Implicit Commitments through Protocol-Le vel Semantics

Keywords: Social Agents, Conversational Policies, Commitments, Social Norms, Standards for Agents

Gregg Economou

ABSTRACT

Conversation policies often incorporate the notion of com-
mitment as an elementary building block of agent inter-
actions. However, high-level commitment semantics rely
on heavy infrastructure and advanced reasoning capabili-
ties which then become inseparable from agent interactions,
a lower-level concept.

We show that it is possible to express the notion of commit-
ment as a part of protocols themselves. We present a simple
mechanism for implicit commitments based on finite state
machines, and reason about actions an agent is required to
fulfill to follow the state machine.

We also demonstrate the utility of implicit commitments
within an interaction- oriented programming environment
and present a toolkit that implements this scheme, allowing
for dramatic savings in MAS development time.

1. INTRODUCTION

A number of theories of commitment have been developed
which rely on the concept of agent beliefs, desires and inten-
tions [12]. However, we believe the concept of commitment is
a more fundamental one, bound instead to an agent’s social
interactions and communicative acts. In this paper we show
that implicit commitment concepts derivable from commu-
nications are sufficient and guaranteeable even in a heteroge-
neous environment of self-interested agents, thus obviating
the need for explicit commitment mechanisms.

Commitments are needed to provide to other agents a pre-
dictive indication as to the future activities or state of the
agent that enters such a commitment. Forms of commit-
ment include acceptance of potential consequences of break-

*This material is based on work supported in part by
MURI contract N00014-96-1222 and CoABS Darpa con-
tract F30602-98-2-0138 and NSF grants IRI-9612131 and
IRI-9712607

Maksim Tsvetovat

Katia Sycara Massimo Paolucci

ing such a commitment, or simple assertions as to the future
regarding the agent. To other agents, the knowledge of a
commitment provides a guidance to predict characteristics
of future interactions. The primary focus of this paper is
to derive commitments from communicative actions of the
agents independently of their internal states.

‘We approach the issue from two sides: the first, concerning
an agent’s guarantees and assurances of available informa-
tion about other agents, and second, concerning the meaning
of commitment.

The most commonly considered environment for an agent is
a cooperative one, in which other agents can be reasonably
expected to be following some common interest and gener-
ally be honest to one another. Explicit expressions of intent,
commitment, desire, and belief then can be used as a rea-
sonable basis of inter-agent knowledge-sharing and agents
can rely on such information with a considerable degree of
confidence.

The usual issues encountered in cooperative environments
are those concerning expression of such semantics-dense con-
cepts, synchronization of belief and intent databases among
agents. It is common to presume that if there was a suf-
ficient means of declaring one’s commitments, other agents
would be able to take down these announcements and rea-
son about them. Thus, most research effort has focused on
formal ways to express commitment.

However, it is readily apparent that multiagent systems are
increasingly going to involve self-interested agents and whole
communities of competitive agents. Breaking of commit-
ments and distribution of misleading information is par for
the course in such an environment. In a universe of com-
petitive agents, the trust implicit in a cooperative system
vanishes. Agents expressing intention and belief are to be
suspected or trusted along a gradient from trust to complete
distrust. Ultimately, they can only be judged on experience,
with no support from a pervasive infrastructure.

In a cooperative environment, when an agent expresses an
intent or a commitment, this expression can be assumed
to convey the meaning that the agent itself believes those
assertions. In a competitive environment, however, the best
one can assume is that that agent wishes others to believe
that he believes those assertions - and creation of such belief
is somehow strategically beneficial to it.

In light of this, we have to rethink the concept of an ex-
plicit commitment infrastructure. As we show below, ex-
plicit commitment mechanisms are not needed to enjoy the
benefits of reasoning about commitments, and these benefits
can still be reaped in a competitive environment.

Since no assumption can be made on the agents ”mental
state”, no assumption can be made on their reasoning pro-
cess either. Throughout the paper we assume that we have
no knowledge of the problem solving mechanisms that any
agent follows. Agents will be just black boxes that are ex-
pected to follow a protocol. Any model of what the agent
thinks or knows will be exclusively based on the messages ex-
changed. This assumption has two important consequences:
first, we cannot assume that what an agent says corresponds
to what the agent thinks. Ultimately, sincerity assumptions
made by virtually every theory of agent communication [4,
5, 3, 11] is not guaranteed to hold, quite the opposite: agents
should be assumed to be un-trustworthy. The second con-
sequence is that the results of this paper apply to any agent
architecture and hold for any heterogeneous MAS.

