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Abstract

Previous rescarch an the problem of belief panics - episodes in which numerons actors
develop highly divergent beliefs for a brief period in the absence of direct evidence - has
demonsirated the plausibility of belief feedback mechanisms as an explanation for panic.
Building on this work, a model is here developed which allows [or the emerpence and dissolwtion
of panic phencmena within strectured popudations of individual actors. The behavior of this
madel is then analvzed using a virtnal experiment in order to identify the primary delerminants
of the rate af panic occurrence. Assimptions regarding saliency and communication are shown
to be erucial aspects af the panic model as well as predictors of panic rates, alung with network
density and the rate ar which external signals are introduced, Nerwork clusterin g, witile

examined, is not found to be related o the panic rate.
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1. Introduction

The notion of panic as a sociologically interesting form of collective behavior is nol a new
one. Indeed, since Charles Mackay's 1841 study of Extraordinary Popular Delusions and the
Madness of Crowes (at least) there has been an awareness of the volatility of papular opinion,
and of the potential for sociul actors to fall prey to a varicty of panic phenomena, While the term
“pamic” (in its social sense) has been applied to behaviors including breakdown of secial order in
cmergency situations, speculative bubbles in linancial markets (Qrléan, 1989), (Lux, 1995),
moral panics (Goode and Ben-Yehuda, 1994), and deviance production mechanisms (Erikson,
1966). we are here interested in a particular class of social phenomena which are characterized by
the rapid emergence and subsequent dissolution' of one or more “islands” of minority beliet®
within o “sea” of majority opinion. Sudden, localized outbreaks of concern over supposed acts of
witcheraft (Erikson, 1966) or Satanism { Victor, 1993), (Hicks, 1991), would sutisly this
definition of panic: so too might mmors of downsizing and acquisition in poorly performing
lirms, or (exaggerated) fears regarding disease cuthreaks.

One example of a series ol panic events which we might wish to address can be found in
leffery Victor's study of satanic cult panics within the United States and Britain during the late
1980°s and early 1990s (Victor, 1993), (Viclor, 1995), During these cvents, men and women in a
number of geographically disparate locations were confronted by terrifying stories of mutilation
and murder, stories which were purported to be both factually accurate and to represent a real and
immanent danger to communily members (Victor, 1993). As appears to he typical of such
circumstances”, few if any of the panic victims were in & position to verify the veracily of these
tales firsthand; instead, they turned 1o other community members for information, These alters -

friends, relatives, co-workers, und the like - passed along information which they had acquired

_ Although, as we shall see, this dissolution need not be total,

® Here, we shall focus on “beliel” fin the informationul sense) rather than “atitude,” althongh the two are not
unrelated CAnderson, 19717,

" And, perhaps, much of human knowledge in general,
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via similar means, leading, ultimately, to a high level of redundancy which reinforced belief in
the reality ol the threat (Victor, 1993, Although subsequent investigation by law enforcement
authorities revealed no evidence of dangerous cult activity (Victor, 1993), convictions during the
panic episodes were strong enough to prompt parents to keep their children home from school
and to provoke demands for police protection. Such intense, materially unsubstantiated beliefs
are emblematic of a more general process of reality construction (Mehan and Wood, 1975), and
hence require explicit sociological attention.

Following Victor's account, Butts (1997) presented a formal medel of panic development
which demonstrated a process in which signaling and inference behaviors among socially
embedded actors lead to rapid polarization of belief. This model belongs to a more general class
of social influence models, including those of Krackhardt (1996), Carley (1990a, 1990b), Latané
[1981), Friedkin and Cook (1990), and Anderson (1959}, which attempt to represent shifts in
actors” beliefs and/or opinions via a structurally mediated process of diffusive change. (For
foundational work in this area, see Asch (1952), Deutsch and Gerard (1955), and Sherif (1936)"),
Similarly, it is related to work in the economic lilerature on herd behavior (see Shiller, 19935)
which considers situationally constrained interactions between Bayesian-rational actors. While
Butes” model does not assume rational behavior per se, it does represent actors’ knowledge in
Lerms of subjective probabilities (Jeffrey, 1983) and assumes that these probabilities are updated
via a Bayesian inference process (as in (Bunerjee, 1992), (Bikhchandani et al_, 1992}, (Orléan,
1985)]: it may thus be thought of as a model of influence among boundedly rational actors
(March and Simon, 1938), although other interpretations arc possible,

This Bayesian Belicl Feedback Model (BBFM), as specified in (Buts, 1997), was shown to
produce a qualitatively reasonable depiction of the reinforcement process described in (Victor,
1993); this, however, is only one ol the requirements for understanding belief panics, In

particular, our definition specifies that panics musl emerge from a majority configuration, and
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that participants” beliefs must ultimately return to some approximation af their original stule.
The spontaneous creation - and eventual dissolution - of panic phenomena was nol within the
scope of the original model, and requires a somewhat different approach. The present work

altempts to remedy this by extending the original BEFM w allow for the generation of beliel

panics within populations of socially cmbedded actors,

2. The Bayesian Belief Feedback Model

Before discussing the extensions to the Bayesian Belicf Feedback Mode!l which we shall use
10 simulate the generation of panics, it behooves us Lo briefly revisit the its basic construction.
Ags presented in Butts (1997), the BBFM is built around a core learning model. This model is, in
essence, a very simple and direct application of Bayes' rule to a hypothetical situation in which an
. Ty i ) = _ 5
actor abserves a categorical "belief” or "disbelief” signal in reference to some possible event™. In
particular,
given:
B = a belief signal
T =atrue event
A = (he complement (logical NOT) of event A
By Bayes” Rule:

plTyp BIT)
p(Tap(BIT )+ p(T 1p(BIT)

