contrast, can be employed either data-analytically
or inferentially; in the latter case, violations of the exchangeability assumption will almost
certainly reduce the efficiency of estimation, and may bias the resulting inferences.

2.2.3 Edge Value Distributions

The standard formalism of classical network analysis is the graph, in which relations be-
tween vertex pairs are either present or absent. This lends itself, for obvious reasons, to
a dichotomous data representation (with 0 commonly employed to represent “no relation”
and 1 employed to represent “relation”), and indeed this is currently the representation
most commonly employed. For purposes of this paper, we shall consider each potential edge
between vertices to be associated with an indicator variable, §, and all analyses will operate
on the relevant ¢ values. Any special restrictions on the distribution of edge values (e.g.,
dichotomous, positive, etc.) will be specified along with the definition of § employed for the
method in question; note, however, that the methods presented here are generally applicable
to any real-valued edges.

16For instance, one might compare friendship and advice ties within a particular set of actors. In this
case, the individuals involved are theoretically distinct.
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2.2.4 Heterogeneity in Network Size

In addition to those considerations already discussed, heterogeneity in network size (syn-
onymously graph order, or vertex set cardinality) is another difficulty which must be dealt
with in inter-structural analysis. At its core, this problem stems from foundational con-
siderations: structures (as we are considering them) are defined in terms of relations (edge
sets) among sets of elements (vertex sets). Thus, for inter-structural comparison we must
account not only for the manner in which elements are connected within structures, but also
for the manner in which elements within one structure are understood to map onto elements
within the other structures being examined. One aspect of this problem — exchangeability
of vertices — has been treated above. Here, we deal with the related issue of mapping the
vertex sets of individual structures (V (G) for G in structure set S) onto a common vertex
set (denoted V (S)), so that the resulting edge sets may be compared directly.

Addition of Isolates Perhaps the most obvious means of solving the size heterogeneity
problem is by defining Vs = Jgzcg V (G), and then substituting V' (G) = Vi for all G € S.
Since the edge sets of each G contain edges only on V (G), it thus follows that the nodes
Vs — V (GQ) will be isolates for any given G; we may thus think of this approach as “adding
isolates” to certain graphs within the graph set in order to make vertex sets comparable.
Theoretically, this can be understood in terms of envisioning a (perhaps hypothetical) com-
bined vertex set, for which the observed relations graphs were subgraphs formed by the
removal of isolates. This is sensible in a wide range of situations: e.g., if one’s observed
structures were to consist of intertemporal observations of intra-group relations within a
group of changing membership, it would be intuitively sensible to treat non-members at any
given point as isolates with respect to the observed relations (since they implicitly exist, but
were not part of the group and hence not present in the intra-group tie structure).

With respect to the distance measures employed here, it is notable that neither the
Hamming nor the structural distance are affected by the addition of isolates. (Indeed, this
result extends to the generalized structural distances on all Minkowski metrics, prominently
including the euclidean distance.) Thus, use of the union rule would seem highly appropriate
when conducting inter-structural analyses using distance-based approaches. In the case of
graph covariance, by contrast, the addition of isolates does exert an impact on results:
since the graph variance is suppressed by the addition of isolates, it follows that graph
covariances are likewise attenuated. Although the exact degree of attenuation depends on a
number of considerations, adding m isolates to two graphs of size n will generally decrease
the magnitude of their covariation by a factor of roughly n2/ (n +m)” (for n > 1,m < n).
Graph correlations are more robust to such effects (since they rescale the covariance by
the geometric mean of the variances), and adding isolates generally produces only minor
variation in the case of graph correlation measures. The union rule, hence, should be applied
with some caution to graph covariance analysis, but is reasonable when one is working with
correlation matrices.
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Removal of Subgraphs If one obvious means of dealing with heterogeneity is by adding
substructures to as to establish a common vertex set, another is to remove subgraphs in
some reasonable way, until all structures to be examined are once again defined on a shared
set of vertices. In situations for which certain structural elements are shared across multiple
structures, one reasonable removal rule is that of intersection; specifically, we define Vg =
Nges V (G), and then substitute V (G) = Vs for all G € S (removing all edges with one
or more endpoints not in Vg in the process). Intersection is a harsh rule, and one which
may not be practical when structural elements are not uniquely labeled. An alternative,
therefore, is to remove theoretically uninteresting subgraphs (such as isolates) from large
members of S until a shared vertex set is reached. Still another variant on this theme is
the decomposition of large graphs into strongly connected components or other meaningful
subunits, and the treatment of each subunit as a separate structure.

The intersection rule, as indicated, is difficult to apply when one is working with graph
sets for which no meaningful intersection can be computed; still, it may be quite applicable
when working with intertemporal, organizational, or other data in which nodes can be
uniquely identified and the intersection of vertices is of theoretical import. The additional
removal rules described here are necessarily somewhat ad hoc, and as such it is difficult to
argue for them in general terms; their use should be theoretically motivated, and it is there
one should look for a compelling rationale!?. One partial exception to this is the removal of
isolates. As with addition of isolates, removal of isolates will not affect distance measures,
and can thus be sensibly employed in such analyses. Covariance measures will generally
be inflated by the removal of isolates in a reversal of the attenuation described above;
correlation will not be greatly affected, in most cases. Other removals or decompositions
may have unpredictable effects, and caution (along with robustness testing'®) is advised
when employing such strategies.

Theoretical Reduction One alternative to either addition or removal of substructures
is the reduction of some or all structures to a common vertex set, using a vertex equivalence
rule. One family of such reductions — blockmodeling by means of structural (Lorrain and
White, 1971), automorphic (Everett, 1985), or regular (White and Reitz, 1983) equivalence
classes — is already familiar to structural analysts, and needs little elaboration here. Suffice
it to say that to apply this method one uses a theoretically appropriate equivalence relation
and uses it to identify a set of classes with the required cardinality. The reduced form
blockmodel induced by these classes on the original structure is then used in the subsequent
analysis. Another approach is to use theoretical exchangeability (see Definition 1) to define
the classes from which to build the block model'®. Though less common, this procedure is

17E.g., if one is interested in multiple relations on a work team, one may be justified in discarding actors
outside of the team who may have been included in the original data set for one reason or another.

18For instance, computing jackknife confidence intervals by randomly removing the same number of ver-
tices from the graphs in question and re-executing the analyses multiple times.

19For instance, one might create a set of reduced form blockmodels by lumping together all governmental,
all non-profit, and all for-profit organizations within each observed structure. The resulting data set would
represent aggregate relations between categories, and could be interpreted accordingly.
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often more in keeping with prior theory than the structurally induced alternatives. (Indeed,
structurally defined blockmodels are no less dependent on prior theory than are blockmodels
based on nodal attributes, and their use must likewise be justified on the grounds of prior
knowledge.)

Theoretical reduction (particularly when performed using structurally defined equiva-
lences) is in some ways an attractive solution to the problem of size heterogeneity. Even
when one’s observed structures vary greatly in size, it may be possible to find a theoretically
appropriate set of categories whose relations can be readily analyzed. In some cases, indeed,
it is precisely these aggregate relations which are of theoretical interest in the first place,
and a reduction is required by the motivating theory. On the other hand, the temptation
to use structural or other equivalences to “force” a theoretically inappropriate reduction
should be resisted. Without a strong motivation, interpretation of relations between classes
can be difficult or impossible; interpretation of inter-structural analyses on such ill-defined
relations is likely to be even more problematic! Similarly, it must be remembered by the
analyst that any results obtained by inter-structural analyses on reduced graphs pertain
only to the set of reduced graphs themselves, and not to the original data2’. Theoretical
reduction, then, is an important method of dealing with size heterogeneity, but must be
employed with care.

3 Approaches Based on Metric Inference: Clustering
and Scaling for Graph Sets

The first family of multivariate methods for inter-structural analysis considered here are
those approaches based on metric distances between structures. Formally, for any collection
of objects S, any function f (z,y) is a distance function on S if and only if, for all z,y € S:
f(z,y) > 0 (nonnegativity); f (x,y) = f (y,x) (symmetry); and f (x,y) = 0 if and only if
z = y (identification). Further, f (x,y) is said to form a metric distance on S if and only
if f(z,y)+ f(y,2) > f(x,2) for all z,y,z € S (the triangle inequality). Intuitively, the
notion of distance can be thought of as quantifying a more general notion of dissimilarity:
the more dissimilar the objects, the farther they are from one another; the dissimilarity
of x with respect to y is the same as the dissimilarity of y with respect to z; no z and y
can be less dissimilar than the dissimilarity between z and z (or y and y); and the total
absence of dissimilarity between x and y implies that z and y are identical. To this, the
notion of metric distance adds the intuition that two objects cannot be more dissimilar
to each other than the sum of their dissimilarities to a third object?!. By defining and
measuring distance between social structures, then, we seek to quantify in a general fashion
the degree to which they are different from one another. These differences can then be

20E.g. it may be the case that aggregate relations involving employee transfer and joint ventures among
NPOs, firms, and governmental organizations are very similar, but these relations may vary radically for
certain subsets of the above populations.

21 An alternate intuition for the triangle inequality is that there are no “shortcuts”: the distance between
z and y cannot be longer than the distance from z to y through a third object.
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used to identify subsets of structures which are particularly similar (as in clustering), or to
map the resulting differences onto a lower-dimensional, intuitively accessible layout (as in
multidimensional scaling).

