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1. Introduction

N
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In this chapter, we show how artificial intelligence (Al) can be applied to
the study of organizations. Specificallv, we construct an Al model of a
small organization in which intelligent agents communicate and co-
operate to accomplish a task. The task involves filling orders by retrieving
items stored at various locations in a warehouse. Each agent is represented
on its own computer using a sophisticated software architecture (called
Soar) that is capable of serving as a basis for general intelligence and
learning from experience. To frame this research we focus on this ques- o
tion: do the communication and memory capabilities of the agent affect
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which coordination scheme is most effective? We find that increasing

agents' capabilities can, under certain conditions, actually degrade organiza-
tional performance.

1.1 Plural-Soar: a prolegomenon to artificial agents and Organizational
behavior

Organizations are comprised of intelligent people who have a native
capability to learn and solve problems unrelated to their organizational
role. Organizations direct individuals' specific problem-solving behavior
b_\'.providing them with certain tasks, and hence, goals to achieve within
those organizational roles. Further, organizations restrict what capabilities
an individual should or can employ by limiting the number of "accep-
table" behaviors in any task related situation either through (1)
establishing a formal or informal norm of performance within the role, or
(2) inhibiting the requisite support to apply those behaviors effectively. As
a consequence of such restrictions, the match between skills and job re-
quirements within a particular organizational structure and coordination
scheme may be insufficient to achieve a maximally efficient organization.
Examining the three-way relationship between individual's skills, job
requirements, and the schemes for coordinating individuals within the
organization requires a micro-view of the organization. Such micro-level
analyses have traditionally been carried out using experimental subjects

preferences for doing certain tasks in certain ways; they also have certain
skills that are difficult to control, let alone eliminate. Artificial agents,
however, need suffer no such handicap. Indeed, such agents can be "built"
to the specification needed for the experiment. Consequently, it should be
possible to develop a micro-level theory of organizations using artificial
agents. ' '

Such artificial agents, however, are often designed to do a single
specific task, such as playing chess. Yet, in human organizations the agents
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tasks. This suggests that to develop micro-level organizational theories we
will need artificial agents with general intelligence. Our understanding of
individual cognition now permits extensions beyond specific models of a
particular task, such as chess machines, to models of general intelligence.
Such models can be used to replicate fundamental methods and delibera-
tion procedures independent of specific task requirements. One such
candidate is Soar (Laird, Newell, and Rosenbloom, 1987; Laird,
Rosenbloom, and Newell, 1986a: Laird, Rosenbloom, and Newell, 1986b).
Using models such as Soar, it should now be possible to develop micro-
level theories of organizational behavior, which is our ultimate goal.

In this chapter, however, our aim is more modest and we simply
present a technique for examining at the micro-level the three-way
relationship between individuals' skills, job requirements, and the coor-
dination scheme. This technique uses a set of artificial agents each realized
on its own machine, in an organization, engaged in a distributed task. We
refer to the resulting system as Plural-Soar. We will show that Plural-Soar
can be used to investigate the joint impact of organizational coordination
and people-skills on organizational efficiency. This chapter is a first step in
the development of a truly cognitive social theory of organizational be-
havior. Our goal in this chapter is to report on the viability of using an
organization of independently functioning artificial social agents, which
are generally intelligent and not specifically designed for the task in which
they are engaged, to perform a distributed decision-making task. Our pur-
pose here is to demonstrate that artificial cognitive agents make micro-
level social theory possible, not to make theoretical predictions.

We use the Warehouse Task in which the agents must fill a set of
orders sent to the warehouse by locating the requested items within the
warehouse. We use this task, not because we are concerned with
warehouses, or the efficient handling of orders, but because it is a readily
understood and easily modelable task that nevertheless contains sufficierit
complexity to examine a variety of social and group decision-making be-
haviors. We model each of the agents using Soar, which is an Al software
architecture capable of learning from experience (Laird, Newell, and
Rosenbloom, 1987). Although the agent-models are somewhat simplified,
Plural-Soar demonstrates that a set of networked computers, each running
a Soar model of an intelligent agent, can effectively perform a small, but
potentially realistic task of retrieving items from a warehouse. We
demonstrate that both degradation and improvement in organizational
performance can occur as agents change their set of skills. Necessarily, we
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view these results as highly context-specific, so they should not be in-
terpreted as providing guidelines to the conditions under which organiza-
tions perform in particular ways. Rather, the result should be interpreted
as the first step toward researching micro-leve] organizational theories
through the simulation of multiple intelligent agents.