Commitments are generally broken in one of three situa-
tions:

e agent is malfunctioning or buggy, or is incorrectly im-
plemented,

e agent has incomplete information about side effects of
certain actions.

e agent is deliberately malicious,

In the first case, the agent may be able to gracefully recover
from the malfunction and continue operation. However, it is
still up to the agent developer to make sure that the agents
comply with the specified protocols.

In the second case, detecting a broken commitment in learn-
ing what the agent does not know and needs to learn from
its environment.

In the third case, there is not much that an agent can do to
remedy the situation. However, if certain agents are known
to be consistently malicious, they will eventually be ostra-
cized from the agent community (using some agent reputa-
tion mechanism - which is outside the scope of this paper).

The paper is organized as follows: In Section 2, we discuss
how the concept of commitment is connected to the concept
of conversation policy. We then proceed to show an algo-
rithm for inferring commitments from a given DFA-based
conversation policy, through the concept of deontic states.
To allow the DFA-based approach to be more firmly rooted
in commonly used speech act semantics, we then proceed to
illustrate commitments as implicitly defined by speech acts.
We finish with a presentation of an implemented toolkit for
conversational policies with implicit commitments.

2. RELATED WORK

It has been well-established [13, 6] that any inter-agent com-
munication or conversation can be described by a protocol,

for which there exists an automaton that formally defines
the possible interactions in this communication.

In particular, M.P. Singh [11] has introduced a paradigm
called interaction-oriented programming, and the notion of
agent skeletons. Agent skeletons are state machine-like au-
tomata that define behaviors of individual agents by speci-
fying the sequences of external events but does not specify
the problem solving process that drives the agents. A similar
concept, called a multi-plane state machine was introduced
by L. B6loni and D.Marinescu [1, 2] as part of the Bond
toolkit for development of multi-agent systems.

J.Pitt and A.Mamdani [8] have proposed an architecture
where the agents derive their intentional semantics through
protocol-driven interactions. They define agent reasoning as
a layered process, consisting of:

e Action-level semantics, which is concerned with react-
ing in appropriate ways to the received messages and
is external to the agent.

e Content-level semantics, which is concerned with inter-
pretation and understanding of content of a message,
and is internal to the agent.

e Intention-level semantics, which is concerned with main-
taining an internal belief-desire-intention system and
making sure that the communications are consistent
with it.

In our paper, we are mainly concerned with the action-level
semantics and agents’ abilities to determine higher level se-
mantic meanings - such as commitments - merely from ob-
served communications.

M.Colombetti [3] has recently proposed a model of agent
communications that relied on the deontic logic to derive
the commitment-based semantics of speech acts. The model
deals with conversations as a sequences of pre-commitments
and contracts. Every speech act is defined in terms of one or
more agents committing to perform an action or to assert a
value of a preposition. However, the speech act theory still
relies on mentalistic assumptions that may or may not be
valid in a non-cooperative environment.

3. CONVERSATION POLICIES IN A COM-
PETITIVE ENVIRONMENT

In a real-world heterogeneous multiagent system, agents will
not always be in communication with friendly, cooperative
agents. Very often agents will be self-interested and in com-
petition with others. The concept of an agent’s commit-
ment to some future condition is still an important one, per-
haps even more so in a system of self-interested agents since
agents can assume so much less about others and reputation
becomes a more important issue. Also, the nature of com-
mitment infrastructures must be rethought when one can
no longer presume cooperative intentions from other agents.
Most current work on commitments depends at one point
or another on some structure for verification and enforce-
ment of commitment policies. In a system of noncooper-
ative agents, there is no better guarantee that agents will

obey the framework for commitments than they will obey
their commitments themselves.

In a competitive environment, an agent cannot be guaran-
teed of any special knowledge about another agent’s real
intentions, future activities, or prior history. All an agent
can know about another agent is what it can derive from
that other agent’s communicative acts. There is no other
source of information that any agent can be guaranteed of
save that which the agent who is the object of speculation
itself send out into circulation. Agents need to employ some
reasoning methods to determine some higher-level propo-
sitions regarding some other agent, based on information
gathered from its interactions.

These interactions, as a sole output of an agent, are also
the sole manifestation of its commitments: commitment is
a social mechanism.

4. MANAGING ACTION-LEVEL COMMIT -
MENT SEMANTICS VIA A PROTOCOL

Let us define an agent interaction protocol P as a set of I/O
automata a; such that each automaton a; € P represents
a role that an agent can play (e.g. In an auction protocol,
such roles are auctioneer, bidder and observer). Let us also
assume that automata comprising P are compatible: the
outputs of one automaton are suitable inputs for one of the
others.