[1] p(T1B) =

As indicated in [1], the actor's posterior probability for event T depends on three paramelers:
the d priori probability that the signaler would send a "belief” signal were the event to be true,
the d priori probability that the signaler would send a "belief” sighal were the event to be false:

and. finally, the actor’s prior belief concerning the probability of T. For simplicity of discussion,

i = a o

These w::r&.na verified the fact that mdividuals use each other as sources of information cven in cases where direet
f“"d unamhuguqu.r. evidence regarding the nature of reality is available: they also considered other sources of group
influenee over individus! action (i.¢.. normative sanctions).

= Pl 11 1 -pa e ; el 3 H q
_In facL, it i not necessary 1o assume dichotomaous - or even categorical - signals, We shall restrict ourselves 1o this
simple case, however,
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the first of these parameters will henceforth be referred to as the actor "credibility rating”, or C,

and the second will be referred to as his or her "error rating”, or E:
[2] C= p(BIT)
[3] £= p(BIT)
[4] 8= p(T) (prior)
By substituting these into equation [1]. we arrive af

6C 6l

T18)= . )
oy GC-E)+E

and the alternative pussibility,

G{1—C) B 6(1-C)
H1-C)+(1-01-E) BE-Ci+{1-E)

[6] p(NB)=

The posterior probabhilitics of not T, then, are simply
[71 p(TIBY=1- p(TIR).
18] p(TIBY=1- p(TIB).

Intuitively, C represents the actor’s beliel that a signaler would know (and reveal) the event as
true if it were true; I, on the other hand, represents his belief that a signaler might err in
indicating the event to be true even if it were not. For purposes of the current learning model,
these evidentiary weights are considered exogenous parameters; they arc set, fixed, and unrelated
to B, While the nature of the mference model is always such that extreme beliefs (i.c., those near
Dor 1) are difficult to change. it is also worth noting that belief states interact nonlinearly with
evidentiary weights: in particular, low priors lead to a great dependence on low E values, while
high priors lead to sensitivity to low C values.

Superimposed on the actor’s belief model is the signaling model, which is likewise yuite
simple: during an interaction, un actor will signify "belief” in T when piT) is belicved 1o be
greater than .5, and "disbeliel™ otherwise®. This allows us to specify B as follows:

" While it may be objected that the choice of .5 as the threshald is somewhal arbitrary, it should be noted that A)
pUT=5 represents a state in which a T is as likely to be true as not and B the choice of threshold affects only the
quantitalive, not the qualitative, beheviors of the model. (Tn any case, simee the actor's belief can lie on any peintin
10,11, it is generally true that ptB=(.5)=0.)
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TRUE(B) 8=05

L Bw}z{mmﬁcﬁ} <05

From the above, it is fairly trivial to specify the full model for a simple, two-person

interaction. Combining [5] and [6] with [9] above, and making time explicit, we obtain the

following:
o
8”—' 0, =05
H]'rq[{-l_ll'd‘l';'- - .
[10] &y =1 ~ 8. (1-C) . B, =0,(prior)
# g, =05
B (E=Cy+(I-E) '
_ GriC 8, =05
&, (C-E)+E )
[11] 8,, = 6. (1-C) o Bap g =0, prior)
S - 6., <05
@, (E—C)y+(1-E)

In (Butts, 1997), it was assumed thar the relation C=F was universally trog among actors and
that each actor had the same values for C and E. In the analysis which follows, the second
condition will be relaxed: the first will he rerained, however. While it is possible that, in some
real-world cases, E i greater than C, this seems unlikely to be a common occurrence (recall that
C<E implies that actors’ signals carry an inverted meuning}’. The dynamics of the beliel system
aher radically at C=E; exploration of this region of parameter space is left as a task for future
research,

The above formulation describes the special case in which two actors engage each other
repeatedly and exclusively; as ane might expect, this is somewhat removed from the types of real
world scenarios in which we are interested. In Victor's account, participants in the panic event
exchanged information with alters who shared relations of one sort or another. Typically, these
relutions have been conceived of as social networks {Wasserman and Faust, [994), (Scott, 1991)
in which actors are embedded (Granovetter, 1985). As conduits for information and influence

{Brass, 1984), (Burt, 1992}, (Granovetter, 1982), network connections enahle actors Lo coordinate
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cffort;, presumably, this may be the case even when such coordination is neither desired, nor even
fully understood by its participants. For this reason, the basic BBFM model was extended to deal
with larger sets ol actors, as described below.

Following convention in the field of social nelwark analysis (Wasserman and Faust ( 1994),
Scott (1991)), we shall here treat communication networks as sociomatrices (M) such that M;;=1
iff § sends signals to 7, and M;; =0 otherwise. While these communication matrices may be more
or less symmetric, they are not required to be so: this allows for the representation “broadcast™
agents, who influence alters from whoim they receive no signals® As with (Butts, 1997), we shall
here continue to take social structure as exogenous and static; while real siructures are unlikely to
tullill either condition, it seems fairly reasonable to make this approximation for the short time
spans (hours, days, or perhaps a few weeks) which characterize panic phenomens”’, Future
relaxation of this requirement could permit investigation of the institutional legacy of panic
events (Goode and Ben-Yehuda, 1994), but will require the integration of the BBFM with a
model of structural change over time (e.g., Carley (1991}).