To lav the groundwork for even this first step, we list in Table 1 a set of

of capabilities is tailored to the warehouse task and should be taken as
exemplary, but not as exhaustive (for a more complete discussion of the
social agent see Carley, and Newell 1990). A functioning organizational
agent must demonstrate six basic capabilities, The agent must be able to (1)
perceive the environment and take action; (2) remember aspects of the
perceived environment; (3) follow instructions; (4) analvze the task with
which it is faced and determine a course of action; (5) communicate with
other agents in a variety of wavs; and (6) analyze the social environment
with which it is faced. AJ] these various capabilities are affected by the
agents cognitive architecture and by the agents socjal position (i.e., the
agent's membership in the organization, who the agent knows, what
groups the agent is a member of, and so forth). Comimunicating with other
agents includes both the stvle and mode of communication. Analyzing the
social environment would include both modeling other agents and or-
ganizations and then acting accordingly. Such actions might include acting
in accordance with norms and cultural restrictions. We will use these
required capabilities as a guideline for examining the comprehensiveness
of the agents we examine in this chapter.

If Al models like Soar are sufficient to deseribe the social agent (and
hence human general intelligence), they should be able to account for all
related forms of goal-oriented deliberation, ihcluding group and organiza-
tional behavior. Since Organizational concepts such as "coordination”,
‘communication”, and "structure" naturally arise when two or more
intelligent agents interact to achieve a goal, we can expect to construct
models of organizations by weaving together models of generally intel-
ligent individual agents. This is the approach we take in thig chapter.
Ultimately, if this approach is successful, we will not only have a robust
mode] of group behavior, but a strong theoretical basis for the fundamen-
tal explanation of organizational behavior.

L) et e e
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Table 1: Required capabilities of social agent

Perception and Action +
Perceives the environment
Physically manipulates objects
Moves self to different locations

Memory
Location
People
Task

Instruction
Can be incomplete

Task Analysis
Decomposes task
Coordinates subtasks for self to do

Communication Skills b
Asks questions/Provides answers ;
Gives commands/Receives commands
Talks to a single individual/Talks o a group

Social Analysis
Models of other agents .
Mode! of organization ' ¥

2. Organizational theory and computer simulations

Theories of organizations abound, ranging from those derived from
microeconomics and statistics, such as competitive forces (Porter, 1980),
agency theory (Jensen, and Meckling, 1976), transaction cost theory (Wil-
liamson, 1975), evolutionary theorv (Nelson, and Winter, 1982), or team
theory (Marschak, 1955; Arrow, 1979; Radner,- 1987), to those arising from
more traditional group and organizational perspectives, such as group
theory (Cartwright, and Zander, 1960; Shaw, 1981), information processing
theory (March, and Simon, 1958; Galbraith, 1973), contingency theory
(Thompson, 1967; Galbraith, 1973; Katz, and Rosenzweig, 1979; Katz, and
Rosenzweig, 1972), Garbage Can theory (Cohen, March, and Olsen, 1972), to
those that use economic and/or structural considerations such as inter-
locking directorates (Pennings, 1980), structuralism (Chandler, and Dames,
1980; Galbraith, 1973), efficiency-based (Ouchi, 1980), resource-based (Pfef- v
fer, and Salancik, 1978), population ecology (Hannan, and Freeman, 1977; A
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Wholey, and Brittain, 1986), or coordination theory (Malone, 1986; 1987).
Despite attempts t0 account for individual information-processing limits
in organizational decision-making processes, such as in complexity theory
(Streufert, and Swezey, 1986), none of these views is based on a fully ex-
plicated and psychological plausible model of the agents which comprise
organizations — humans. Specifically. building a software program in
which the agents interact according to the tenets of any of these theories
would require many assumptions about how humans behave, assump-
tions which go beyond the theories themselves. Such assumptions might
drastically alter the resultant predictions of the now enhanced theory.