Compliance with or keeping one’s commitments is merely
a matter of following legal transitions in the automaton of
the chosen protocol. Any agent involved in the conversation
can tell if another agent it is conversing with is following the
protocol by merely observing the communications. It can-
not necessarily know the exact state of the other agent(s),
because it cannot know what communications and input the
other has received from sources other than itself, but it can
know, for any interaction, if the interaction is compliant
with the protocol.

Not only is this knowledge sufficient, it is the most an agent
is guaranteed to know in a non-cooperative environment.

What of super-protocols which contain or refer to other pro-
tocols, and are structure for moving about from one protocol
to another?

If an agent was to violate the protocol and thus default on
its commitments (or some subset of them) by changing its
state through some illegal transition, it would no longer be
in accordance with the protocol, and its interactions would
not match those interactions which are expected by others
following the protocol. Thus, other agents will be able to
detect that this agent has broken its commitment, and its
implied obligation to follow legal transitions to predictable
future interactions.

Since any super-protocol can be broken just as easily as the
protocol it seeks to enforce, there can be no protocol for
breaking protocol. Thus, the most one can truly depend
on, and simultaneously all one really needs to learn, can
be learned from the automaton, the transition history, an
agent’s observation of other agents and its assessment of

whether or not protocol is followed.

4.1 Protocol-Level Semantics

The action-level semantics described by J.Pitt [8] has a lot
in common with the protocol-based semantics that we are
proposing.

Pitt attaches a deontic obligation between conversationally
linked message input-output pairs. An agent that receives
a message with a performative of a certain type, is thus
obligated to reply with a message of a prescribed performa-
tive as dictated by conversational policy. He goes further
to point out a relationship between intention-level seman-
tics (which are relevant to the internal activity of an agent
in responding to and handling of an incoming message) and
the action-level semantics of the communication.

However, action-level semantics are limited to specification
of input-output pairs, describing statelessly sets of appropri-
ate interactions. Such input-output pairs are not sufficient
to describe the interactions of most nontrivial agents. More
specifically, any interaction where the same performative is
used more than once is in danger of being improperly de-
scribed by such a scheme. This is because simple pairing
is too inflexible and fails to take into account changes in
the internal state of an agent during the course of a con-
versation. They fail to sufficiently differentiate serialization
and ordering of operations, branching of conversation flow,
and iteration through some portion of a conversation with-
out reverting to a workaround such as a greatly increased
proliferation of performatives.

To increase the expressive power of conversational policies
to describe more complex interactions, one must extend the
action-level semantics to encompass interaction protocols by
adding stateful conversations between agents. Protocol-level
semantics extends the simple reciprocal commitment to en-
compass whole paths of arbitrary length and complexity
through a state machine, including loops, and nested inter-
actions. The protocol-level semantics inherits the inferable
intention-level properties of action-level semantics and binds
them to complex stateful interactions of agents instead of
performative pairs.

5. THE UTILITY OF DETECTING COM-
MITMENTS

In a system of self-interested agents, it is in the interest
of agents to achieve successful communication. If a self-
interested agent plans to take advantage of other agents, it
must communicate with them to achieve that end. Because
protocol is the basis of nontrivial communication, it is gen-
erally in the interests of agents to communicate truthfully
about protocols, even if they don’t intend to follow them
with sincerity in mind.

With this in mind, we do make the assumption that since
all communications follow protocols, an agent can expect to
have access to descriptions of the protocols as DFAs.

The consequences, however, are that either communication
cannot take place for practical purposes (things simply don’t
work because input and outputs don’t match) or because Y’

might detect through its interactions that X’s real DFA is
not what X said it was. The computation of commitments
is more important then for Y to know ahead of time what
it’s getting into and determine what commitments X would
take upon itself in exchange.

5.1 Example

Customer

destinatiogm (I have ati cket\m pay
a b d
for you) U

(no)

(ticket)

Travel Agent

(destinatiog)/\ | haveaticka\m
a b d
for you U

no

ticket

Figure 1: Travel Agent and Customer DFAs

Let us take up an example of an interaction protocol imple-
mented by a well-known travel web site. In Figure 1, Agent
X is looking to buy a plane ticket. Agent Y is a travel
agent, advertising a capability to sell plane tickets. X ap-
proaches YV and asks Y 'how do I buy tickets from you?’.
Y sends a protocol description to X, who then analyzes it.
The protocol basically involves the following interactions:

The customer supplies the travel agent with a city and date,
and the travel agent then will say if he has a ticket to the city
or not. If the agent doesn’t have a ticket, then he mentions
so and ends the conversation. If the agent does have a ticket,
he says that he has a ticket, the customer pays him, and the
agent gives the customer the ticket.