Because the distance methods presented here make few assumptions regarding the distri-
butional properties of their inputs, these methods are applicable to a wide range of problems.
Similarly, the intuitive nature of the distance-based approach makes it ideal as a starting
point for examining the multivariate analysis of inter-structural data. We begin, then, by
defining what we mean by the distance between structures; after developing a set of distance
measures, we proceed to illustrate their use in cluster analysis and multidimensional scaling
of inter-structural data.

3.1 Hamming and Structural Distance Metrics

Following earlier work by Banks and Carley (1994) and Butts and Carley (1998), we here
employ the Hamming distance (Hamming, 1950) as our basic measure of difference between
structures. In particular, given two labeled digraphs, H; and H; with vertex sets V (H;) =
V (H;) = Vi and edge sets E (H;) and E (H;) respectively, we may define a metric distance
between them as per Hamming (1950). First, we define an indicator function dg (z,y) such
that

1)

S (2,y) = 1 if (vg,vy) € E(H),
A9 730 otherwise.

The function § permits us to count directed edges within a given labeled digraph. To derive
the Hamming distance between our two labeled digraphs, then, we simply count the number
of directed edges which exist in one graph and not the other. This gives us the following
expression for the Hamming distance:

Vul [V
D (HiaHj) = Z Z |6Hz (:c,y) - 6Hj ($7y)| (2)

z=1 y=1

As noted above, previous work by Butts and Carley (1998) has shown that the observed
Hamming distance between two labeled graphs may be decomposed into a minimal, struc-
tural distance which depends only on the underlying unlabeled graphs, and an additional
labeling distance which is a function both of the underlying unlabeled graphs and their
respective labelings. For H; = L; (G;) and H; = L;j (G;) (where L represents a labeling of
the vertices of G), this decomposition gives us

D (L; (Gi),L; (Gy)) = Ds (Gi,Gj) + Dy (Li (Gi) , L (Gj)) (3)
where Dy, represents the labeling distance, and the structural distance, Dg, is given by

Ds(Gi,Gj) = min (D (Lo (G3) , L (Gy))) (4)

Lo€Pa;,Le EPGj
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Clearly, then, calculation of the structural distance can be viewed as equivalent to min-
imization of the Hamming distance over the set of accessible permutations, which is in turn
equivalent to minimization of the labeling distance??. Simultaneous minimization of the
labeling distance between all pairs of graphs within a set has been attempted via the use
of canonical labeling algorithms (Butts and Carley, 1998), but current results are heuristic
for cases in which Dg > 0%3. When examining graph pairs dyadically, it is always possible
to perform the appropriate minimization by exhaustively searching the space of accessible
permutations, but when |Pg| — |Pg| this becomes a factorial-time algorithm. Though even
this is not infeasible for sets of very small groups (e.g., |[Vu| < 10) given current comput-
ing capabilities, and while many research contexts motivate use of accessible permutation
groups with very low cardinality (the obvious case being that in which all nodes are unique-
ly labeled), such computational complexity renders the exhaustive search tactic useless for
medium to large graphs in the unlabeled case. Happily, other approaches are available. As
Butts and Carley (1998) suggest, heuristic search techniques such as Monte Carlo sampling
and genetic algorithms provide viable alternatives for finding the structural distance between
a given pair of graphs, and have the distinct advantage of being tunable to the specific prop-
erties of the problem under study. Because the search space of the labeling optimization
problem has a well-defined local neighborhood (given by the set of all dyadic exchanges),
simulated annealing is particularly well-suited to this task: the method has performed well
in preliminary tests by the authors, and is employed for all labeling optimization problems
presented here?*. Though an optimal solution to the problem of calculating the structural
distance between two graphs in the general case is not presently available, then, workable
heuristics do exist. Refinement of these techniques is an important topic for further research.

Given values (or estimates) for the structural distances between graphs, we may construct
a two-dimensional matrix of distances between all graphs within the set under analysis.
This distance matrix, because it reflects a metric on the space of unlabeled graphs?®, can be
unproblematically used as input data to standard cluster analysis routines, and, with some
modification, can be used in conjunction with other methods as well. Since both Hamming-
based distances can be interpreted directly as the minimum number of edges needed to take
one graph (labeled, unlabeled, or partially labeled) into another, these distance metrics
avoid the problems of interpretation which commonly plague multivariate methods based
on distances. The above, then, serve as the basic notions of comparison for the methods

22 As this implies, the structural distance is always conditional on the theory, 7, used to define the
accessible permutation group. Although we will generally leave this unstated in our notation, it is always
implicit.

23When Dg = 0, the minimization of Dy, corresponds to the familiar graph isomorphism problem, for
which a number of algorithms are available. Unfortunately, algorithmic performance in the isomorphism
problem does not appear to relate strongly to performance in the more general case (Butts and Carley,
1998).

241n particular, all optimization results shown here were obtained using a simulated annealing algorithm
with dyadic exchanges defining search space neighborhoods and an (exogenous) exponential cooling rule.
Annealing parameters were adjusted in each case based on convergence diagnostics; multiple trials were
employed to reduce the probability of convergence to a local optimum.

25This result is shown in Butts and Carley (1998).
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which follow?®

3.1.1 Extension to Generalized Structural Distance Measures

Before proceeding to demonstrate methods for the analysis of structural distances, it would
seem worthwhile to note that the logic applied in deriving the structural distance from the
Hamming distance can also be applied generically to any distance measure. In general, if
D is some arbitrary distance measure on the space of labeled graphs, then we can define its
structural counterpart, Dg, by

Ds (Gi,Gj) = min (D (Lq (Gi) , Lo (G5))) ()

L.€Pg;,Ly€Pa;

The form of the distance decomposition here is identical to that in the previous section
(though the generalized structural distance itself may or may not have a reasonable in-
terpretation, depending on the underlying distance measure). Although we will not here
consider the full range of available alternatives to the Hamming metric, two reasonable op-
tions are the absolute distance and the euclidean distance. The former can be obtained from
Equation 2 by replacing the definition of § by

om (m,y) = Amy (6)
where A is the valued adjacency matrix of H. To obtain the euclidean distance, we use the
following;:

1/2
Vol Vo | /

DP (H, Hy) = [ Y3 (6, (,y) — b, (z,y))’ (7)

z=1 y=1

with § as given in Equation 6 above. For dichotomous data, it therefore follows that the
relationship between the Hamming and euclidean distances is given by

DY (H;, H;) = /D (H;, Hj) ®)

a relationship which will be true of their structural counterparts as well. Thus, the euclidean
distance will (in the dichotomous case) tend to place decreasing marginal weight on tie
discrepancies as their number increases; whether this is considered theoretically desirable
will depend on the phenomenon under observation.

3.2 Cluster Analysis of Graph Sets

As we have seen, there exist a variety of ways of identifying the structural distance, Dg
between two graphs with arbitrary accessible permutation groups. Given a set of structures,

26With the exception of the graph correlation (Wasserman and Faust, 1994), which is employed in certain
cases as well. See below.
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then, it is possible to construct a distance matriz by accumulating the structural distances
between each pair of structures. Such a distance matrix lends itself quite readily to the family
of classification techniques known collectively as cluster analysis (Romesburg, 1984; Mardia
et al., 1979), which are methods for the identification of homogeneous subgroups within a
larger group. In this application, “homogeneous” means structurally similar (as measured
by the structural distance), and the clusters which are identified as such may be studied
for association with non-structural variables, used to construct a structural taxonomy, or
possibly even used to infer “lineage” in the sense of population ecology?’. Identified clusters
can also be summarized using the central graph (Banks and Carley, 1994), whose properties
can then be examined using classical network analysis methods. Such an approach could be
used to scale down large data sets (e.g., organizational populations) by weeding out similar
structures, resulting in a smaller and more manageable collection of archetypes.

One benefit of the deployment of cluster analysis as a multivariate network analysis tool
is the fact that existing methods can be used directly on the structural distance matrix;
standard approaches can be used, and no additional assumptions are necessary. (Indeed,
cluster analysis of positions (as opposed to the inter-structural analysis pursued here) is al-
ready widely deployed in network analysis for the study of structural, automorphic, regular,
and other equivalences.) To demonstrate its application, then, we now turn to an empirical
example of the use of cluster analysis on a set of social relations.

3.2.1 An Example of Cluster Analysis of Graph Sets

The data set for our first example comes from Sampson (1969), whose famous study of
initiates in a monestary during a period of internal political upheaval has become a classic
of network analysis. During his stay in the monestary (as an observer), Sampson collected
subjective interpersonal evaluations among the initiates on several dimensions: “liking” and
“disliking”; “esteem” and “disesteem”; “positive” and “negative” influence; and “praise”
and “blame”. Furthermore, information on “liking” was collected at three points in time,
the last of which coincided with the other measured relations. This data was collected as
rank-order sociometric choices: up to three nominations were allowed for each person for
each relation, coding in descending order of strength (from 3 down to 1 for the weakest
choice, and 0 for those not chosen). Thus, we here use distances with § defined as in
Equation 6.

As the above would seem to indicate, the multiple relations collected on the same actors
correspond to very different sociometric constructs; we would thus expect to see some dis-
tance between relations, depending on the similarity of the constructs in question. Similarly,
we would expect that the positive and negative valance relations would be quite distinct
from one another. 28

27Such methods are widely deployed within evolutionary biology for purposes of phylogeny reconstruction;
see Ridley (1994).