Al models, specifically those of generally intelligent agents, suggest a

possible path out of this dilemma: using Al simulations of intelligent
agents as the basis for developing organizational theories. The role of
computer simulation has a rich and important history in understanding
and designing cothplex systems, both natural and artificial. In the past
twenty years, this tactic has been at the forefront of explicating the human
mind. Both Al and cognitive science have made remarkable strides in
defining structures and methods that can approximate intelligent be-
havior. Curiously, though the use of computer simulation has played a
valuable, but small, role in organizational research (e.g., Anderson, and
Fischer, 1986; Axelrod, 1984; Baligh, and Burton, 1981; Burton, and Obel,
1984; Carley, 1986; 1990; Cohen, March, and Olsen 1972; Ow, Prietula, and
Hsu, 1989; Kumar, Ow, and Prietula, 1990; Witte, and Zimmermann, 1986),
little research by organizational theorists has actively applied artificial
intelligence to. modeling the most prevalent of artificial systems — O
ganizations. Cohen (1986, p- 67) summarizes the situation:
"t may seem that this convergence artificial intelligence and organizational design) has
already occurred — especially in view of Herbert Simon's founding role in both areas of
research. In fact, it has not. A closer examination reveals that the overwhelming majority
of organization theory simulations are composed of FORTRAN or BASIC and are internally
§tructured as series of equations (albeit of large and nonlinear systems)”.

Such equation-based approaches to studying issues of organizational
theory are appropriate when (1) the size of the organization is large
enough that the behavior of its individuals is describable in detached,
summary, aggregated macro-terms (€.g. production Jevels over a period of
time for organizational learning), or when (2) there is substantial control
over the dominant degrees of freedom measured (e.8., organization out-
put and structure). .
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Other aspects of organizational theory, however, are more microscopic
and speak directly to the individual as the units of analysis. Such aspects
include socialization, small group behavior, internal coordination, team
performance, norm-based behavior, and organizational culture. Efforts to
study groups and their organization have been active for many years (e.g.,
Cohen, 1962; Cohen, et al. 1969; Shaw, 1981). Nevertheless, the methods
brought to bear to study groups thus far have fallen short in an essential
aspect — the modeling and prediction of collective action based on a
detailed theory of individual cognition. As an old adagio goes: "groups
don't make decisions — people do." Yet, current approaches to studying
group phenomena virtually ignore much of what we understand about
human cognition (e.g., Olson, 1989). Against this background, our goal is
to generate an understanding of organizational behavior from the perspec-
tive of the fundamental units which comprise it; that is, to derive a theory
of the organization from a theory of the individual. This approach is
important not only for theoretical purposes, but also for the practical
purpose of augmenting group problem-solving with machines.

There have already been attempts at generating theories of collectives
from theories of individuals that apply Al techniques to group problem-
solving tasks. Within the organization theory tradition one of the first
such attempts was recently published by Masuch and LaPotin (1989). Their
DoubleAISS model is a symbolic, rather than equation-based model of
organizational behavior in which the decision-making agents are
represented as production systems operating within problem spaces. The
DoubleAISS model was used to examine and extend the contentions of
garbage-can theory using a rather abstract notion of task. The model was
specificallv designed as a model of organizations, and was not a general
model of cognition capable of performing multiple, differing tasks within
an organization. _

From a different perspective, researchers in distributed Al have been
working on the issue of coordinating a set of cooperative agents (Reid
1979, Davis, 1981; 1982; Drazovich, 1979; Durfee, Lesser, and Corkill, 1985;
Fox 1979, 1981; Lesser, and Corkill, 1981; Reed, 1981; Smith, 1980; Steeb,
1980; Thorndyke, 1981). This work, unlike that of Masuch and LaPotin,
tends to employ artificial agents designed for a specific task, with the
details of the task itself constraining and defining performance. But, like
Masuch and LaPotin, these agents are not based on a general model of
cognition. Moreover, work on distributed Al rarely takes organizational
theory into account and, consequently, views groups as separably
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intelligent agents who coordinate themselves in fashions quite different
from actual human organizations.