This seemingly innocent protocol has an obvious flaw: the
customer cannot choose to not buy the ticket once he has
requested a destination. If the protocol had just an extra
transition to allow the customer to evaluate the ticket and
decline it before paying, then X would have a way out. X
can use some algorithm, (for example algorithm described
below6.2), to find possible commitments in this new DFA.

Once X has examined this, he would see that there is a
rather serious commitment to buying a ticket just from ask-
ing for a destination, with no way out. In a case like this, if
the ticket Y tells X about is not satisfactory, X is stuck ei-
ther buying an undesirable ticket or being forced to break his
commitment, perhaps by breaking off communication with
Y, or by sending Y communications that are inappropriate
for the DFAs that are running at the time. If there was a
reasoner in X, it might decide that Y is taking advantage
of the fine print.

X also might decide that this protocol is unfair, and choose
not to involve himself at all with Y, and avoid broken com-
mitments by finding someone more agreeable to talk to.

Though nothing would stop X from entering the protocol
and then breaking it, thus breaking his implied commitment
to pay for a ticket, X can avoid the matter entirely before
getting involved.

6. INFERRING COMMITMENT FROM CON-

VERSATIONAL POLICY

In most inter-agent communications, if a protocol is to be
followed, then any interlocutors involved need to have some
common knowledge of this protocol. Effectively, each has
access to an automaton that implements the protocol or the
portion of the protocol that that agent needs to participate
in.

Since the only thing an agent can truly discover about an-
other agent is what it can gather through its interactions,
commitments really serve to predict future interactions of a
given agent. Since such interactions follow protocols which
are described by some automaton, what a commitment re-
ally can be said to encapsulate is a prediction about some
portion of an automaton that an agent is bound (commit-
ted) to traversing and can no longer escape.

For example, once a bidder submits a bid in an auction, he
must assume he is liable to win the auction and pay the
amount of his bid. There exist transitions out of this path
(e.g. the rejection of the bid by the auctioneer) but such
transitions depend on some entity external to the agent and
cannot be included in the calculation of what is a committed
section of the automaton.

6.1 Deontic States

States where such commitments are entered are commonly
called deontic states. When an agent needs to choose a cor-
rect path through the states of the conversational policy, he
needs to be able to detect deontic states and reason about
obligations that it will have once it enters such state.

We have developed a fairly simple rule for detecting deontic
states in a given DFA: A state is a deontic state with respect
to some action A when at least one of the transitions out
of it leads to inevitable execution of that action. Once this
transition is taken, it is no longer in the power of the agent
to stop the action from happening (although other agents can
still cancel the transaction). Once the agent has taken such
a transition, it is said to have committed to performing the
action A.

For example, let agent A be at State 1 (see Figure 2). By
taking the accept transition to State 2, A can no longer
cancel the transaction. If B, the second party to the con-
tract, also accepts, it is unavoidable that agent A has to
pay. Therefore, it is no longer in power of A to break the
agreement and one can conclude that A has committed to
executing the action at State 3.

It is important to make the distinction between transitions
which depend on some external activity (such as the recep-

A->B:accept @ B->A:aoceptm A->B:pay @
N %

FINISH

B->A:cancel

ABORT

Figure 2:
state.

A state diagram illustrating a deontic

tion of a message from another agent) and those which can
be influenced solely from within the agent, such as a test of
some boundary condition (e.g. determine if the bid price is
too high and quit the auction) or some reasoning entity’s de-
cision making or planning results. This is because an agent
cannot predict with any surety at all that any transition
that it does not fully influence can be taken, and thus must
use this distinction in analyzing the automaton for poten-
tially 'unavoidable’ paths or regions of the automaton that
the agent incurs the risk of entering by taking any given
transition.

It is thus possible, given an automaton, the current state,
and the history of transitions within the automaton, to de-
termine if any portion of the reachable states in the state
machine imply commitments or unavoidable actions on the
part of the agent, as we will show in section 6.2 . Moreover,
it is possible to detect and mark all deontic states within an
automaton prior to the execution of the automaton.

Thus, if an agent has access to state machines on both sides
of the protocol (as in the case of publicly posted protocol
specifications), it would be able to infer fairness of the pro-
tocol with regard to the obligations of parties. (e.g is it
possible that agent A will have to commit to paying for a
service while agent B is not committed to provide the ser-
vice?). It is often only necessary to search the part of the
protocol that deals with execution of the transaction - since
both parties have ways to bail out during negotiation.

6.2 An algorithm for finding deontic states
In this section we present an algorithm that, given a finite
state automaton representing the protocol, can find and iso-
late commitments that the agent will have to make during
execution of the protocol.