In a simple. dyadic analysis, the low dimensionality of the BRFM permits a detailed analylic
treatment (Butts, 1997). In the more general nerwerk case, by contrast, the system of interest is
ol dimension N {where N is number of actors): similarly, the particular coupling of these N
equations is dependent on the structure the adjacency matrix M. Given the nature of such a
lurge, nonlinear system, it is sensible to wiilize simulation methods to understand its behavior.
Here. we will follow the form of the analysis found in (Buus, 1997); using monte carlo methods,
we will sample across the space of configurations to attempt to uncover general rules governing

the way in which panic is produced under the BBFM.

" An exception might be found in the arena of political claimsmaking, in which actors may be motivaied (o develop
beliets which are in direct oppesition to thuse expressed by certain alters,

* Broadcast actors are extremely versatile, being able v represent not only opinion leaders and media sources. bul
also technoligies (Carley, 1995). For our present purposes, however, we shall tend fo interpret such actoss in terms
of human beings,
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3. Extending the BBFM

In order 10 model] the emergence and dissipation of panic within a population of actors, it is
hecessary 10 extend the basic framework described above to account for two important sets of
issues: novel information and saliency.

The original formulation of the BBFM was intended to demonstrate comvergence in a closed
system; aclual social systems, however, are rarely closed with respect to novel information. As
persons interact with the world at large, they necessarily make observations and draw inferences.
Whether ordered or arbitrary, such new information affects bath the observer { by altering his or
her beliefs) and the social system as a whole. Tao represent this flow of novel information into
the system, we assume that actors receive signals from the environment as well as from each
other. These signals appear at a fixed rale 8, and are assumed to be “helief” signals with
probability Sy (otherwise. they represent “disbelief™). External signals are randomly allocated o
actors in a uniform fashion: thus, each actor has an equal probability of receiving any given
signal, and actors may receive more than one signal during a given time period'”. This last
feature of the signal allocation process is, as we shall see, an important one: due to the number of
incoming signals resulting from incoming communications, it is easy for external information 1o
be drowned out by social influence.

In addition to the problem of new infarmation. it is important to address the issue of saliency
in actor communication. The original formulation of the BREM implicitly assumed that the
panic’s focal event was salient to all actors in all cases: that 15, all actors constantly
communicated (in parallel) with all other actors o whom they were connecled regarding the
controversial issue. While this was not unreasonable for » group in the throes of panic, our

current task is to show how panic emerges in the first place. Given that the timing of sacial

0 Empirical findings scem o indicate considerable stability in a variely of networks aver lime periods which are
longer than those considered here (e.g., Murgan et al (1997), Wellman et al { 1997}, Suitor and Kectan (194977,

" Hence, the expeeted number of signals per actor is SN, and the probability of receiving a given number of signals
is binomially discribured,
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interactions is known to affect system-level outcomes in a number of cases (e.g., (Macy, 1991),
(Granovetter, 1978)). this requires us to consider alternatives to the constant saliency rule,
While many possible solutions to the saliency problem might be proposed, we shall here
comsider four stylized models, each of which reflects a somewhat different set of theoretical
assumplions regarding actor behavior. By comparing results across these sub-models, we may
better understand how they affect the evolution of belief: in particular, this should provide

evidence as to whether or not certain rules are required in order to produce panic.

Constant Excitation

Under the constant excitation rule, all actors will interact with all ather actors to whom thev
are connected at each time step. These interactions are assumed Lo take place in parallel, and
actors are limited o one such set of interactions per time step. This is the “classic™ BBFM as
presented in (Butts, 1997), and assumes thal the focal event of the panic is salient to all actors at
all times.
Signal Excitation

Unlike the constant excitation rule, signal excitation causes aclors 1o communicate with
others only when they receive new information, In particular, after receiving a new signal from
the environment and updating his or her beliel, un actor will immediately send a signal (using Lhe
standard rule given in [9]) to all actors t whem he or she has an oulgoing tie. Because of this, a
given actor may send and/or receive multiple signals (or no signals) during the course of a single
tume siep, and these signals are resolved serially. The signal excitation rule, then, corresponds Lo
the notion that actors regard the focal event of the panie as salient only when receiving an
external signal regarding that event: olherwise, they do net trouble their neighbors with their
OPINIoNS,
Belief Change Excitation

As we have seen, one way of approaching the saliency issue is by assuming that saliency is

always present; another way is by assuming that the focal event is salient only when new
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information from the environment is received, Yet another possibility in this vein is that it is not
the presence of new information which is important per se, but rather the presence of a change in
orientation of belief. The belief change excitation rule implements this idea by first applying
exiernal information, and then by causing actors to communicate with alters if and only if their
beliel has been altered with respect to the 0.5 probability threshold (e.g., from 0.3 to 0.6) and if
they have not already communicated during the current time step. These communications are
both serial and recursive: that 15, actors whose heliefs have not crossed the 0.5 threshold prior to
the implementation of the rule may be activated by incoming signals from other actors, and will
at that point communicate with their own alters. When all actors with changed beliefs have
comimunicated, a stability condition has been achieved. Af this point. the rule terminates for the
current time step,
Signal Transfer