In summary, there is a need to explore the behavior of social agents,
using a general model of cognition as the basis for collective behavior to
gain generalizability, admit cumulative theory building, and consolidate
theories of group behavior with theories of individual behavior. There is
also a need to place a set of artificial agents with such general intellectual
ability in a communication and coordination structure that more nearly
approximates real human organizations. Our approach is to start with a
general model of cognition, Soar, create an organizational environment
with a potentially real task, and craft a set of Soar agents in this environ-
ment with the goal of performing this task, Plural-Soar. As we augment
the Plural-Soar agents with the knowledge and behaviors appropriate to
the task and organizational structure, we expect that noticeably social
behavior should emerge (Carley, and Newell, 1990). In this way, we are
developing a cognitivelv and socially motivated theory of organizational
behavior. With respect to the work presented in this chapter, we issue the
following caveat: the initial task situation and the associated agents
described in this chapter are quite lean.

2. The Soar architecture’s

Soar is a system that characterizes all symbolic goal-oriented behavior as
search in problem spaces and serves as an architecture for general intel-
ligent behavior (Laird, Newell, and Rosenbloom, 1987). In the Soar
nomenclature, the world is characterized by a set of problem spaces with
associated states, operators for reconfiguring states, goals, and preferences.
We can think of problem spaces as limited knowledgé domains in which
there is a mental model of a specific task. This mental model is a symbolic
representation of the task. Associated with this problem space are a set of
operators which typically correspond to the actions that the agent can take
to perform this task. These operators define completely the ways in which
this domain can be altered. Further, by selecting a problem space to do a
task, Soar accepts as valid the implicit representation of the -task and any
solution that emerges from applying the operators in this problem space.

J¢ This section is drawn from a description of the Soar system contained in Prietula, Hsu,
Steier, and Newell, 1990.
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Soar is continuously making decisions which, as the primitive acts of
the svstem, affect the order in which it applies its knowledge (and hence
the search paths it follows). Decisions are used to determine which
problem spaces, states, or operators are appropriate and to pursue goals
specified in the goal hierarchy by applying operators to develop new state
configurations. In Soar, the knowledge required to drive correct decisions
(i.e., effective and efficient search paths) is acquired in one of two wavs.
First, the knowledge may be directly available in long-term memory as
productions. All long-term memory knowledge in Soar is realized as
productions such that, when the antecedent conditions are met, the
relevant productions fire. Second, the knowledge may be indirectly
available through problem resolution. Problem solving ensues, for ex-
ample, when the system is trving to select an operator from a set of
operators, all of which might be the "best" to apply. In the Soar architec-
ture, the mechanism that is brought to bear on problems (regardless of the
nature of the problem or where it occurs) is subgoaling. In essence,
problems are described as impasses, and result in the specification of a new
goal and a new problem space devoted to the resolution of the impasse.
Since all goal-driven behavior in Soar is characterized in the same man-
ner, the mechanisms embodied in the entire Soar architecture are
available for the resolution of the impasse; it is simply another goal to
achieve (Laird, Rosenbloom, and Newell, 1986a).

Soar operates in terms of a two-phase decision cycle. Each cycle starts
with an elaboration phase. During this phase, the description of the cur-
rent situation (i.e., the contents of the working memory) is elaborated with
relevant information from Soar's long-term (production) memory. All
productions that can fire, can do so in parallel. These productions can set
up preferences for the objects of the goal context (problem spaces, states,
and operators) or for other augmentations to working memory. Once
preferences have been set, those involving non-context objects are
evaluated and the resultant choices made. These choices result in items
that are not context objects being added to working memory. This process
of production firing, preference evaluation, and working memory update
is repeated until quiescence (i.e., until no more productions are eligible to
fire). Then, the second phase, the decision procedure, is entered. This
interprets the preferences for context objects in the working memory. This
phase can result in changes in the goal context. In the Soar architecture,
preferences are used to describe the desirability and acceptability of the
alternatives being considered for selection. If the preferences uniquely
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identify an object to be selected, such as a particular problem space, state, or
operator, the decision is made and the decision cycle repeats, starting with
another elaboration phase. However, when the preferences are incomplete
or inconsistent, an impasse occurs, and the Soar architecture automatically
sets up a subgoal to resolve the impasse.