A commitment within a protocol is a path through the pro-
tocol’s automaton defined by the following parameters:

e commitment origin state (i.e. the state where the com-
mitment begins)

e terminating state (the state where the commitment
ends)

e action with respect to which this commitment is active

By default, all actions that result in sending of messages are
considered potentially leading to a commitment. It is then

up to the agent’s planner component (if it has one) to de-
termine if a particular commitment is important within the
agent’s environment. However, to reduce the running time
of the algorithm, it is possible to impose stricter conditions
on the actions (e.g. actions leading to sending of a message
to a non-trusted party).

In Algorithm 6.1 we show a recursive algorithm for finding
implicit commitments given a finite state automaton for a
particular agent.

The algorithm scans backwards through a DFA from some
state ¢, and finds all sequences of states that represent com-
mitments in the subset of the DFA that can possibly precede
q.

The CFind algorithm 6.1 is passed three arguments: A state
q to begin its search from, a number depth which keeps track
of the recursion depth a particular call to the algorithm is
made at, and a pending commitment pending which is an
ordered pair indicating the transitions which respectively
originate and terminate a commitment. The originating
transition enters the deontic state for the destination state
of the terminating transition. Its sole input aside from the
arguments is a representation of a DFA of which ¢ is some
state. It returns either zero or one, depending on whether
changes were made to pending, and possibly also outputs
pairs describing commitments. These have the same form
as pending. In our example, we add them to some imagi-
nary list of true commitments. When the algorithm is first
run, an empty pair is passed to pending.

Within a frame of recursion, the algorithm keeps track of
various transitions it needs to recurse through (potentially),
using a variable ¢ to refer to a given transition. A simple
boolean flag, flag is used to save a return value, which is in-
fluenced at various places in the course of execution. States
have a mark to indicate that they have already been tra-
versed; the mark is written with the depth of the frame that
traverses it, so that we can allow deeper frames to re-traverse
but frames above to not pas through any state more than
once.

The algorithm starts out by incrementing the call depth it
was passed, so that it now reflects its proper depth. Then it
examines the state ¢’s mark, and if its depth is not greater
than the mark, the call returns with a zero value. If it con-
tinues, then it loops on any transitions ¢ it finds leading into
q. It scans depth-first for the potential initial or final transi-
tion of a commitment, which means scanning for transitions
which send messages. When it finds one, it examines the
values in pending to see whether it should update a pend-
ing commitment or if pending is empty, to set pending’s
terminating transition to ¢. If pending already has a termi-
nator set, then ¢ is possibly a previous state that leads to
the terminator unavoidably, that is, ¢t potentially commits to
the transition in pending’s terminator. In either case that
pending was modified, we set the return value to one. Then
the algorithm recurses, calling the algorithm on the origin
state of ¢, with the new pending passed to the child frame,
and wait on its return.

Since the algorithm returns with a one if it caused modifi-

Algorithm 6.1: CFIND(State ¢, int depth, Commitment pending)

local tramnsition ¢
local int flag < 0
depth < depth + 1
if g.mark > depth
then return (0)
q.mark < depth;
for each transition t that enters state q
(if pending — terminator = true
pending.origin < null;
then [pending.terminator < null;
flag «+ 1;
if t is a sendmessage transition
if (pending.terminator # null)
then pending.origin <t
else pending.terminator <t
flag «+ 1;
comment: Recursive execution

if CFind(origin of t, depth, pending)

then

do <

flag =1;

pending.origin < null

then) o
pending.origin < null

flag <1

depth < depth — 1
return (flag)

then [{ if (pending.origin # null and pending.terminator # null)
then {pending.terminator + pending.origin

if pending.origin # null and pending.terminator # null)
add — to — true — list(pending)
else comment: We have found a valid commitment here

cation to the value of pending passed to it, and zero if it
does not. If a zero is returned to it, it knows that down that
path there were no further modifications to pending and it
must be as complete as it can be from this state. If it is
a complete commitment, that is, if it has both origin and
terminator values, it is considered a true commitment and
added to some list of found commitments. Then pending’s
origin value is zeroed to render it incomplete again, so that
other passes through the loop on ¢ could find alternate paths
that share a common terminating transition with pending.

When the algorithm has finished recursing and the final
frame returns, the contents of the true-list will be all com-
mitted pairs of transitions in the portion of the DFA that
precedes the initial ¢ passed to the top frame. Because it
only finds sequences in the portion of a DFA that can lead
to g, the algorithm may potentially need to be run on more
than one state of a given DFA.