All of the above rules, following the original BBFM framework, utilize the standard signaling
tule given in [9] by which actors” signals are determined by their beliefs. An alternative
conception, however, is that actors may not relay their own apinions to other aclors, bul instead
may simply repeat what they have heard from others. This raises an important question,
hewever: what mechanism will determine when a message is relayed and when it is not?
Clearly, if all signals are transferred, then the presence of cycles within the network would result
in & never-ending transfer of any signals received by any actors; this seems a bit unreasonahle,
given that we do not observe such behaviors in the real world. A more realistic assumption is
that actors pass on received signals with some probability, otherwise failing to transfer the
mformation. For our purposes, we shall assume that the probability of transfer is proportional to
the acter's subjective prohability of the signal’s validity: in other words, the signal is passed on
with a probability equal to the actor’s current belief, B {or 1-8, if the signal is a “disbeliel” signal)
multiplied by some probability range and added to a minimum transfer probability. This assumes

that actors tend to share what they regard as reliable information with others, and that they
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likewise tend to block signals which they regard as unlikely to be “correct,” but that actors have

in all cases a certain minimurm and maximum probability of signal transfer,

Given the original BBFM, the presence of external signals, and our four saliency rules, we
are lett with a series of possible model varianis with which to explore the generation of panic
within populations. Due to the obvious complexity of the problem, we turn to simulation as a
means of studying model behavior across conditions; in particular, we shall seek to implement a

wirtual experiment to conduct our exploration.

4. Generating Panic: A Virtual Experiment

Just as it is often uscful to study the behavior of human subjects under controlled conditions,
s0 too 1s it useful to examine the behavior of & computational model across multiple values of its
parameters, In the present case, we shall employ such a virtual experiment in order to draw
inferences regarding the factors which encourage or discourage the formation aof beliel panics
under the Bayesiun Belief Feedback Model. Like any other experiment, this virtual experiment
requires attention to issues of measurement, experimental design, and data analysis: we shall

proceed, then, to treat these matters in turn.

4.1 Measuring Panic

In onder 1o assess the manner in which the various models under study generate panic within
populations, it is first necessary 1o specify a concrete means of measuring panic. This is a non-
trivial task: panic, as defined previously, is a relatively spontaneous, transient phenomenon
which occurs in the presence of (but which is distinet from) background noise. Further
complications are introduced by the socio-spatial nature of the phenomenon; when panics occur

in large, complex social networks. it may be extremely difficult to verify their existence simply
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due to the amount of computation required to search the entire network for regions of minority
opinion (and to track their evolution over time). Because of these difficulties, a simplified
approach is here employed which renders measurable certain key aspects of the phenomencn and
studies these across a range of models. These results are then compared with qualitative
investigatioms o model behavior under more restricted circumstances. in order to construct an
overall picture of model behavior. While this approach is somewhat less than ideal, it
nevertheless offers an initial means of studying a {(currently) fairly poorly-specified phenomenon
in a formal manner,

As noted earlier, panic is here considered to be the result of an influence process which
causes the emergence and subsequent dissolution of regions of minority opinion in the midst of
an otherwisc stable majority. Presumably, this influence process is itself triggered by the
introduction of novel information from the environment, such that <ome number of individials
become persuaded to change their views and then proceed 1o influence others. While influence
from external sources is theoretically important as an initiating condition, then, it is not part of
the panic itself; any measure of panic, then, must “edit out” these environmental influcnces.
Similurly, the presence of minotity opinion per se is not evidence of panic as we have defined it.
Stable minority regions are quite possible under the Bayesian Belief Feedback Model (among
others), but are nol transient phenomena and must be omilied from our measurements, Putting
all of this together, then, we find that measuring panic means {in some sense. at least) assessing a
minority influence process while controlling both on external information and the presence of
stable regions of opinion.

The measure suggested here as one means of satisfying the above conditions is the belicf

direction change index, Cyp, defined as the population sum
N
2] Cu(t)=31(6,,.,.6,,)

where the disectional influence function T(8;, B is given by
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I iff,, <058, >05:°

o S

(3] w8, .8, =4-1 ifé, =058 <051*

0 atherwise

and 1* represents the logical statement that actor s belief change is due to a social influence
process'' (as opposed to observation of environmental signals). Thus, Cpp indicates the net
effect of social influence on the direction of belief in the population berween time periods,
Because of this, it is insensitive to both environmental influences (which are discounted) and to
the presence of stahle groups (which do not contribute to change in beliel). Panics, on the other
hand. should cause a ¢lear change in the population's Cgyp, seore, which can easily be measurad
and compared ucross experimental conditions.

One means of studying the presence of panic within various models is to examine the
evolution of the Cpp measure over time; another, by contrast, is to assemble suimmmary statistics
on Cgp vilues and Lo relate these to experimental conditions. 1t is this approach which will be
pursued here. In particular, we shall be concerned with the mean and spread (as measured by the
standard deviation) of the Cypy, a5 well as the number of time steps in which the absolute value of
the Cyp exceeded some critical threshold. The rationale for this last is clear; insofar as they
represent episodes of unusually strong social influence, panics will yield Cyp values which are
much higher than is typical for the population (which is likely to have some background belief
change due to the periodic “waffling” of majority nodes who are exposced to unusually high
numbers of minority signals from the environment). As a simple crilerion for a threshold value,
a difference of two standard deviations from the population mean value is here considered to be
sufficiently large in magnitude to suggest the presence of panic, This may be overly
conservative, bul provides us with fairly strong evidence for the phenomenon in question. Given
the degree of ambiguity present in our waorking definition of panic, this would seem to be a

pradent fashion in which to proceed.