28Results obtained with average-link, single-link, and complete-link clustering rules were qualitatively
identical to those presented here.
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Sampson Monestary Data - Clustering by Hamming Distance
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Figure 1: Ward’s Clustering of Sampson Monestary Data, Uniquely Labeled Case

A Dbinary tree representation of the hierarchical clustering of the Sampson data in the
uniquely labeled case is presented in Figure 1; branchings of the tree represent partition-
ing decisions, with the height of the branching event indicating (via the y axis) the Ward
distance at which the decision occurs. Note that the results of this analysis correspond ex-
cellently to our intuition regarding the relations in question. As we expected, the algorithm
has immediately partitioned the positive and negative relations from one another, indicating
that this is the initial division which results in the greatest reduction in variance. The next
partitioning separates the “liking” relations from the other positive relations. Recall that
these relations were observed at three points in time, with only the last being coterminous
with the other data in the sample; interestingly, the distance between these networks ap-
pears related to time, with the T1-T3 distance being greater than the T1-T2 and T2-T3
distances), and with the mean distance to the other relations in the set similarly increasing
with temporal distance. As we shall see, this suggestion of a steady evolution of structure
over time is not unique to this data set.
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3.3 Multidimensional Scaling of Graph Sets

The family of classical techniques collectively known as multidimensional scaling (MDS)
methods is based on the problem of configuring n points in a (generally low-dimensional)
euclidean space in such a way as to preserve the observed distance relationships between
these points within a higher-dimensional (and possibly non-euclidean) space (Dillon and
Goldstein, 1984; Mardia et al., 1979). MDS methods are commonly used to facilitate visu-
alization of multivariate data, particularly for the purpose of identifying objects or variables
with similar characteristics; more specialized applications include seriation (Kendall, 1971)
and low-dimensional parameterization of complex data sets. Like many forms of cluster
analysis, MDS can generally be interpreted in a purely data-analytic fashion, with no s-
tochastic modeling assumptions. This adds to the methods’ versatility, and makes them
particularly well-suited for idiosyncratic applications such as network analysis. Currently,
multidimensional scaling is used within social network analysis for studying positions of
structural elements within individual networks, and such applications are implemented in
standard network analysis packages such as UCINET. Here, we extend this technique to
the study of entire social networks within populations of structures, using the structural
distance framework established above.

3.3.1 Classical MDS with Euclidean Representation

One simple example of the way in which MDS methods may be applied to inter-structural
analysis serves to illustrate some aspects of the general approach. For this special case, we
consider only labeled digraphs, and take the distance between structures to be the euclidean
distance (defined in Equation 7), rather than the Hamming (or structural) distance. While
the euclidean distance is less interpretable than the Hamming distance in the context of
graph comparison, we employ it here due to its mathematical properties (discussed below).
Using the above, we can now define a squared inverse distance matrix M on graph set S,
as follows:

M = (ai), ai; = —%DE (Hi, Hj)? (9)
The centering matrix for S is then given by
c=1-|s"11 (10)
and we are thus able to determine the centered inner product matrix of the scaling as
B =CMC (11)

(The properties of B are guaranteed by the use of the Euclidean distance; see Mardia et al.
(1979) for details.)

Given the above assumptions, the first k eigenvectors of B (interpreted as coordinates)
provide the classical solution to the MDS problem in & dimensions for the set of labeled
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digraphs S. The resulting coordinates may be examined for evidence of clustering, unidimen-
sional ordering, and the like as per standard practice, provided that the labeling assumption
is met and that the interpretation of euclidean distance is theoretically meaningful?®.

3.3.2 Generalized MDS with Structural Distances

The above provides an example of classical MDS on euclidean distances for labeled digraph-
s. In general, however, we are interested in graphs with arbitrary accessible labelings, and
seek to perform our scaling on the matrix of structural distances (rather than their euclidean
counterparts). Because these distance matrices are not in general Euclidean3?, the utility of
the classical approach is here more limited. Nevertheless, well-established methods of mul-
tidimensional scaling exist for both metric and non-metric distance matrices, and these can
be readily applied to the inter-structural analysis problem. In particular, the classical met-
ric MDS procedure described above can be applied directly to structural distance matrices
with interpretable results, so long as the first k eigenvalues are positive. As typical analyses
consider only a small number of dimensions (e.g., 1-3), it is probable that this condition
will be met in the vast majority of cases®'. Non-metric methods such as those described
by Kruskal (1964a; 1964b) will guarantee interpretable solutions, but sacrifice some of the
information contained in the structural distance matrix. Generally speaking, it is recom-
mended that researchers employ the classical metric MDS when using the metric distances
described here, inspecting the solution to ensure that it provides a reasonable representation
of the data; when this is insufficient, heuristic or non-metric methods should be employed.

3.3.3 An Example of MDS on Graph Sets

While multidimensional scaling and cluster analysis can be used for similar purposes, MDS
compensates for its somewhat more restrictive nature by enabling the data analyst to extract
dimensional structure from the data. Thus, if it is the case that dissimilarities between cases
can be readily expressed in terms of a small set of dimensions, multidimensional scaling will
often reveal this structure32.

To illustrate the utility of this approach for inter-structural data analysis, we first turn to
data collected in 1956 as part of the Michigan Group Study Project, under the supervision
of Theodore Newcomb (Newcomb, 1961). As part of this project, 17 male transfer students
at the University of Michigan were recruited to live in off-campus fraternity housing rented

29As we have seen the euclidean distance tends to suppress large distances relative to the Hamming
distance, since the former grows on O(d'/2) with respect to the latter for simple digraphs.

30Note that one may in principle arrive at a distance matrix which is Euclidean without utilizing Euclidean
distance per se; the former property requires only that there exists a configuration in some Euclidean space
such that the interpoint distances are equal to the observed distances.

31 Classical metric MDS is known to be a fairly robust technique (Dillon and Goldstein, 1984), and where
the classical solution fails, other metric alternatives do exist (i.e., heuristic optimization).

32Principal component analysis (PCA), which we shall consider presently, can also be used for this purpose;
indeed, the latter can be seen as a special case of the former under classical assumptions (Mardia et al.,
1979).
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for the study, in exchange for agreeing to answer periodic questionnaires. One such ques-
tionnaire was a sociometric ranking task, in which each member of the group was asked to
indicate (by ordinal ranking, no ties permitted) his preference for all other group members.
This task was administered weekly for 15 weeks, thus providing a regular assessment of the
affinitive relations within the group over an extended period.

In analyzing this data, one question which one might naturally ask is whether there is
evidence of a systematic evolution of structure over time. Such a question can be asked
in at least two senses: first, did the structure of preferences among specific individuals
evolve systematically; and second, was there evolution in the owverall preference structure
over time33. The first question, being one in which we are concerned with the changes
of attitudes among particular egos towards specific alters, clearly motivates treatment of
vertices as uniquely identified. The second is concerned only with underlying structure, and
treats all vertices as exchangeable. In both cases, however, we are interested in exploring the
extent to which some underlying temporal dimension can potentially account for patterns
of differences between structures, a task for which MDS is especially well-suited.

To proceed, we begin by forming two structural distance matrices on the 15 structures:
in one matrix, the unique node labeling given by the individuals’ identities is used, while
in the other all vertices are taken to be exchangeable. As our measure of distance we
employ absolute rank differences, taking 0y as given in Equation 6. Applying the classical
metric MDS algorithm to these matrices and plotting each observation on the first two
dimensions yields the visualization of Figure 2. As the figure indicates, the MDS solution
reveals a smooth curve in the first two dimensions for both the labeled and unlabeled cases,
parameterized by time (indicated by the sequential numbering of observations). Such a curve
is clear evidence of seriation, revealing a consistent pattern of change in the structure of
interpersonal preference over time. Furthermore, the placement of points on the curve reveal
much about the nature of this pattern: structural evolution was systematic (rather than
erratic) and decelerated over time. The greatest changes in interpersonal preference rankings
clearly occur in the first month (points 1-4), settling down substantially in subsequent
weeks. By week 10 relatively little change occurs, and (more importantly) these changes are
increasingly erratic; by the last two weeks, the system appears to have reached equilibrium.

Additional insight is provided by a comparison of the labeled and unlabeled cases. As
Figure 2 indicates, the basic pattern of structural evolution was largely the same for both;
this suggests that the changes which occurred in the Michigan Group Study did not simply
involve a movement of actors between a fixed set of roles, but rather were fundamental to
the underlying structure. Further support for this interpretation is provided by the Shep-
ard diagram shown in the first panel of Figure 4. In the Shepard diagram, all observed
distances are plotted against the distances resulting from the multidimensional scaling; in
the metric case, these provide a useful heuristic for assessing the adequacy of the dimen-
sional representation. As the figure shows®*, the predicted distance is a linear function of

33 As an analogy, one may consider a flock of geese, which maintains a uniform flying formation over time
despite the fact that individuals will periodically switch positions within the formation.
340nly the labeled case is depicted here; the Shepard plot for the unlabeled case is extremely similar.
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the actual distance; some underprediction occurs at lower distances, but on the whole the
representation appears to be a good one. Further analysis would examine additional dimen-
sions, attempt to uncover the nature of the observed structural evolution, etc., but even this
cursory examination demonstrates the power of this simple exploratory tool for revealing
simple structure hidden in complex patterns of differences.

In the above example, we showed how an MDS could be used to reveal patterns of
evolution in social structures. A second use of MDS is to uncover potentially meaningful
latent dimensions in a structural data set. Though we will see other methods which also excel
at this task, it is still worth considering a simple example which highlights the way in which
the robust power of multi-dimensional scaling can uncover useful features in inter-structural
data. The structures for this example are taken from Roethlisberger and Dickson’s famous
management study (Roethlisberger and Dickson, 1939); in particular they consist of various
interactions among workers in the bank wiring room. A key question of the Roethlisberger
and Dickson study was the interaction between work roles, working conditions, interaction,
and productivity. As a result, Roethlisberger and Dickson considered a range of different
kinds of interaction, ranging from horseplay and friendship to arguments and antagonism.
Do these relations, when individuals are considered only as representatives of their work
roles, be seen as exhibiting some underlying dimensional structure?