Given a subgoal, Soar applies its full problem-solving capability and
knowledge (as it did for the higher-level goals) to resolve the impasse that
caused the subgoal. There are four types of impasses in the Soar architec-
ture: (1) ties, when multiple objects are considered equally acceptable for a
given goal; (2) conflicts, when two or more objects have mutually conflic-

ting preferences (e.g., both objectl > object2 and object2 > objectl hold at -

the same time, where ">" indicates a strict preference ordering such as
"worse than"); (3) no-changes, when the elaboration phase runs to
quiescence without distinguishing preferences for any objects; and (4)
constraint failures, when either multiple objects are required for an
attribute or if an object has both a ‘require" and a "prohibit" preference.
Note that there is a difference between a lack of knowledge to suggest an
object and prohibition which reflects the result of knowledge that inhibits
consideration of a particular object. When a tie or conflict and a constraint-
failure occur at the same time, Soar detects only the constraint-failure.

A component of the Soar architecture is a learning capacity that is
brought to bear in the resolution of impasses and which relies on a com-
mon universal mechanism — chunking (Laird, Rosenbloom, and Newell,
1986b). Soar learns by producing chunks of knowledge (productions) as a
result of resolving impasses, that is, as a result of achieving a (sub)goal.
The chunks produced by Soar within the impasse-resolution process
reflect the relevant objects in working memory that caused the impasse
(crafted in the antecedent portion of the generated production) and the
subsequent results obtained by the subgoaling search effort (crafted in the
consequent portion of the generated production). Thus the results of sub-
goaling are chunks that embody knowledge to reduce the search effort by
permitting decisions to be made. Furthermore, to the extent that subse-
quent encounters generate similar impasses, these decisions will be made
directly and without further deliberation via subgoaling, allowing more
direct (and efficient) problem-solving. As this process is recursive, it is
quite possible to generate impasses (and subgoaling) while attempting to
resolve an impasse through subgoaling. Since the approach to impasse
resolution is consistent throughout Soar, the system can result in dramatic
reductions in problem-solving effort through the exploitation of the
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chunking mechanism in service of the goals it is attempting to achieve.
Soar, then, is unique in that goals are created, deliberated upon, and
resolved (i.e., terminated) solely by the underlying architecture. Further-
more, the chunks (i.e., knowledge) created by Soar during deliberation are
subsequently always available for activation, if necessary. This, in effect,
reflects the non-destructive nature of the long-term memory component
of Soar. Whether productions are subsequently activated depends on the
specificity of the subsequent context in which the chunks are considered.

In short, Soar is a svmbolic system that casts all tasks as a collection of
interacting problem spaces, where each problem space is associated with
goals situated within a goal hierarchy. Within a problem space, the sym-
bolic components representing states of the problem space are changed by
the application of appropriate operators. Subgoals (and hence new
problem spaces) are invoked when problem-solving cannot proceed in the
current problem space as a result of impasses. The resolution of impasses
(i.e., subgoal success) permits problem solving to continue and forms the
basis for learning. A single learning mechanism called chunking is used
universally in Soar. Control over the occurrence of chunking allows
various forms of learning (including no learning) to ensue.

3. Plural-Soar

As noted, Plural-Soar is a system of Soar agents engaged in the warehouse
task. The warehouse task is a potentially real task; that is, many organiza-
tions have warehouses containing items and orders that need to be filled.
The warehouse of our experiments is a greatly simplified version of a
realistic warehouse. The current warehouse environment is meant to be
just complex enough to support the initial functions of the agents. As
those capabilities grow, so will the richness of the warehouse.