" Due to the nature of the extended Buayesian Belief Feedback Model. it is gencrally possible w separate sacial from
environmental influznces. This becomes somewhat problematic under the signal transfer model; the specilic
implications are discussed below,
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4.2 Experimental Design

Having established a set ol measurements which allow for the detection of panic, we now
turn 1o the question of experimental design. As always, we would like to consider as wide a
range of possible values across as wide a range of relevant variables as possible; unfortunately,
computational constraints limit the number of conditions which we can study, and the number of
teplicale observations we can perform per condition. With this in mind, we shall here limit
ourselves to consideration of six experimental variables: saliency model, minimum degree,
network configuration, signal rate, minimum signal transfer probability (signal transfer saliency
madel only), and maximum signal transfer prebability (likewise). Population size and length of
model runs (to name two possible variables) will be held constant: as we shall see. this is not a
terribly crippling limitation.

The four saliency models which will be used here have been described above; their present
implementation follows that description, Signal rate, which controls the number of {(randomly
allocated) external signals per time step, is allowed to vary from a low value of 50 (an average of
one per four actors per round) to 200 {an average of one per actor per round). Obviously, some
actors may receive multiple signals in a given round. Tn the present implementation, external
signals are presumed to be “beliel™ or “dishelief” oriented with equal probability: the results
which follow. then, do not emerge from systematic signal bias. Transfer probabilities for the
signal transfer model are set such that both a minimum of 0.0 and a maximurm of 1.0 are
possible, with various limitations in between. This affects both the probability of signal transfer
per se and alsa the degree to which an actors® beliefs can “filter” his or her signals.

As noted previously, numerous researchers (e.g., (Victor, 1993}, (Hicks, 1991)) have
suggested that social network density plays an inportant role in the development of panic. In
particular, a tendeney of panics to oceor in tight-knit, highly inbred subgroups has been pesited,

presumably due to the redundancy of information provided by alters (Granoveller, 1973). In

Page 13



order Lo examine this hvpothesis, two basic network structures are considered here: o *flar”
structure in which actors have an equal prabability of heing tied 1o any given alter, and a “bridged
subgroup” structure in which actors are divided into highly interconnected subgroups with
bridging ties distributed randomly among all actors. In each case, the base degree (number of
alters an ego may nominate) of each actor is controlled exogenously and is fixed across actors,
though the actual degree may be higher due to nomination of ego by multiple alters. Thus, while
we here sample across the space of passible nerworks, we restrict ourselves to cerlain structural
forms which are of theorerical interest.

The combined experimental conditions for the assessment of the BBFM are given in Tahle |
below. Note that each condition is replicated five times, and that each simulation is executed for
1100 time steps with a population of 200. This does not change across conditions. After
execution, each series of Cppy values is collapsed to find the mean Cypp and the panic index as
described above. Analysis of the data which results, then, should allow us 1o draw general

inferences regarding the behavior of the Bayesian Belief Feedback Madel,
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Table 1: Design for the Virtual Experiment

Treatment Values
Population Size 200
Simulation Time 1100 Time Steps"?
Saliency Constant Excitation, Signal Excitation, Change
Excitation, Signal Transfer
Newwork Configuration Flat, Bridged Clusters
Minimum Degree 4.8 12
Signal Rate S0, 100, 200

Minimum Transier Probability  0.0,0.1,0.2
Maximum Transfer Probability 0.5, 0.8, 1.0

Total Conditions [{EE]

Replications per Condition 5

Total Observations 3240

Limitations Due to compulational constraints, Signal

Transfer model experiments included only
degrees 4 und 8 of the flat network condition,
thus reducing the actual number of
observations to 2590. For the same reason,
depth of recursion in the signal transfer sub-
model was restricted to 5 hops.

4.3 Data Analysis

As indicated above, we are interested in assessing, for the present model, the degree 1o which
various experimental rreatments influence the beliel direction change index, Cgp. In particular,
we would like to assess the effects of these parameters on the number of simulation time steps in
which the Cgy is more than two standard deviations away from the mean, divided by the total
number of time steps (the “panic index.” or rate of presumed panic activity). A number of
methodological questions remuin, however, which must be resolved prior to undertaking such an
analysis,

The first of these questions pertains to the *window” over which Cyp values are 1o be
sampled. This amounts to the issue of stationarity of the present model'": if the model is in fact

O which the first 100 are removed in order 1o avoid wansient effects: see helow.,

"t should be noted that we are ot aftempling a ime series analysis of the Cyp index, as our goal is 1w predict rates
of occurrence aeross time rather than particular values of a time-dependent variable al particular times. The methods
utilized here would be inappropriate for such a task,
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stationary, then out particular choice of window will be fairly unimportant. If the model is not
stationary, however, additional complications arise. Consider, for instance, the possibility that
Cpgp (or ils variance) changes systematically over time; if this is in fact the case, then any
prediction of the panic index will be biased by the particular interval over which the sample is
taken. Is this in fact a problem for the present experiment? The answer, as it turns out, is no.
Figure | shows the Cyyy values produced by a single run of the Bayesian Beliel Feedhuck Model;
as can be seen, these values become quile stationary after a brief initial period. Systematic
examination of moltiple runs across multiple conditions' reveals this pattern to be a stahle
tearure of the model's behavior. As s result, it was decided to remove the first 100 time steps

from the sampling window', leaving a sample of 1000 time steps for euch replication.