To examine this question, we take the structural distances between all structures (ex-
changing vertices within work roles), and apply the MDS algorithm; the results are shown
in Figure 3. The Shepard plot for the wiring room MDS (Figure 4) appears to indicate
an excellent fit on the first two dimensions, suggesting that the representation is sound,
and there does indeed appear to be some intelligible meaning to the underlying dimensions.
While somewhat subjective, one reasonable interpretation of the resulting distances is that
the relations considered differ primarily on two dimensions, one of affect (positive versus
negative) and one of formality (informal/nonprofessional to formal/professional). Likewise,
the tendency for more strongly affective relations (e.g., antagonism and horseplay) to be
less formal than less affective relations (e.g., job trades) suggests a potential explanation
in terms of a trivariate, oblique structure. Such an observation could form the basis of
subsequent investigation into the relationship between affectivity and formality, or could
suggest the beginnings of a typology for interpersonal relations within organizations. As
in the previous example, it would appear that the multidimensional scaling of structural
distances can be a powerful exploratory tool for bringing order to a diverse data set.

4 Approaches Based on Graph Covariance: Structural
Regression, Principal Components, and Canonical Cor-
relation Analysis on Sets of Graphs

Distance-based approaches to inter-structural analysis are extremely general, but are like-

wise limited in their ability to deliver detailed information regarding the relationships within
sets of structures. More theoretically refined methods for the analysis of multivariate data
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generally center on analysis of the covariance between variables; we, then, shall follow suit.
While the methods we shall here employ have been well-developed within the statistical
literature, their application to inter-structural data demands certain special considerations.
In particular, many covariance-analytic methods rely on certain properties of the covariance
matrix which are guaranteed under the conventional definition of the covariance, and we
must here demonstrate that our measure also satisfies these properties before we can reliably
utilize the methods in question.

In this section, we will develop structural regression (which generalizes the network re-
gression of Krackhardt (1988)), principal component analysis (which finds canonical struc-
tures in terms of which other structures can be expressed), and canonical correlation analysis
(which expresses general linear relations among sets of graphs) for graph sets. As before,
however, we begin by establishing the basic formalisms which will allow us to apply the
methods of interest to inter-structural data. Here, these formalisms are the graph mean and
variance, and the structural covariance and correlation measures. With these tools for graph
comparison in hand, we then proceed to the multivariate analysis techniques themselves.

4.1 Graph Covariance and Correlation Measures

In order to analyze the structure of covariances (and/or correlations) among structures, it is
clearly imperative for us to define what we mean by such terms. In general, the approach we
follow is based on the treatment of edge structures as random variables, with the moments
of these variables defined accordingly. From a data analytic perspective, we can be thought
of as operating on (possibly permuted) vectorized representations of the graph adjacency
matrix. While this approach seems intuitive enough, it is necessary to proceed carefully so
as to ensure that measures defined in this fashion will in fact behave in a manner consistent
with expectations. We start, then, by building our formalisms with the simplest, uniquely
labeled case (for which applications already exist) and then moving to the more general
problem of structural covariance on arbitrary graph sets.

4.1.1 Uniquely Labeled Case

We begin our discussion by reviewing the simplest case, in which Pg contains only one
member and which therefore allows us the luxury of dealing solely with the uniquely labeled
graph, H. As usual, we shall treat H as a digraph, and we will further allow loops. For
purpose of this discussion, § should be taken as defined in Equation 6, although the § of
Equation 1 can be employed in the dichotomous case. Missing data — including loops or off-
triangle entries in the simple graphic case — should be omitted when calculating the values
given below, and normalizing constants should be adjusted accordingly.

Given this, let us begin with the definition of the graph mean; this is an estimator of
the expectation of a uniform draw from the graph’s edge set. In the dichotomous case, the
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graph mean corresponds to the graph’s density, and it is here denoted by

[Vul [Vu|

T 2 X 1

z=1 y=1

H

With an expression for the graph mean, we are now prepared to define the covariance
between two labeled graphs, H; and H;. The graph covariance is the first product-moment
of two graphs’ edge set variables about their graph means or formally

[VulVul

Couv (H;, H;) |V : ST —6n,) (6 (x,y) — 0m;)) (13)

z=1 y=1

Note that the graph variance, a natural generalization of the standard variance, can be
defined easily using the above as the covariance of a graph with itself. The interpretation,
again, is one of the second moment of the distribution formed by uniform draws from the
graph’s edge set, and the definition is given by:

Var(H) =Cov (H, H) (14)
Vul|Vul

= iy 2 2 (o) =B’ 5)
z=1 y=1

We may now proceed to define the product-moment correlation between two labeled
graphs, using the notions of graph variance and covariance defined above. This is presented
in Equation 16:

Cov (H;, Hj)

H, H;
Pl i) = \/Var ;) Var (Hj)

(16)

Note that p has the usual interpretation as a product-moment correlation between the edge
sets of H; and H; taken as random variables.

4.1.2 General Case

As with the structural distance, we have in the case of the graph covariance a measure of
association between structures which we wish to generalize to sets with arbitrary accessible
permutation groups.

First, we observe that the graph mean (or density), given in Equation 12 is labeling in-
variant; 07 is constant under all permutations. This in turn implies that the graph variance
(Equation 14) is also labeling invariant, since Z‘Vul E‘VUl (6m (z,y) — Ef cannot be af-
fected by permutation, either. This seems intuitively reasonable: the graph mean and graph
variance are properties of the distribution of edge values, rather than their arrangement,
and as such should not be affected by reordering vertices.
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This last intuition is an important one in considering the more general case. Consider an
unlabeled graph, G, with accessible permutation group &g : |Eg| > 1. Now let H; and H; be
the labeled graphs produced by L; (G) and L; (G), respectively, where L;, L; € g, L; # Lj.
Then, from Equation 13,

Vol Vol
Cou (Hi, H) = 7 |2ZZ ((6r: (@,9) = On;) (O, () — Omy )) (17)

z=1 y=1

which is clearly different from Var (H;) = Var (H;) = Var (G) (where Var (G) can be
thought of as the variance of any labeling of G), since in general dg; (z,y) # 0u; (z,y)*
For the generalized structural covariance, however, we naturally seek to define the measure
such that the usual relationship between the variance and the covariance continues to hold.
Specifically, we require that

CO’US (Li (G) ,Lj (G)) =Var (G) A G, Li, L]' S PG (18)

As it happens, the constraint of Equation 18 places a strong constraint on the structural
covariance. For a single unlabeled graph G with specified accessible permutation group Pg,
the graph variance is necessarily the maximum covariance over all pairs of permutations of
G within Pg. This simple but important result is presented in Theorem 2:

Theorem 2 (Structural Covariance). Given an unlabeled graph G with accessible per-
mutation group Pg, Var (G) = maxr, r,eps Cov (Lo (G), Ly (Q)).

Proof. First note that from the definition of the graph variance, Var (G) = Var (L, (G)) =
Var (Ly (G)) V Ly, Ly € Pg. For any two random variables X and Y : Var (X) = Var (Y
however, Cov (X,Y) < Var (X). It therefore follows that Var (G) > Cov (L, (G) , Ly (G)).
Trivially, the identity permutation guarantees that Var (G) = Cov (L, (G), Ly (G)) fo
at least one choice of L,, Ly € Pg (namely any in which L, = Ly); thus Var (G) =
maxr,,r,epe Cov (Lo (G) , Ly (G)). 0

~

Observe that a direct consequence of the Structural Covariance Theorem is that, to
satisfy the requirement of Equation 18, the structural covariance must be given by

Cous (Gi,G|P;i,Pj) = —max  Cov (L, (Gi), Ly (Gj)) (19)

L,€P;,LyeP;

in the general case. Interestingly, this definition parallels the form of the structural distance
(Equation 4), although here agreement is maximized whereas in the former we are lead
to minimize disagreement. As this might suggest, the structural distance and structural
covariance are connected in a number of respects; we shall not pursue this matter here,
however.

35This follows from the fact that ég, (z,y) = om; (Lj (L;1 (a:)) ,Lj (Li_l (y)))
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Given a concept of structural covariance, the generalization of the graph correlation fol-
lows quite naturally. Applying Equations 14 and 19 to the definition of the graph correlation,
we define the structural correlation as

- CO’US (Gi,Gj |Pi,7)j)

Gi,Gj|P;,Pj) =
ps ( il i) VVar (Gi) Var (Gj)

(20)

The most straightforward interpretation of pg is that of the graph correlation between
the two most strongly correlated labeled graphs in the sets of labeled graphs created by
the action of two accessible permutation groups on their respective unlabeled graphs. If
ps = £1, then there is a linear transformation and permutation which takes the edge set
of one graph onto the edge set of the other; for dichotomous data, ps = 1 implies that the
graphs being compared are isomorphic, and pg = —1 implies that they are complements of
each other.

4.2 Structural Regression

One obvious application of the structural covariance is to regression analysis of social net-
works. The basic framework for network regression on labeled graphs was first articulated
by Krackhardt (1988); here we generalize this approach for use on graph sets with arbitrary
accessible permutation groups.