3.1 Warehouse Task

A graphic illustration of the warehouse task is shown in Figure 1. On the
floor of the warehouse is a single row of stacks. Each stack contains one or
more labelled items. At a particular location in the warehouse, there is a
set of posted orders. Each order contains a list of items requesied by a
customer, but no information about where the requested items are in the

it
g
i3

i

T AR T

o

et




98 . Kathleen Carley, J. Kjaer-Hansen, A. Newell, M. Prietula

warehouse. In front of the stacks is a walkway along which agents can
move, while across the walkway is a conveyor belt onto which selected
orders must be placed by the agents. The basic goal associated with the
warehouse task is to fill all the posted orders with the items in the
warehouse. An item on an order s considered "filled" if the requested
item is removed from a stack and placed on the conveyor belt. The
warehouse task is thus comprised of the following entities: agents, stack
locations, items, posted orders, and delivery location. The relationship
among entities and permitted behaviors define constraints on the
manipulable elements of the task.

Figure 1: The warehouse task

Orders

Agent J %* ’
) 5 ¥ o— Items
3 « o e 10 <a— Stack
Locations
a3

—
Delivery Location (conveyor belt)

Within the warehouse an agent can only move Jeft or right along the
walkway or wait in front of a stack. If multiple agents are in front of a
stack, they form a queue such that only the agent immediately in front of
the stack can move items off of a stack and see the contents of the stack.
While immediately in front of a stack, an agent can take items off a stack
and place them on the stack to the left or right or on the conveyor belt. If
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the agent wants to remove an item in a stack, all items on top of it must
first be moved to the left or right stacks before the required item can be
extracted. Although agents in a queue cannot manipulate items in the
same stack at the same time, agents immediately in front of adjacent stacks
can move items to the top of their neighbor's stacks. The order list is
represented as a stack to the left of all other stacks. All agents are initially
Jocated in a queue at the order stack. Each agent sequentially takes the top
order off of the order stack and then attempts to fill it.

Admittedlv rudimentary, the warehouse task as described does contain
manv of the complexities generally attributable to distributed decision-
making tasks: agents work cooperatively, agents may not be engaged in
face-to-face discussion, each agent has his or her own task, the organiza-
tional goal requires all agents to perform their tasks, issues of effort alloca-
tion and distributed skills arise, the task is not solved by all agents
reaching consensus, and so forth. Additionally, meaningful research in
coordination and communication requires surprisingly simple tasks (e.g.,
Carley, 1990b; Weingart, 1989). Indeed, the simplicity of the task can be
advantageous, because it clarifies the relationship between organizational
and individual goals and problem-solving constraints.

For the purposes of this research, the warehouse task has an important
property. It affords a rich task environment which can be elaborated in
wavs that realistically represent manipulations in cognitive, -as well as
social, contexts. For example, manipulations may be made to agents, the
task, or the design of the organization thus permitting analysis of the three-
wav relationship discussed in the introduction to this chapter. Agents can
be manipulated by altering a variety of different factors such as: (1) the type
of memory (e.g., memory of item locations, memory of order elements, of
other agent's states, of other agent's goals, of other agent'’s knowledge); (2)
effort (e.g., of traversing inter-location distances, of moving boxes); (3) risk
(e.g., movement of unknown boxes, movement of heavy boxes); ( 4) trust
(e.g., in another agent's communications); (5) ability to learn (e.g., of
locations, of other agent capabilities, of strategies); and (6) ability to com-
municate (e.g., what is communicated to other agents — goals, locations,
knowledge, as well as the costs of such communication). Order infor-
mation can be manipulated by changing (1) the number of items on the
order itself and (2) the number of orders an agent can peruse before selec-
ting one to work on. Stacks can be manipulated by altering (1) the par-
ticular distribution of items over stacks relative to order demand; (2) the
number of items relative to order demand; (3) the number of stacks; and
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tions to be addressed.
In this study, the particular warehouse configuration we use has the
following additional features:

* The warehouse consists of 10 stacks and an order stack.

* Each stack initially contains 3 items.

* There are 15 orders.

* Each order is for a single item.

* All items are unique; that is, they occur in only one order, and only one
of that item occurs in the warehouse.

* Each agent works on only one order at a time.