Ceo Over Time for Signal Excitation Model, Flat Network, Degree 4, Signal
Rate 50

025

0.z [

Time

Figure 1: A Sample Experimental Run

" Al combinations of saliency model, netwoek tvpe, and degree Leeatments emploved in this experiment were
examined: no deviation from the indicated pattern was found.

" Mo obvivus transient behavior was observed beyond 70 time steps under any experimental conditions, with most
conditions stabilixing in under 13 steps.
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Having dispensed with the guestion of stationarity, we are now in a position to examine the
Cyp index, and likewise our index of panic behavior. This raises our second methodological
Yuestion: how are these variables distributed? Figures 2 and 3, below, give the distributions of
the mean Cpp and the panic index for our experimental data. As can be seen, neither variable is
normally distributed; both, in fact, are heavily positively skewed. This positive skew suggests
that panic events’ frequency is inversely related to their size: a very large number of small panics
oceur for every massive event', This general pattern is a very common finding across a wide
range of systems, measures, and phenomena (including the incidence of earthquakes (Sarnetie
and Sornette, 1989, evolution of cellular automata (Langton, 19900, size distributions of firms
(Simon, 1995), and frequency of word use (Zipf, 1949)), and is often considered o be one of
several properties of systems in the complex regime. While the importance of this finding here
should not be overstated. its consistency with previous work on qualitatively similar phenomena
bears mention. Regardless of its importance or irrelevance, however, this distribution of values
is not well-suited to standard regression techniques. In order 1o avoid the difficulties associated
with fitting lincar moedels to such data, therefore, we shall here employ a standard natural log
trans[ormation to remove skew from the index values. (While several alternatives were tried.
including root transformations, the natural logarithm was found to result both in the best
distribution and in the most reasonable overall fit.) All treatment of these variables henceforth

will consider this transformed data'”

" It should be emphasized that this is an inrerprefation of the result, An alternative possibility is that & heavily
skewed relatianship exists betwesn the frequeney of panic events within a condition and the frequency of ihat
UCCORTCNCE ACTOSS conditicns. Due ta the nature of the panic index, this cannot be decided by the index alanc.

7 Similar analyscs carried out on the raw data showed an overall extremely poor model fit. with patterned residuals
and R =<0 1,
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Histogram of Ceo Index
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Figure 2: Distribution of Mean Cyp Values

Figure 3: Distribution of the Panie Index

Alter verifying the reasonability of the panic index, and after adjusting the index to remove
positive skew, we may now attempt to fit a Linear model to the transformed data, While it is
naturally quite possible (perhaps even probable) that the underlying effects being studied are not
in fact (log) linear, lincar regression techniques are nevertheless effective at revealing general
trends in data such as that considered here, In the absence of a well-specified theory of nonlinear
effects, likewise, the fitting of a linear model can serve as a reasonable (and conservative) initial
approach to date modeling. Qualitative results from these analyses, then, can be used to guide
further investigation,

The first model we shall use Lo fit the panic index data is also the largest: here, we regress the

logarithm of the panic index values on the natural logs of the experimental treatment variables,
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and on the full set of interactions hetween saliency sub-models and other conditions'®, By
attempting to fit such a comprehensive model, we are able to control for effects both at the sub-
madel {interaction term) and full-model level: the results of this regression are given in Table 2,
As can be inferred from the modest R, the fit for this model is less than excellent, While it is
able to explain approximately one third of the variance in the panic index, its residual standard
error is reasonably high and patterning was observed in the model’s residuals. This is not
unexpected, given the nature of the data in question: even the aggregate behavior of a highly
nonlinear system is not always amenable to simple linear prediction. Nevertheless, the model
below has a great deal to tell us about the qualitative effects of the various experimental
treatments. Saliency sub-models, for instance, had significant overall effects on the panic rating.
Constant exciration and change excitation, all other things being equal, were found to have a
negative effect on the panic index. while signal based excitation increased it. Signal rate had an
overall positive effect on the panic index, while, interestingly enough, network configuration and
minimum degree appeared not to; this picture becomes more complicated, however, when one
considers the interactions between saliency model and other treatment variables. Minimum
degree, for instance, while insignificant alone, has a strong negative effect in conjunction with
the signal excitation model {suggesting that this model is more sensitive to changes in network
density than the others). Signal rate, similarly, produced a weak negative effect with signal
excitation but reversed itself to cause a significant positive effect under constant excitation!
Signal transfer maximum and minimum probabilities (which. because they were set 1o 0 for al]
other saliency models, also acted as dummy varizbles for the saliency model itself) were also
multidirectional in effect, suggesting that probability thresholds which limited actors’ ability to

invoke their own beliefs in passing on information increased the panic index'”. Clearly, our

" The statistical analyscs described here were performed using S-Plus,

" An alternative mterpretation of this finding is that certain probahilities of signal transter (near 0.5) are more
productive of panie than others. While this is possible, informal experimentation suggests that the other
interpretation is more likely,
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intuition that different saliency models behave in very different ways 1s borne out even by these

simple results.