If all states can eventually lead to the exit state (i.e. the
DFA has no infinite loops), g only needs to be the exit state.
However, if there are isolated loops in the state machine,
entered but never exited, then the algorithm must be run

for at least one state in each such loop.

Trivially, one could simply run the algorithm for every state
in the state machine except the start state but the applica-
tion of it to the minimal set of states would be more efficient
for most state machines. The start state is excluded because
it is obviously not party to any commitment meaningful in-
side the given state machine. The computational complexity
of the algorithm per state g is O(n?) where n is the number
of states in the DFA, and the worst case complexity for the
complete DFA is O(n® — n).

The algorithm builds a list of commitments it finds com-
pleted as ’true’ commitments. The final list can poten-
tially contain commitments which are totally contained in-
side other commitments; this is fine. These sub-commitments
could be considered either redundant and thrown away or
they could be considered important for the reasoning entity
to think about as well; it is up to the implementor.

The algorithm has been tested on a variety of DFAs, in-
cluding examples containing the three general cases of DFA
topology; a simple, one-commitment DFA with no looping

(request for bids)

Figure 3: A simple bidder DFA.

give money bac
(close account)

d
(open thank you
paccount)/U J

sorry,

pay
we're closed

interest

Figure 4: A Bank DFA (with loops).

commitments (see Figure 3), a DFA with connected loops
(see Figure 4), both open and closed, and a DFA with an
isolated loop (see Figure 5).

In Figure 3, there is a commitment upon sending a bid to
pay. It is potentially unavoidable that the state machine will
continue along to the post-payment state if one takes the bid
transition. Though it is just as likely that the DFA will re-
ceive a rejection to its bid, the payment is the only edge
that has some potentially unavoidable precursor-chain that
begins with the sending of a message, i.e it is the only tran-
sition that involves an outward (social) action by the DFA
and is potentially unavoidably taken as a result of taking
some other transition which did an outward social action.

In Figure 4, we have a slightly more complex case: one of the
commitments here is a recurring commitment, a loop that
in this case does not necessarily exit. Also, this is an exam-
ple of a DFA with multiple commitments. It implements a
simplistic bank, which takes a deposit from some customer
to open an account, and pays interest on that deposit until
the customer closes his account, at which time the customer
gets his deposit back. The bank also will hand a customer
back his deposit if he changes his mind, and also gives it
back if the bank doesn’t want to do business at that time.
Otherwise, the bank computes interest in f and the cus-
tomer gets regular interest payments. Algorithm 4.1 detects
these commitments without a problem. The bank is com-

(let’s make a deal)

Figure 5: An inescapable commitment

mitted to giving the customer his money back if the bank
says that they’re not taking any business at the moment,
and the bank is also committed to paying interest once they
do accept the customer’s deposit (shown where the bank
thanks the customer for the deposit). Note that the com-
mitment to pay interest only continues until the customer
wishes to close his account, and it is only the initial ’thank
you’ that commits.

In Figure 5, we illustrate the final topological form that such
a DFA can take: an infinite loop. This protocol is never
really finished. This agent makes an offer to someone else,
who decides the outcome. He cannot control if the offer will
be accepted or rejected, but he is in danger of getting into
an inescapable commitment once he makes the offer.

7. IMPLICIT COMMITMENTS WITHIN AN
AGENT-FACTORY TOOLKIT

‘We have implemented a toolkit to assist in automatic gener-
ation of protocol-compliant agent communication code, uti-
lizing the protocol-level semantics of conversational policies
and commitment evaluation algorithms. The toolkit allows
a protocol designer to formulate the agent interaction inde-
pendently of the agent implementation process, in a manner
similar to Interaction-Oriented Programming [10].

The Interaction-Oriented Programming paradigm defined
by M.Singh is a layered construct that separates the rea-
soning components of the agent from the underlying com-
munications infrastructure by means of a middle layer that
incorporates explicit conversation policies.

The AgentFactory toolkit provides the infrastructure re-
quired for building an explicit conversation policy layer. The
toolkit consists of several modules:

e An XML language for expressing state machine-based
conversational policies

e Conversational policy verification tools, consisting of

— Compile-Time verifier which asserts that the state
machines comprising the conversational policy are
well-formed and contain no unreachable or unde-
fined states (problems that are often due to simple
programmer errors)

— State Machine verifier which determines whether
a given state in a state machine can be reached

Conversational
Policy

M e$age COnVeflsati Onal
Definitions Policy :
Content State Machine
Verifier Engine Panner
RETSINA
Agent Foundation Classes

Figure 6: The IOP Toolkit as a Part of RETSINA.

through a sequence of communicative acts - thus
determining whether or not a protocol is fit for
use in a particular context

— Commitment verifier which uses the CFind algo-
rithm described above to determine fitness of a
particular protocol given constraints on commit-
ment fairness

e A re-targetable conversation policy compiler, generat-
ing Java and C source code for agent interaction skele-
tons.

e Automatic generator for ACL-independent message syn-
tax verification code.

e Agent Linker which links interaction skeletons gener-
ated by compilers with predefined actions and planner
objectives.