* There are no special purpose communication channels available such as
blackboards or telephones. The only available means of communication
is by broadcast. :

* The warehouse is small enough that all agents in the warehouse can
hear anything any other agent says,

The agents are not designed to cope exclusively with this configuration.
That is, the agents we describe in this chapter can also, with no
modification, operate in warehouses with different numbers of stacks,
different numbers of jtems per stack, different numbers of orders, different

these studies in this chapter, we have used these agents to examine other
warehouse configurations,

3.2 Plural-Soar agents

Each Plural-Soar agent is a Soar agent that runs on its own computer,

Multiple agents working in the same warehouse act simultaneously. The
actual warehouse is Tepresented as a shared file which al] agents can read
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and update. All agents in a single organization are identical in terms of
their capabilities and what knowledge they initially bring to the task.
Across organizations we vary the type of agent. In this study we will use

four different types of agents: (1) the basic agent (B), (2) the basic agent plus

Jocation memory (BL), (3) the basic agent plus communication skills (BC),
and (4) the basic agent plus location and communication skills (BLC). The
latter 3 agents have all of the capabilities of the basic agent plus additional
capabilities. In describing these agents we will begin by describing the basic
agent.

Agent B: Basic agent — The basic agent has a very primitive mental model
of the warehouse (e.g., it has an internal symbolic representation of the
warehouse which contains general information about its position in the
warehouse, the location of stacks, and the location of the conveyor belt).
This mental model is incomplete in that, while the agent starts with a
basic model of what the warehouse looks like, it does not start out
knowing the specifics of a particular warehouse. The difference is between
knowing that there are stacks and items in stacks and knowing the actual
contents of a specific stack. The basic agent starts by knowing the former
and not the latter. The basic agent also has a generic understanding of the
task (get orders, fill orders). It does not have any specific knowledge prior
to taking an order of what items can be or are on the order or whether the
items needed to fill an order are located in the warehouse. Two or more
basic agents in the same organization differ from each other in the par-
ticular orders they acquire and in the timing with which they acquire the
orders.

The basic agent has four problem spaces (knowledge domains) that
relate to doing the warehouse task. These domains contain general infor-
mation of the warehouse, manipulation of items in stacks, movement of
the agent from one location to another, and acquisition of orders. As-
sociated with each of these problem spaces are a set of operators which
define the actions that the agent can take. The basic agent uses its mental
model of the warehouse to determine which of these actions to take. The
relationship between problem spaces (boxes) and operators is given in
Figure 2. The first three operators in the warehouse problem space
(manipulate stacks, go to location, and take orders) are "mental actions” in
that they do not directly correspond to an external action, but when in-
voked by the agent determine which knowledge domain is needed to do
that sub-task. In contrast, all other operators correspond to external
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actions. These operators, when instantiated, direct the agent's external
actions. For example, the operator "move agent” can be instantiated as
either move left or move right. If instantiated as move left, a direction 0
Soar-10 is issued that causes the actual agent in the actual warehouse to
move left17 Within the agent's mental model, the symbolic agent is also
moved to the left.

Figure 2: Problem spaces and operators for basic agent

Warehouse
Manipulate stacks Wait
Go to location
\Take orders
Move item Move agent Take order
Remove item
Stack Agent Order

manipulation movement acquisition

The basic agent can take any of the following seven external actions:

Mm move-to-the-left — Agent is at @ particular stack and moves 10 the

A stack immediately to the left.

(2) move-to-the-right — Agent is at a particular stack and moves 10 the
stack immediately to the right.

3) move—item-to-left-stack — Agent is immediately in front of a stack
and moves the top jtem on the stack to the top of the stack

immediately to the left.

4) move-item-to—right-stack — Agent is jmmediately in front of a stack
and moves the top item on the stack t0 the top of the stack immediate-
ly to the right.

1760ar-10 stands for Soar Input/ Output. 10 routines are those procedures which allow the
program to access information from, and provide information to the outside.
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(35) move-item-to-conveyor-belt — Agent is immediately in front of a
stack and moves the top item on the stack to the conveyor belt. When
this action is taken, the moved item on the order is considered to be
filled.