Table 2: Regression of log{Panic Index + 1) on Experimental Treatments™

Value Std. Error t value Pri=lil)
[Intereept) 0.0053 0.0367 01438 0.8857
log(ConExcite + 1} 1119 0.0548 -2.0417 00413
logiSigExcite + 1) (L2266 0.0548 4.1350 0.0000
logiChgExcite + 1) -0.1006 0.0548 -1.8353 0.0666
lagiNetType + 1) 0.0017 0.0029 0.5958 1.5514
logiMinDegree + 1) -0.0023 0.0122 -0, 1896 01,8490
logiSigRate + 1) 0.0107 (L0043 24496 0.0144
log{ TransPMin + 1) 01387 00317 43818 0.0000
log{TransPMax + 1} -0.0879 0.0190 -4.6334 00,0000
log{Conbacite*MNel Type + 1) -0.0039 0.0041 -0.9650 0,336
Tog(SigExcile*NetType + 1) L0020 (L0041 -0.4898 0.6243
lugiConbacite*MinDegree + 1) -0.0094 00125 -0.7523 04519
logiSigExcite*MinDegree + ) -1.0583 0.0125 -4 6666 0.0000
log(ChgExcite*MinDegree + 1) 0.0190 0.0125 1.5227 0.1280
loglConExcite*SigRate + 1) 0.0143 0.0047 3.0518 0.0023
log(Sigkxcite*SigRate + 1) -0.0095 0.0047 -2.0205 0.0434
log{ChgExcite*SigRate + 1) -0.0012 0.0047 -0.2579 0.7963

Residual standard error: 0.02829 on 2572 degrees of frecdom
Multiple R-Squared: 0.3345
F-statistic: 0.8 on 16 and 2572 degrees of freedom, the p-value is O

While the full model presented in Table 2 highlights the mest robust effects of experimental
treatments on the panic index, it does not represent an optimal fit to the data. As a result, some
varunce inflation on coefDicient estimates may have been present, undermining the signilicance
ol weaker prcdictur:;: " Ta compensate for this, three alternative methods were used to select
best-fit linear models from the abave set of predictive variables. These methods - stepwise
madel selection (IF entry/exit threshold of 2.0), leaps and bounds using Mallow’s C,, and leaps

and bounds vsing adjusted R - produced somewhal reduced models with more reliable estimates

' Beeause ul singularitics, redundant vanables and interactions (such as SigTrans) were remaoved from this and the
following regression models.

! One source of such variance inflation is multicollincarity, While our experimental design sysiematically
eliminates the possibility of mulicollineary for most variables, this is not the case for interaction effects; the

presence of a large number of intcmetions in our initial model may have adversely affected the cstimation of their
|_'nmpnncnls tand vice \-'crsa}.
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of regressor effects and better-behaved residuals, although no models were identified which
resulted in a truly optimal fit.

The first of the reduced models to be considered was produced by the stepwise selection
procedure., and is given in Table 3. This model differs from that given above in several respects.
First, und perhaps most importantly, the model chosen by the stepwise procedure omits
independent saliency effects, with the exception of the signal excitation model which continues
to have a strong positive effect on the panic index. Minimum degree, by contrast, is not only
present in this model but also highly significant, acting overall to increase panic while reducing it
under the constant and signal excitation models. A fairly similar effect may be observed [or the
external signal rate. which as before produces different effects for different models, this time

significantly so for the belief change excitation model.

Table 3; Stepwise-Selected Model of log(Panic Index)
Yalue  Std. Error  { value Pri=t)

(Intercepl) 00658 0.0068 -0,7082 0.0000
log{SipExcite + 1) 0.3290 0.0172 19,0785 (.0000
logiMinDegree + 1} 0.0170 0.0K23 7.4978 L0000
log{SigRate + 1) 0.0172 0.0024 7.2923 0.0000
logi TransPMin + 1) 0.1522 0.0306 4.9683 0.0000
log{ TransPMax = 1) -0.0751 L0168 -4.4774 0.0000
logiConExcite * MinDegree + 1) -0.0297 00025 -10.1532 0.0000
logiSigExcite * MinDegree + 1) -0.0776 01.0034 -22 8658 0.0000
log(ConExeite * SigRate + 1) 0.0067 (L0024 27482 0.0060
log{SigExcite * SigRate + ) -0.0161 0.0030 -5.4380 0.0000
logiChgExcite * SigRate + 1) -0.0075 0.0022 -3.4169 0.0006

Residual standard error: 0.02828 on 2578 degrees of freedom
Multiple R-Squared: 0.3331
_Festatistic: 128.8 on 10 and 2578 degrees of freedom, the p-value is 0