In order to set up the structural regression framework, it helps first to define some
notation. In addition to the notions of the edge value function, the graph mean, variance,
and covariance, and the structural counterparts to these measures, it is convenient to specify
an interpretation of the application of arithmatic operators to labeled graphs. For purposes
of this paper, then, we define such operations as follows:

Definition 5 (Graph Arithmatic). Let o and A be binary and unary operators (respec-
tively) taking R — R. Given two labeled graphs H;, H; with vertex sets V (H;) =V (H;) =
Vi and adjacency matrices Aj and Aj, define H; o Hj; to be the graph Hp,om, = {Vu, E}
with adjacency matrix [Agy, = Aj,, o Ajzy]' Similarly, define AH; to be the graph
Hap, = {Vu, E} with adjacency matrix [A;, = AAj,,].

Properly, then, arithmatic operations on one or more graphs are interpreted as ele-
mentwise operations on the graphs’ respective adjacency matrices (or, equivalently, as el-
ementwise operations on the graphs’ edge set variables). With this shorthand, we can
conveniently describe the conventional network regression of Krackhardt (1988) as fitting
the following model to a single labeled response graph (Hy) given a set of labeled regressor
graphs ({Hy,--- , Hy}):

E(Hy|B,Hy, - ,Hy) = PBo+ p1Hy + B2Hy + ... + BrHy, (21)

with the 8 values generally chosen to minimize the MSE. Issues involved in fitting the
standard network regression model (as well as hypothesis testing) are detailed in Krackhardt
(1987; 1988).
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A major limitation of this model with respect to inter-structural analysis is the fact that
it assumes that all graphs to be analyzed are uniquely labeled. In the more general case, of
course, we cannot rely upon this assumption, and hence we require a generalization of this
method which is applicable to graph sets with arbitrary permutation groups. In particular,
we seek to identify a linear combination of edge variables together with a correspondence-
maximizing choice of accessible permutations which will maximize the structural correlation
between the graph formed by said linear combination and the response structure. We refer
to this as the structural regression model, and define it as follows:

Definition 6 (Structural Regression). Given the graphs H,, H1, H»,. .., H, the least
squares structural regression estimator of H,, Ify, is given by I-jy = fo + f1L1 (Hy) +
BoLy (Hy) + ...+ ByLy (Hy) with 3 € R*! and Ly, € Py, V H; chosen such that the

multiple structural correlation, ps | Hy, Iﬁ,), is maximized.

That the structural regression estimator is indeed a least squares estimator (conditional
on the choice of permutations) follows trivially from the above definitions, and from the
fact that the multiple correlation is maximized by the LSE. When |[Pg| = 1 for all G within
the structural regression model, we are left with the familiar network regression model of
Krackhardt (1988). This last leads us to one means of estimating the structural regression
coeflicients: choose the values of L uniformly from the acceptable permutation groups;
fit a standard network regression conditional on the labelings selected, recording both the
coeflicients and the multiple structural correlation; repeat these steps multiple times, keeping
the estimates associated with the maximum multiple structural correlation; and, finally,
after a specified set of replications, keep the best estimates (as defined above). This Monte
Carlo approach is simple to implement, albeit fairly inefficient, and improvements based on
alternative heuristic optimization procedures (or exhaustive search, for very small graphs)
are possible.

4.2.1 General Linear Structural Modeling

While we have focused here on extending network regression to the case of arbitrary label-
ings, it should be noted that this can be further generalized by considering alternatives to
the model of Definition 6 above. Indeed, we can easily apply the same logic to the general
linear model (McCullagh and Nelder, 1989)), which permits treatment of a much broad-
er range of inter-structural relationships®®. This model, which we call the general linear
structural model (GLSM), may be defined as follows:

Definition 7 (General Linear Structural Model). Given a graph set Hy, Hy, H», ..., Hy,
we define the general linear structural model as follows. Define H, = (o + p1L1 (H1) +
-+ + BrLy (Hy) to be the linear structural predictor of H,, where it is assumed that
for some smooth, invertible link function, I, with inverse m, ég, = I (E [0m, (i,4)]) =

36 As, for instance, logistic network regression, which is far more appropriate than conventional network
regression for dichotomous data.

32



m~" (E [6n, (i,7)]). We then take the density of 6, to be given by f (6m, (i,7) 6:5,¢) =
exp (wij (8m, (i,5) — v i) /¢ + 7 (8m, (i,4) ,9/wi;)), where ¢ is a scale parameter, 6;; is
an invertible function of E [6g, (i,j)], and w;; is a prior weight.

In general, we may attempt to fit the GLSM by maximizing the likelihood function
across both the model parameters and the joint set of accessible permutations. Since the
GLSM trivially becomes a standard GLM for fixed L, this maximization can be decomposed
(as usual) into a standard model fitting problem and a problem of maximizing the best fit
across the permutation set. Pursuing this problem is beyond the scope of this work, but it
is expected that heuristic optimization techniques like those employed for other structural
inference problems will be applicable here.

4.2.2 An Example of Structural Regression

For a brief demonstration of structural regression, we turn to a data set of Linda Wolfe
concerning interaction among members of a troop of monkeys in Ocala, Florida. Information
on interaction was collected over a three-month period, with interaction defined as co-
presence at a particular site (summed for each dyad across all observation periods). In
addition, Wolfe collected data on apparent rank within the troop, age and gender of troop
members, and troop kinship ties (parentage). To what extent can the structure of interaction
be expressed as a linear combination of primate attribute differences and kinship ties? To
find out, we perform a structural regression of interaction on kinship, absolute differences
in age (measured in years), and absolute differences in gender (dichotomously coded).
Because our dependent variable consists of event counts (discrete episodes of co-presence),
we employ a GLSM using a poisson likelihood and logarithmic link function as our structural
regression model. The results of the fit for the uniquely labeled case are shown in the first
set of columns in Table 1. As can be seen, this model has surprisingly little explanatory
power: although gender and rank differences have significant effects under a z test3” (with
gender and rank differences multiplying expected interaction by factors of approximately 1.4
and 0.97, respectively), the overall model fit is quite poor. In addition to the goodness-of-fit
measures in Table 138, the top left panel of Figure 5 depicts the predicted versus actual
interaction levels for all dyads; as the figure shows, kinship relations and attribute differ-
ences between particular individuals provide little or no indication of the extent to which
those individuals will be observed to interact. Finally, as a somewhat better test of the null
hypothesis that the structures in question are unrelated, we employ a conditional uniform
graph (CUG) test of the AIC statistic. For this test we draw new sets of predictor graphs
by bootstrapping (with replacement) from the edge distributions of the existing predictors,
finding the AIC of the fitted model for each replication®. The proportion of replicate AIC

37Due to potential autocorrelation within the data set, these p-values should be taken as heuristic indica-
tors of relationship strength only.

38The pseudo-R? measure used here is 1 — %.

39Compare this to the QAP null hypothesis (Krackhardt, 1987), in which new predictors are drawn by
randomly permuting rows and columns. More will be said about this presently.
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Uniquely Labeled Case Unlabeled Case

B (StdErr)  p-value® B (StdErr)  p-value®
(Intercept) 1.41%** (0.0601)  <2e-16 1.67*** (0.0540)  <2e-16
Kinship  0.148 (0.124)  0.233  0.354*  (0.117)  0.00251

Gender Difference  0.353***  (0.0620) 1.33e-08 —0.527***  (0.0598)  <2e-16
Age Difference  —0.00798  (0.00879)  0.364  —0.185***  (0.0110)  <2e-16
Rank Difference —0.0256***  (0.00675) 0.000153  0.0769***  (0.00602) <2e-16

Null deviance 734.46 (379 df) 734.46 (379 df)
Residual deviance 696.17 (375 df) 286.89 (375 df)
Pesudo-R? 0.052 0.609
AIC p<AIC p>AIC  AIC  p<AIC p>AIC

CUG AIC Test®  1825.6*** >0999 <0.001 1416.3*** >0.999 < 0.001

*p < 0.05, **p < 0.01, ***p < 0.001, p-values based on z2-test; see text regarding interpretation
bCUG p-values reflect 1000 replications

Table 1: Structural Regression Model Fits, Wolfe Primate Data

values which are less than or equal to the original AIC value then provides a (one-tailed)
p-value for the null hypothesis that the observed model likelihood is typical of what would be
obtained by random structures with the same edge distributions as the original graphs. As
Table 1 indicates, the AIC is well below that of the population of similar random structures,
suggesting that there is at least some connection between the labeled structures. Taken as
a whole, however, the analysis suggests that the relationship is extremely weak.

Although the interactions among particular individuals are only weakly accounted for
by kinship and individual differences, what about the underlying structures? Could there
still be a strong relationship between the general patterns of difference and kinship and
those of intra-troop interaction? Some idea of this can be gleaned by repeating the above
analysis under an assumption of full exchangability among individuals. Using the likelihood
maximization approach discussed above, we estimate the GLSM model (using a simulated
annealer) under conditions of full exchangeability. The results of this analysis are presented
in the second set of columns of Table 1; as can be seen, there is a strong relationship
between the underlying structure of interaction and the underlying structures of kinship
and difference. In particular, the underlying structure of interaction closely resembles the a
combination of the structure of kinship, rank differences, and the complements of age and
gender differences (respectively). Although the p-values associated with the z-test should
be interpreted only heuristically (as the null hypothesis they test is something of a straw
man in this case), the properties of model fit are good (see also the top right panel of
Figure 5) and a CUG test comparison with bootstrapped unlabeled graphs indicated that
the fit obtained for these unlabeled graphs is far higher than what would be expected from
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a more reasonable null model. Thus, we can reasonably conclude that while there is little
connection between interaction rates and other structuaral properties for particular dyads
in the Wolfe data, there are nontrivial relationships between the corresponding underlying
structures.