The toolkit also provides the following functions:

e A convention for action bindings allowing a protocol
designer to demand particular support activity from
the agent implementation as necessary to meaningfully
implement the protocol

e A convention for recursively including protocols within
other protocols to enhance reusability, passing infor-
mation from protocol exit states to other, ’outer’ pro-
tocols

e Methods for defining protocol-wide transition policies

e Automatically generated message verification code.

However, it should be noted that while AgentFactory pro-
vides a set of convenient tools and infrastructure to develop
agents that faithfully follow pre-defined protocols, it is still
up to the agent developer to design his agent in such way
that it would be compliant with not only the letter but also
the spirit of the protocol.

The AgentFactory toolkit has been designed as a part of the
RETSINA Agent Foundation Classes, which provide func-
tionality necessary for agent development - such as a commu-
nication infrastructure, capability advertising services and

matchmaking services. The agent infrastructure includes
a general purpose reusable planner [7] which can be pro-
grammed to reason about commitments and influence its
planning decisions based on its conclusions.

The conversational policies are expressed in XML format,
and given to a Just-In-Time compiler. The compiler trans-
forms the conversational policy into an executable state ma-
chine, and runs the CFind algorithm to isolate commit-
ments, actions and message format definitions. The commit-
ment and action definitions are then added to the planner’s
environment and further processed through the planner’s
high-level reasoning capabilities.

However, it is key that the reasoning layer of the agent is
not completely separated from the conversational policy. As
mentioned above, it is necessary to reason about the deon-
tic states of the protocol in order to determine current and
future commitments.

In the ideal situation - when the planner has all domain
knowledge it needs to reason about the actions and com-
mitments - the agent can aquire a new conversation policy,
process it and start communicating through it on the fly.
In the case where the domain knowledge is insufficient, the
planner raises an error and prompts for the agent developer
to augment its knowledge base.

The classical one-sided relationship between high-level rea-
soning entities and low-level automaton-based interaction
models is eased in this system by allowing bi-directional con-
trol flow between planning and protocol components. When
appropriate, reasoning drives the agent’s traversal of the
protocol automaton, and when appropriate, the protocol,
following its state machine, modifies the reasoning system’s
goals and environment.

Remaining true to the semantics of a particular interaction
remains the burden of the protocol designer, but those pro-
tocols are then at the disposal of agent designers. With the
higher-level concept of commitment expressed in the proto-
col implementations themselves, the agent designer is able
to more conveniently reason about those issues in a compet-
itive, self-interested environment which much more closely
resembles the future of multiagent systems.

7.1 Agent Developmentwith AgentFactory
The process of agent development using AgentFactory is as
follows:

1. Write Conversational Policy by writing a state-transition
diagram of the interactions to be implemented, then
converting it to the XML format. In the future, graph-
ical programming tools will be developed to make this
step more intuitive.

2. Run Verifiers to determine whether the conversational
policy contains errors or is unfit for use.

The process may have to be repeated until a suitable
conversational policy is developed.

Once the policy passes verification and is determined
to be suitable for use, it can be distributed to agent

Pr ot ocol

Obtain

Veri[% Examine
o ili Commitments
Specification Reachability

Pr ot ocol
w Verifier
Mar kup

Pr ot ocol
Reposi tory
Generate FSM
Code

Action C or Java

Interface Sour ce Code
Act i
Repository Link Compile
Agent

Figure 7: Agent Development with AgentFactory.

developers. However, by ensuring that all interactions
are specified in advance, the AgentFactory toolkit dra-
matically decreases time spent on development and de-
bugging of interactions.

3. Compile Interaction Skeletons by running the Conver-
sational Policy Compiler. Among the generated code
will be an action interface - which specifies what ac-
tions are required to be implemented by the agent de-
veloper

4. Fill the action interface with references to library func-
tions or planner objectives

5. Re-run the Conversational Policy Compiler to link the
interaction skeleton with the action libraries

6. Compile the resulting source code with a Java or C
compiler.

The resulting agents allow the agent programmer to imple-
ment and debug agent interaction separately from the rea-
soning process. They can be used standalone or as a part of
a larger agent.

The conversational policy compiler is a command-line tool
that can be easily integrated with project management tools
such as make or graphical development environments such
as JBuilder or Visual C++.