The second reduced model to be considered was identified by # leaps and bounds procedure
which attempted 1o optimize on various goodness of fit statistics. In particular, two different
measures - Mallow’s Cp and the adjusted R” - were cmployed in an attempt to find an optimal
model. As it happened, both scarches identified the same model, which had both the minimum

value of C; (8.120117) and the maximum adjusted R” (33.1379). This model is given in Table
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4, below. One notable dilference hetween this and the preceding model lies in the selection of
variahles for inclusion: this model explicitly includes both signal based excitation and change
based excitation, and drops the main effect for minimum degree in exchange for an cxtra
interaction term (losing the interaction belween signal rate and the change based excitation
saliency model in the process). Interpretively, this allows us to sec the strong negative effect of
the continuous and change based excitation models on the panic index (effects which were noted
in the first model) and permits us to note that the positive effect of minimum degree seen in the
previous mode] appears constrained in practice to the change excitation model. Effects present in
both previous models are present here and consistent (such as the ulready noted signal transfer
variables), and those which did not attain significunce elsewhere (such as network type) continue

ta-be left out: the overall picture, then, is consistent with previous madels, despite the superficial

differences,
Table 4: Optimal Model By Leaps and Bounds Procedure

Value  Sid.Error tvalue  Prisit)
{Intercept) 0.0051 0013l 0.3891 0.6972
log{ConExcite = 1) -0.1127 00237 -4 1657 (10000
log(Sighixcite + 1) 0.2267 D.0237 9.3827 0.0000
log(ChgExeite + 1) -0.1012 0.0174 =5.6761  0.0000
log(SigRate + 1) 0.0097 0.0016 5.49935 1.0000
log{ TransPMin + 1) 01414 0.0304 46472 00,0000
logi TransPMux + 1) -0.0874 0.0182 6274 0.0000

log(ConBxeite * MinDegree + 1) -0.0117 0.0025 LA0432 00000
log(SigExcite * MinDegree + 1) -0.0606 0.0025 240187 QL0000
logiChgExcite * MinDegree + 1) 00167 0.0025 60.61800  0.0000
log(ConExeite * SigRate + 13 0.0153 0.0024 6.3652 0.0000
log(SigExcite * SigRate + 1) -0.0083 0.0024 -3.5558 00004
Residual standard error: 0.02827 on 2577 degrees of freedom

Multiple B-Sgquared: 033472

Festutistic: 117.6 on 11 and 2577 degrees of freedom. the p-value is 0

5. Discussion
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By comparing and contrasting the resulis obtained by the three linear models fited above, it
is possible to form some inferences regarding the overall behavior of the BBFM in producing
panic within populations. First, and in accordance with our initial intuition on the subject, it
would seem that the model of saliency which is used to govern actor communication significantly
affects the development of panic. Overall, continuous and change based excitation models
appear to reduce propensities towards panic, while the signal based cxeitation model encourages
it. These general tendencies are somewhat misleading, however: as different saliency models
respond differently to variables such as minimum degree (here, a proxy for density) and the rate
at which novel signals are introduced from the external environment, the actual rate of panic will
greatly depend on the particular condition in question. On the other hand, some (albeit puzzling)
constants appear clearly from the data. Network structure, for instance, is uniformly non-
predictive both as a main effect and within particular models, Of course, many aspects of the
sociul structure are determined by the minimum degree (which s predictive) and theoretically by
size {which is fixed in this case), and it could casily be argued thal insofar as the various saliency
models reflect different types of social relations that they too are structural. _yet, the failure of
bridged clusters to produce higher levels of panic (as implied by Granovetter's information
redundancy arguments regarding weak ties, and by ethnographic accounts such as those of Victor
(1993) and Hicks (1991)) is troubling. Is it actually the case that subgroup configuration is
irrelevant to the generation of panics in populations? Or is there simply some aspect of the way
in which panics are measured here which hides the true relationship? It may be the case that such
effects are only pertinent to the signal transfer model (for which sufficient data was not available
Lo permit their estimation), but this seems rather counterintuitive in light of the communication
which goes on under all saliency models. This is a matter for future research, but the question
would definitely seem (o be an important one.

Another issue regarding the present results concerns their general inability to account for the
majority of the variance in the model’s hehavior. Given the degree of structure observed in the

residuals of the above regressions, it would seem that something is going on; we are nol simply
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facing a high-variance phenomenon. Whatever is happening, evidently, is either too subtle to be
captured via our rather blunt instruments, or else depends upon some other aspect of the
experimental condition which was not controlled for. Considering the contrals which were in
place, such an aspect could well be structural...although il is not obvions what structural variable
could govern the results independently of both subgroup configuration and minimum degree. In
either case. lurther systemaric study will be needed to explain the behavior of the panic index

under the Bayesian Belief Feedback Model.

6. Conclusions

Beginning with a simple model of influence and communication, we have here constructed a
general framewaork for the simulation and measurement of the emergence of panic phenomena
within structured populations of actors. The panics which develop within this framework exhibit
distributicnal properties which are Lypical of complex phenomena, and their incidence can be
predicted 1o some degree using simple linear models. The particular assumptions made
regarding actor communication and issue saliency have strong effects on the emergence of panic,
and interact with situational clements such as network density and the introduction of
environmental signals in non-trivial ways, By contrast, features such as the presence or absence
of bridged subgroups within the population’s social network appear to have no effect on panic,
and do not interact with other variables to produce significant effects.

While the present work utilizes a [airly general measure of panic, this measure is limited in
its ability to fully represent our sociological intuitions regarding the term. Further research is
needed to uncover better ways of operationalizing the definition of panic itself, and of discerning
the properlies of such measures. Likewise, the notion of “panic” considered here is very limited -
only panics in belief are included - leaving open the possibility of a wide array of complementary

rescarch on panics of other sorts. Though relatively amenable to formal study and treated
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extensively by ethnographers, this area is currently underinvestigated by computational and

mathematical sociologists; it is hoped that this work will help rectily this unfortunate situation.
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