4.3 Network Principal Component Analysis

Principal component analysis (Jackson, 1991; Joliffe, 1986) is a versatile technique which
attempts express a variable set in terms of an ordered set of synthetic variables such that
each accounts for the maximum possible variance remaining in the set, conditional on being
orthogonal to the synthetic variables already defined, and on being a linear combination of
the original variables. Mechanically, principal component analysis (PCA) is an analysis of
the eigenstructure of the covariance (or sometimes correlation) matrix of a variable set; it
is thus closely related both to classical MDS and to more modern techniques such as factor
analysis and structural equation modeling. As a powerful technique with wide applicability,
PCA would a seem to be a promising candidate for use in inter-structural analysis, and here
we develop an extension of the method to the study of graph sets.

4.3.1 Description of the Approach

The basic approach taken here is to construct the matrix of structural covariances (or
correlations) of networks within the set to be examined, and to subject this matrix to
the PCA procedure. (This is without loss of generality; the discussion which follows will
also apply to the special case of uniquely labeled graphs.) This procedure is equivalent
to identifying the eigenvalues and eigenvectors of the matrix in question, and algorithms
to perform this calculation are already implemented in a wide range of mathematical and
statistical computing environments. Each extracted eigenvector of the covariance matrix
will be real-valued, and corresponds to a given synthetic variable; the components of the
eigenvector correspond to the elements of the linear combination taking the original variable
set into the synthetic variable (the loadings). Under standard assumptions, the eigenvalues
of the covariance matrix are further guaranteed to be real and nonnegative, corresponding
(within a constant factor) to the variance accounted for by the associated synthetic variables.
While few distributional assumptions are required for these conditions to be satisfied??, it s
necessary that the matrix to be analyzed be positive semi-definite (p.s.d). Before proceeding
to the use of the method, then, we must first establish that this condition can be satisfied
for graph and structural covariance matrices.

In the uniquely labeled case, the graph covariance is simply the standard product moment
of the vectors corresponding to the vectorized adjacency matrices of a given pair of graphs
about their means; thus, the covariance matrix is guaranteed to be positive semi-definite
(Mardia et al., 1979) and its eigenstructure can be interpreted in the usual fashion. In the
general case, by contrast, it is not at all obvious that the structural covariance matrix will be

40E.g., it is not required the data be drawn from any particular joint distribution.
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Primate Data GLSM Fit — Unlabeled Case

Primate Data GLSM Fit — Labeled Case

Figure 5: Structural Regression Model Fits and Expected Interaction by Differences in Age
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p.s.d., making interpretation of the eigenstructure potentially problematic. As it happens,
however, we can show that the structural covariance matrix will be p.s.d. in all cases and
p-d. so long as the edge sets of the all graphs within the set are linearly independent under
all accessible permutations. This result is given in the following theorem:

Theorem 3 (Structural Covariance Matrices are P.S.D.). Let X be the structural variance-
covariance matriz formed by Covs on all pairs of graphs within the set {G1,G2,...,G}

with accessible permutation groups {Pg,,Pa,,---,Pa,} (respectively). Then ¥ is positive
semi-definite. Further, iff AG € {G1,...,G,},T' C {G1,...,G;},G ¢ T : Lg(G) =
le;ll a;Lr, (T;) for any L, € P,, X is positive definite.

Proof. We begin by noting that a necessary and sufficient condition for a real matrix A
to be p.s.d. is that vAv > 0V v € R*. Our procedure is then to demonstrate that
Vv € R* 3G : Var (G) < vI'Sv; since the graph variance is strictly nonnegative, this
implies that ¥ is p.s.d.

The graph we shall use for purposes of this proof is Ele v;G; (with v as given above),
using the notion of graph addition developed earlier (see Definition 5). Note here that, as
indicated previously, the expectation of a graph is interpreted in the same manner as the
graph mean; that is, as the expectation of the edge set. The graph variance of Ele v;G; is
then given by

B 2

Var (Z ’UiGz'> =F (Z ’()Z'Gz' - F [Z UiGi]) (by Eq. 14) (22)

[/ & k 2
=E (Z viG; — Y vE [G,-]) (by defn of E[G])  (23)

- ,
=E (Z v (G; — E [G,-])) (24)
=1

k k
=22 v (Gi— E[Gi]) (G; - E[Gy)) (25)
Sk
< 32> vivsCovs (G, G; |Pa, P, (by Eq. 19) (26)
=vliyy (by defn %) (27)

Since the graph variance is strictly nonnegative, it follows that ¥ must be p.s.d.
To prove our last assertion, recall that a real p.s.d. matrix A is p.d. unless Iv € R” : v #

0",vTAv = 0. It 3G € {G1, ..., Gk}, T C{G1,...,Gs},G €T : L (G) = XL a; Ly, (T)
for some accessible permutations I, then it follows that v : vI'Sv = 0 (constructed by
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setting vg = 1, vr, = a;, and all other elements equal to 0). The converse follows trivially
from the properties of linear dependence. O

Thus we can, in fact, apply principal component analysis to structural covariances on
graph sets with arbitrary accessible permutation groups. Given this preliminary, we may
now consider how the output of the procedure should be interpreted when applied to graph
sets.

For the labeled case, interpretation of the network PCA is as follows: each component
corresponds to an abstract structure — with edge set composed of linear combinations of the
observed structures — which accounts for a portion of the tie variance within the observed
structure set. These structures, in a sense, form a set of “archetypes” or building-blocks
from which the observed structures can be reconstructed. Indeed, taking the scores on each
variable will construct the archetypal structure set; note, however, that these will necessarily
be valued graphs, due to the nature of the procedure. By examining the archetypal struc-
tures accounting for the most variance, it should be possible to identify important features
which exist across observed structures. Likewise, loading patterns should reveal clusters of
structures with similar properties, as per their interpretation under standard PCA. Because
of the dichotomous nature of standard network data, it is notable that there are limitations
to the interpretations which can be made regarding the status of the identified components:
they cannot, in particular, be assumed to have desirable sampling properties. Fortunately,
however, the principal component analysis can be interpreted in a strictly data-analytic
fashion (Dillon and Goldstein, 1984), and normality assumptions are not required for such
a use.

In the more general case, the interpretation of components as archetypal structures
continues to hold, but these structures are not (necessarily) uniquely labeled. Reconstruction
of the observed structures from the archetypes constitutes both linear combination and
relabeling operations, with the latter chosen so as to maximize structural correspondence.
This does not affect the interpretation of loadings (eigenvectors) or eigenvalues, but does
complicate the extraction of structural archetypes; for many purposes, however, it is not
necessary to examine these synthetic structures directly (just as synthetic variables are often
used only indirectly in conventional PCA), and hence this complication is not expected to
affect use of the technique in the majority of situations.

4.3.2 An Example of Network PCA

To demonstrate the use of principal component analysis on multiple networks, we will exam-
ine a data set of Carley et al. (1993) consisting of cognitive association networks. As part of
an ongoing study of team learning in an information systems (IS) context, 40 undergraduate
students in an IS class were asked to explain the notion of “information system” in their
own words. From these answers 130 distinct concepts were coded, and a concept network
was formed for each subject wherein (for each pair of concepts, A and B) an edge went
from concept A to concept B if and only if concept B was mentioned within a set number of
words of a mention of concept A (i.e., the concepts were proximity coded). These concept
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networks, then, can be taken to be structural encodings of each subject’s communicated
understanding of the term “information system.” Given this, a number of questions come
to mind. To what extent do the subjects’ explanations of “information system” share one
or more common substructures? Are subjects’ explanations in broad agreement, or does a
diversity of explanations exist? What is the nature of the strongest common theme within
the subjects’ explanations? While these are all qualitative questions, we may find some
rather quantitative answers by applying the network PCA algorithm to the set of subject
concept networks.

To perform a network principal component analysis, we first calculate the graph corre-
lation matrix of all subject concept networks; in this case, concepts have been coded for the
express purpose of cross-subject comparison, and hence we treat all graphs as uniquely la-
beled. From the graph correlation matrix we extract the eigenstructure, recalling that each
eigenvector corresponds to a set of principal component loadings and that each associated
eigenvalue indicates (to within a scalar multiple) the proportion of total variance associated
with said component. A scree plot of these variance proportions (rescaled eigenvalues) is
shown in Figure 6. Out of the 40 components extracted, the first accounts for approximately
13% of the total concept network variance (over twice that of the next largest component),
with subsequent components accounting for under 6% each. In terms of our initial question,
the pattern of eigenvalues suggests one archetypal structure (theme) which accounts for far
more of the total concept structure variance than any other, with other archetypes being
relatively similar in terms of their contributions to subjects’ explanations. The presence of
such a large number of subsidiary concept archetypes might suggest a relatively high degree
of diversity in subject accounts, an impression which is also corroborated by an examina-
tion of the loadings (eigenvector elements) on the first component. These are presented in
Figure 7, and plainly show a wide range in the extent to which even the most common
structural archetype contributes to individual subject explanatory structures.