7.2 AgentFactory in Action

The toolkit has been used on several multi-agent system
projects and has been proven to dramatically decrease de-
velopment time.

RETSINA=DemoDT

..’

Figure 8: Agents in auction MAS.

As a first example of a deployed system using the Agent-
Factory toolkit, we built a protocol-agnostic auction system.
All agent interactions in the system have been specified as
conversational policies and agents were built in C and Java
using the interaction skeletons built by conversational policy
compilers.

Each of the interaction skeletons was built and tested inde-
pendently of the others, which allowed for compartmental-
ization and eased the debugging process. Later the skeletons
were integrated with the RETSINA planner and user inter-
face components to complete the agent development process.

The MAS (see figure 8) consists of the following agents :

o Auctioneers conduct auctions for items in their inven-
tory, based on English, Dutch, Spanish (fish-market)
or Vickrey auction protocols. The three auctioneers in
the figure are named Zaphod, Trillian and Ford

o Timers provide cryptographic timestamps for auction-
eer agents.

e Bidders participate in auctions run by the auctioneer
agents, and dynamically switch their protocols based
on decisions made by their internal planners.

e Blackboard is a middle agent that provides auction list-
ing service for auctioneer and auction news subscrip-
tion service for bidders.

The protocols involved in the system are as follows:

o Auctions: English, Dutch, Spanish and Vickrey
o Cryptographic Timestamping

o Fuent Supplier and Event Listener protocols.

Once the conversational policies have been developed and
verified, several agent developers cooperated to write agents
that executed these policies. As a result, the entire system
was developed in under 2 weeks and addition of a new auc-
tion protocol can be done in the matter of hours. Time
spent debugging agent interaction (which is normally the
most difficult process in MAS development) accounted for
less then 10% of total debugging time.

8. CONCLUSIONS

In this paper, we have presented a scheme through which
agents can infer commitments merely through observable
communications, thus obviating the need for an explicit com-
mitment infrastructure or high-level semantics. We have
also presented a computationally feasible algorithm for de-
tecting such commitments using the finite-state automa-
ton representation of communication protocols, previously
thought to be too impoverished to convey such information.

We have utilized the protocol-level semantics in the design
of AgentFactory toolkit, which has been used in develop-
ment of several multi-agent systems and was proven to be
an efficient way to develop such systems.

9. REFERENCES
[1] L. B6loni and D. C.Marinescu. A multi-plane state
machine agent model. Technical Report CSD-TR
99-027, Purdue University, September 1999.

[2] L. B6loni, K. Hoffmann, D. Mlynekand, and
D. C.Marinescu. An object-oriented framework for
building collaborative network agents. Intelligent
Systems and Interfaces, 1999.

3

—_

M. Colombetti. A commitment-based approach to
agent speech acts and conversations. In Proceedings of
Workshop on Conversational Policies at Autonomous
Agents 2000, Aug 2000.

[4] T. F. Consortium. Fipa 2000 specifications.
www.fipa.org, 2000.

[5

—_

T. Finin, Y. Labrou, and J. Mayfield. Kqml as an
agent communication language. In J. Bradshaw,
editor, Software Agents. MIT Press, 1997.

[6] N. A. Lynch. Distributed Algorithms, chapter pages
200-231. Morgan Kaufman, 1996.

[7] M. Paolucci, D. Kalp, A. Pannu, O. Shehory, and
K. Sycara. A planning component for RETSINA
agents. In Proceedings of Workshop on Agent Theories
And Lanugages at ICMAS99. 1999.

[8] J. Pitt and A. Mamdani. A protocol-based semantics
for agent communication language. In Proceedings of
International Joint Conference on Artificial
Intelligence, 1999.

[9] T. Sandholm, S. Sikka, and S. Norden. Algorithms for
optimizing leveled commitment contracts. In
International Joint Conference on Artificial
Intelligence, pages 535-540, 1999.

[10] M. P. Singh. Toward interaction-oriented
programming. In International Conference on
Multiagent Systems (ICMAS) Workshop on Norms,
Obligations, and Conventions, December 1996.

[11] M. P. Singh. Developing formal specifications to
coordinate heterogeneous autonomous agents. In
IJCAT98, pages 261-268, 1998.

[12] I. Smith, P. Cohen, J. Bradshaw, M. Greaves, and
H.Holmback. Designing conversation policies using
joint intention theory. In Proceedings of International
Joint Conference on Artificial Intelligence, 1998.

[13] T. Winograd and F. Flores. Understanding computers
and cognition: A new foundation for design. Ablex,
Norwood, NJ, 1986.