Having answered our first two questions, we now turn towards the third: what is the
nature of the archetypal structure associated with the first principle component? To answer
this question, we must first find the structure in question; this is accomplished by finding the
scores for all edge variables in the concept network on the first principal component. The re-
sulting structure — a valued graph — can then be thought of as a basic “building block” from
which individual explanations are partially constructed. Analysis of the archetypal structure
can be performed in a number of ways, but here we limit ourselves to a visual examination
of the sociogram formed by the strong edges (those with values greater than 0.5) of the
graph associated with the first principal component. This is shown in Figure 8 (isolates
omitted for clarity). Note that due to the nature of the proximity encoding, it is possible
to infer approximate meaning from the directed relation: thus, for instance, we find that
“information system” — “manages” — “information”, “information system” — “aids” — “user”,
“computers” — “information system”, etc. This “diamond”-shaped structure of associations
(see Figure 8) implies that the strongest common theme in individual responses consists of a
series of statements concerning the ways in which information systems act upon information.
Further investigation might relate incorporation of this theme to individual performance or
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competency (e.g., are higher-performing IS workers more likely to incorporate the common
understanding of information system concepts into their explanations), or examine the struc-
ture of additional themes (e.g., do these less commonly-shared archetypes reflect specialized
knowledge).

4.4 Canonical Correlation for Graph Sets

Canonical correlation analysis (Hotelling, 1936; Dillon and Goldstein, 1984) is a powerful —
if often poorly-understood — multivariate analysis technique. It is a fairly “deep” method in
the sense that it is closely related to (or, in some cases, can even be reframed as) multivariate
regression, MANOVA, discriminant analysis, factor analysis, and PCA (among others). In
its most common interpretation, canonical correlation analysis (CCA) can be thought of as
identifying a set of synthetic variables (canonical variates) composed of linear combinations
of the original variables in two variable sets, such that the correlation between synthetic
variable pairs is maximal. For this reason, then, CCA is unaffected by linear transformations
of either variable set independently, and is ideal when a quantity of theoretical importance
is specified only up to a linear combination of secondary variables*!. More generally, the
canonical correlation analysis provides a versatile means of determining the extent to which
two sets of variables are linearly related to one another, and further of identifying the
nature of the specific relations which exist between the sets. Although (as is generally
the case with such methods) multivariate normality is required for hypothesis testing, this
can be satisfied approximately for large sample sizes (here, large graphs), and the strictly
data analytic interpretation of the technique requires no distributional assumptions (Dillon
and Goldstein, 1984). Given the above, then, it seems both reasonable and profitable to
generalize canonical correlation analysis to the problem of inter-structural analysis.

4.4.1 Description of the Approach

Given the results we have already established, the application of CCA to inter-structural
analysis is quite straightforward. To begin, we assume that we have identified two sets of
structures, X and Y. Taking ¥ to be the structural covariance matrix of the full structure
set, we can express the ¥ in terms of the following submatrix decomposition:

Yxx Xxvy
Y= 28
[EYX EYY:| (28)

Thus, we can think of the combined structural covariance matrix in terms of the struc-
tural covariance matrices of each set, along with the between-set covariance matrices. The
problem solved by the canonical correlation analysis, then, can be formulated as

B 1AV = \¢ (29)

41E g., as is often the case for problems in which multiple indicators are used to represent a hypothesized
construct.
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where

_| 0 Exvy _|1Exx 0 . [ox¥x
A= [ZYX 0 ] ,B= [ 0 Eyy] ,and ¥ = EVY] . (30)

The elements of ¥ (the eigenvectors) are the canonical coefficients (analogous to beta weight-
s in a standard regression context), and their corresponding eigenvalues are the associated
canonical correlations. That we can perform this operation using the structural covariance
matrix is guaranteed by the result of Theorem 3, assuming that there are no strict linear
dependencies within either graph set. Likewise, interpretability of the resulting eigenstruc-
ture can be shown from the same theorem: from Theorem 3 and the above assumption, B is
positive definite and A is at least positive semi-definite. It is then a standard result of linear
algebra that all of the nonzero eigenvalues of B~1 A are positive, and the eigenstructure can
be interpreted in the usual fashion.

It should be noted that the formulation of Equation 29 can be used to describe a variety of
related procedures: letting A = ¥ and B = I, for instance, results in a principal component
analysis; replacing B with the identity matrix results in partial least squares; and setting
the lower right element of B to the identity matrix provides the formulation for multivariate
linear regression. With the exception of PCA (which has already been treated) we do not
consider these alternative analyses at length. Nevertheless, similar procedures to those
illustrated here should allow these techniques to be applied to inter-structural analysis.

4.4.2 An Example of Canonical Correlation on Graph Sets

For an illustrative example of canonical correlation on graph sets, we here turn to a well-
known data set from Wasserman and Faust (1994). This set consists of five relations on a
set of 24 countries chosen to exhibit a variety of developmental classes: trade in food and/or
animals; trade in crude materials; trade in mineral fuels; trade in basic manufactured goods;
and diplomatic exchange. For each nation (ego), incoming edges to ego were coded present
if (for the year 1984) imports from alter amounted to at least 0.01% of ego’s total imports
of said commodity in US$. (Diplomatic exchange is an exception: there, ego sends an edge
to alter if and only if ego had an embassy or high commission in alter for the year 1984.) In
addition to these five network relations, we also consider the relations formed by pairwise
absolute differences on four national attributes: annual population growth rate (1970-81);
annual per capita GNP growth rate (1970-81); secondary school enrollment ratio (1980);
and energy consumption per capita in kilograms of coal equivalent (1980). Taking these
two sets of relations — network ties of trade and diplomacy, on the one hand, and absolute
differences in development on the other — we may reasonably inquire as to what relationships
exist between the sets, and to the extent that these relationships account for the variance
in either. With this in mind, we now turn to a canonical correlation analysis of the trade
data??.

42 As our purpose here is purely demonstrative, we do not examine alternative transformations of the

variable set or the like; we note, however, that logarithmic transformation of various input combinations did
not result in a superior model fit.
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Since our data consists of multiple relations on a single set of countries, and since our
theoretical interest is in the relations among these countries per se, we take all graphs to
be uniquely labeled by country. Applying the structural covariance to the graph sets and
fitting the model of Equation 29, we obtain the four canonical variates. The canonical
correlation coefficients for these variates were found to be 0.506, 0.167, 0.0728, and 0.0184
(respectively). The canonical variate redundancies — the proportion of variance explained in
each set by the other given each canonical variate — provide an index (analogous to the R?)
of the extent to which each set of relations can be used to predict the other; these are shown
in Figure 9. Note that nearly all of the predictive power between the two data sets lies in the
first canonical variate, and that this variate can be used to predict approximately 14% of the
total variance in trade relations from attribute differences. The trade relations, by contrast,
can predict only about 8% of the total variance in attribute differences between nations,
but given that the latter proceed the former in time this asymmetry is not particularly
surprising.
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Since the first canonical variate appears to account for nearly all of the shared variance
between the two data sets (and for brevity), we shall focus exclusively on it. To interpret
this variate, we first inspect the loadings*® of our various trade and difference relations.
These are shown in Figure 10. (In this Helio plot, positive loadings are represented with
outward-pointing black bars and negative loadings are depicted with inward-pointing white
bars; bar magnitude corresponds to correlation magnitude, with 1.0 and -1.0 at the outer
and inner circles (respectively).) As can be seen, the first variate clearly represents a gen-
eral tendency towards trade, with large positive loadings on all five of the trade/exchange
relations. Simultaneously, this same variate also indicates a strong tendency to have had
very different levels of per capita energy consumption, somewhat different rates of secondary
education and population growth, and somewhat similar changes in per capita GNP growth.

Further insight into the nature of the relationships involved can be had by examining the

43These are also referred to as structural correlations in the literature, but we refrain from using this term
here to avoid confusion.
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Figure 11: Variance Explained by the First Canonical Variate, Trade Data

proportion of variance in each original variable accounted for by the first canonical variate
(the squared loadings)**. As the Helio plot of Figure 11 indicates, approximately half of
the variance in each trade relation loads on the first canonical variate (with trade in foods
and manufactured goods being notably higher, and diplomatic exchange being somewhat
less). With respect to attribute differences, however, it is overwhelmingly the per capita
energy consumption which loads heavily on the first canonical variate, the other variables
having less than a quarter of their variances associated with it; overall, this variate accounts
for approximately 29% of the variability of the attribute differences, versus approximately
54% of the variance in trade relations. Were it our intention to conduct a more in-depth
analysis, we would examine other transformations of these variables, and would examine
the full set of canonical variates; even this cursory analysis, however, serves to demonstrate
the capacity of CCA to illuminate features of network data sets.

44Note that this is distinct from the fraction of each original variable which can be predicted from the
other variable set on a given canonical variate.
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5 Discussion

While we have tried to highlight the most critical aspects of the deployment of common
multivariate methods for exploratory inter-structural analysis, many issues clearly remain.
While limitations of space prevent us from considering all of these in detail, we do briefly
discuss two — possible future expansions of the present methods and null hypothesis testing.

5.1 Areas for Future Development

Although we have demonstrated a number of different methods for inter-structural analy-
sis, it is clear that these are merely a few of the wide array of possible approaches to the
general problem of structural comparison*®. Though limitations of space prevent our treat-
ing them in detail, two families of general approaches to multivariate modeling would seem
to hold particular promise for application to inter-structural analysis: structural equation
modeling (SEM), which provides an extremely general framework for the analysis of covari-
ance matrices; and hierarchical Bayesian modeling (HBM) which is a particular approach
to model building under the Bayesian paradigm. Here, we provide an outline which gives
some flavor of each, along with some ideas as to how each could be applied to the problem
of inter-structural modeling and analysis.

5.1.1 SEM of Multiple Relations

In the family of multivariate methods, structural equation modeling (Loehlin, 1987; Dillon
and Goldstein, 1984) is one of the more recent, and perhaps controversial, approaches to the
study of multiple, related variables. While sometimes difficult to evaluate, SEM methods
have proven useful for exploring complex relationships within large variable sets. Though
founded on normality assumptions which make them unsuitable for most network data, it
is possible to apply SEM to a specific family of network analysis problems. The approach
to be taken in many ways follows that described above for network covariance methods,
although the scope is more limited.

Because of the fairly restrictive assumptions underlying SEM methods, the application
of this approach should be restricted to continuously valued sociometric data (e.g., ratings
of affinity, trust, prestige, etc.) on labeled node sets’®. (Extension to the unlabeled case
is possible, but may require some changes in modeling assumptions.) Depending on the
specific approach being employed, an inter-structural SEM analysis would proceed either
by multi-stage structural regressions, or by analysis of the structural covariance matrix. In
either case, it should be possible to answer questions regarding (possibly causal) relationships
between different relations within the group. The benefits of such an approach are obvious:

45Indeed, as we noted in Section 4.4.1 above, the whole of linear subspace modeling can be applied to the
analysis of structural covariance matrices, though we have treated only PCA and CCA in detail.

46This may be overly conservative, since many fewer assumptions are required for the actual fitting of
structural equation models than for their evaluation. (Indeed, ordinary OLS regression is itself simply a
special case of SEM.) As different approaches to SEM vary in their sensitivity to normality assumptions, we
expect that some approaches will prove more amenable than others to inter-structural applications.
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connections between interpersonal contact, affinity, and homophily, for instance, have been
the subject of much theoretical activity, and network SEM methods would potentially allow
a number of extant theories to be tested directly. Particularly in group research, then,
the network SEM would be a valuable addition to the methodological arsenal; if it proves
possible to extend the method to the unlabeled case, the benefits could be even greater.

5.1.2 Bayesian Modeling of Graph Sets

Like SEM above, hierarchical Bayesian modeling (Gelman et al., 1995) provides a potentially
powerful means of assessing the effects of multiple relations on one another within individ-
ual node sets, given a sample of structures. Unlike SEM, however, the Bayesian approach
has a number of distinct advantages in the context of network analysis. First, hierarchical
Bayesian modeling (HBM) is not founded on asymptotic arguments and hence it allows for
the analysis of small data sets which would be inappropriate for SEM techniques. Similarly,
the persistent problems of goodness-of-fit assessment which plague the SEM approach (par-
ticularly with either especially large or especially small data sets) are obviated under HBM
due to the replacement of goodness-of-fit with posterior uncertainty and expected Bayes
loss (Robert, 1994). Another advantage of the HBM perspective is the lack of a strong
framework of ex ante stochastic assumptions: HBM allows for the construction of models
which fit the characteristics of the particular problem being studied, rather than requiring
problems to be forced into a particular stochastic modeling framework (e.g. linear relations
between normally distributed random variables). Finally, HBM is arguably preferable in
that it grounds inference on a Bayesian foundation, which can be justified on an axiomatic
basis (see Robert (1994)).

Despite these advantages, however, hierarchical Bayesian modeling has the disadvantage
of being fairly demanding in terms of researcher expertise, formalization of prior information,
and (often) computation. Initial construction of an HBM must generally be done on a
problem by problem basis, such that while a class of particular cases can be treated with
the same model, truly novel situations generally demand a new derivation. Construction of
HBMs usually requires careful attention to details of the stochastic model in question, which
requires that the researchers have a clear understanding of the distributional characteristics
of the phenomenon under study; other information from past research must be formalized
in the development of prior distributions, which can in some cases be a difficult task. Lastly,
hierarchical Bayesian models can prove reasonably computationally expensive, particularly
for high-dimensional problems of the sort faced by structural analysts.

For all of the above reasons, then, HBM has only recently emerged as a viable alternative
to classical methods for addressing complex problems of inference (despite its many advan-
tages). The problem of inter-structural analysis, however, offers an excellent opportunity to
use this approach. Specifically, the network paradigm presents a case in which many of the
difficult distributional problems have straightforward solutions, and the HBM framework
provides a simple but effective means of dealing with hitherto difficult problems such as
informant inaccuracy (see, for instance, recent work by Butts (2000)). Here, we suggest the
use of hierarchical Bayesian modeling to address the question of the relationship between
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multiple relations on in the case of dichotomous data. The resulting model should have
many applications which are similar to the SEM approach discussed above, but would be
applicable to the dichotomous data sets commonly employed in the network world; more im-
portantly, by specifying a particular stochastic modeling framework, HBM methods would
provide a stronger basis for generalization of findings across data sets. The HBM approach,
then, should be seen as a complement to the more exploratory techniques presented here.

5.2 Hypothesis Testing

In our exposition thusfar, it is notable that we have generally avoided the topic of null hy-
pothesis testing for inter-structural analysis methods. Although known to be fundamentally
problematic*” (Robert, 1994), null hypothesis tests are nevertheless useful heuristic devices
for interpreting statistical findings. Unfortunately, the nature of the methods considered
here renders most conventional hypothesis testing procedures inappropriate; what follows is
a brief discussion of known results, with some guidelines for future research.

5.2.1 Classical Tests

Even in a conventional context, hypothesis testing is problematic for many of the methods
discussed here. Cluster analysis and MDS, for instance, are primarily used as exploratory
procedures, and it can be difficult to construct reasonable and informative null hypotheses
for such uses of these techniques. Where results are available, these commonly focus on the
multivariate normal case, which is rarely applicable to network data sets.

In the special case for which all structures to be compared are uniquely labeled, and for
which all edges are distributed multivariate normal, classical results regarding the distribu-
tion of component variances and loadings for the PCA and CCA methods may in principle
be applied their usual interpretations. The strong potential for within-network autocorrela-
tion, however, suggests that this will rarely be appropriate for interpersonal network data.
Similar difficulties exist with relate with respect to the use of such tests on dichotomous
data; while estimation is fairly robust in such cases (Van der Geer, 1993), large samples
may be required for estimator distributions to approach those assumed by the classical null
hypotheses. As a rule, then, we strongly suggest that classical null hypothesis tests be used
heuristically with network data, if at all.

47 Among other weaknesses, the null hypothesis test considers the likelihood of the data under the null hy-
pothesis without comparing this likelihood to any specified alternative. Since “rejecting the null hypothesis”
must logically imply an acceptance of the proposition that some alternative hypothesis is more plausible, it
follows from the above that such rejection can never be logically justified by the test alone. Common practice
involving such tests (in which “rejection” of the null is interpreted as support of a particular alternative
hypothesis) further runs afoul of the fallacy of false dichotomy, though this practice is justly eschewed by
statisticians.
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5.2.2 QAP and CUG Nonparametric Tests

Difficulties with the use of classical hypothesis tests in the context of simple network re-
gression prompted Krackhardt (1987) to introduce the use of Hubert’s QAP test for cer-
tain network-level hypotheses. A permutation test, QAP (in its network guise) tests an
observed bivariate network statistic against the distribution of said statistic on the per-
mutation groups of the graphs in question; a “significant” result, then, implies that the
particular set of labelings in the original data induce a value of the statistic which is unusu-
al given the underlying structures. While a useful hypothesis in certain circumstances, QAP
is usually inapplicable for the types of analyses conducted here: since it tests against un-
derlying (unlabeled) structure, it does not provide a means of testing underlying structures
themselves?8.

In the context of exploratory inter-structural analysis, a more useful null hypothesis is
often that the observed inter-structural relationships are typical of what would be observed
were the graphs in question drawn uniformly from some structural population. Tests of this
generalized hypothesis — conditional uniform graph (CUG) tests — allow the researcher to
compare the results against a more useful measure of “no association.” General procedures
for performing CUG tests on graph-level indices have been presented by Anderson et al.
(1999), and more recently work by Pattison et al. (2000) has suggested additional means
for drawing from graph null hypotheses. In the case of the multivariate methods considered
here, one basic procedure of fairly general applicability is to draw a population of structures
by bootstrapping from the edge distributions of the original graphs, and then to re-run the
analyses on the new population. Comparison of the observed results against the distribution
of replicate results provides a test of the hypothesis that the observed results are typical for
graph sets of equivalent size and edge distribution. More restrictive hypotheses, of course,
can be applied by modifying the replication rule; in general, we support the position that the
null hypothesis employed should be, inasmuch as possible, a theoretically credible baseline
model (Mayhew, 1984) for the relationship to be tested.

6 Conclusion

Although theoretical traditions ranging from neo-institutionalism and small group theory
to the theory of mental models pose hypotheses which are best explored via the direct
comparison of social structures, relatively few tools have been available to facilitate such
analyses. By building on previous research in the areas of metric inference and covariance
analysis of graphs, we have here provided a general approach to graph comparison which is
applicable under arbitrary assumptions of node exchangeability. One potential advantage
of this approach is that it allows the researcher to deploy well-known and understood mul-
tivariate methods (e.g,. cluster analysis, MDS, PCA, and CCA) to data sets consisting of

48Tndeed, similarity among underlying structures will generally lead to less significant results under the
QAP test; in particular, for a bivariate comparison it is impossible to obtain a one-tailed p-value below

maxges %, where Ag and Pg are the automorphism and permutation groups of G, respectively.
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multiple partially labeled social structures. As we have demonstrated, these methods have
the potential to serve as powerful exploratory tools for inter-structural analysis, and can
serve as important adjuncts to more traditional network analytic techniques.
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