(6) take-order — Agent is immediately in front of the order stack and
takes the top order from the order stack. When the order is taken,
the agent can then proceed to fill it.

(7) wait — Agent is in a queue in front of a stack and the agent waits rather
than continuing to move left or right. The agent only waits if there is
another agent in front of it and if it wants something in that stack.

When the agent is in front of a stack it examines the contents of the stack
to determine whether the item it is looking for is in that stack. If the item
is in that stack, then the agent manipulates the stack until the item sought
is on top of the stack. The top item, if it is not the desired item, is always
moved to the top of the stack immediately to the left or right of the cur-
rent stack. If the top item is the desired item it is taken from the top of the
stack and placed on the convevor belt. When the agent goes to a location, it
goes either to a stack or to the posted orders. When it reaches a location an
agent can always view the contents of the stack even if there is another
agent in front of it. An agent will only wait at a location if it wants some-
thing at that location (another order or an item). The basic agent solves the
task (i.e., fills its orders) by systematic search. It has no item location
memory and cannot send or receive communications from other agents.

In taking these actions, there are times when an agent may have op-
tions. There are several typical cases when this can happen. For example,
an agent may be able to move to the left or move to the right. In another
case, an agent may be able to move a blocking item from the top of the
stack to the stack to the left or right. Such choices are resolved by arbitrarily
setting an explicit goal for a predefined choice. Thus the basic agent will
choose to move itself right rather than left and it will choose to move the
blocking item to the left rather than to the right.

We define three additional agents by augmenting the basic Plural-Soar
agent with additional capabilities that reflect the two primary cognitive
capacities of interest in this research: location memory and communica-
tion skills. An agent either has or does not have one or both of these
capabilities. An agent without either of these capabilities is the basic agent
we have just described. As we have noted, a basic agent knows what is in
a stack only when it is located immediately in front of it. Upon leaving the
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stack, a basic agent promptly forgets the contents of the stack; it has no long
term memory of where things are located in the warehouse. Furthermore,
the basic agent has no communication skills: it can neither ask nor answer
questions, nor give advice and so forth. The basic agent acts as a simple
robot, mechanically filling orders, completely independent of what it did
last except for where it happens to be physically located.

Agent BL: Basic Agent plus location memory — In contrast to the basic
agent, an agent with location memory retains its mental model of the
contents of the stacks it encounters in the warehouse. With location
memory, an agent updates its menta] model of the warehouse as it leaves
a stack. Thus, the BL agent remembers what is in a stack only when it
departs from the location. The BL agent does not remember what items it
has moved nor where it has moved those items.

Agent BC: Basic Agent plus communication skills — This agent differs
from the basic agent in that it can update its mental model of the
warehouse on the basis of what other agents tell it as well as on what it
directly encounters. Therefore, the BC agent can learn through its own
experience or through the experience of other agents capable of com-
municating. The BC agent has two additional operators available to it in
the warehouse problem space: ask questions and answer questions. When
a BC agent asks a question, it effectively broadcasts to al] other agents at
once: "Does anyone know the location of item x?" where x is the item on
the order it is trying to fill. When the BC agent answers a question, it
broadcasts to all other agents: "Item x is in stack y", where y is the location
of the stack that the agent thinks contains item x. Since it has no location
memory, the BC agent can communicate only if it is immediately in front
of a stack containing the requested item. The BC agent does have a ques-
tion memory; that is, it remembers the broadcasted questions and will
respond if it ever encounters the particular item. As modeled, the BC
agent is "averse” to physical effort; an agent with communication skills
will ask, rather than search for items. Corresponding to the two operators
are two external actions that the agent can take:

(8) ask-question — Agent has an unfilled item on an order and asks other
agents if they know the location of the item. Asking is done via broad-
cast: Does anyone know the location of item x?
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(9) answer-question — Agent believes it knows the location of an item and
communicates that location. Answering is done via broadcast: Item x is
in stack y. Agents only provide information on the specific item re-
quested.

Agent BLC: Basic Agent plus location memory and communication skills
— The BLC agent combines the capabilities of the BL and BC agents. Thus,
BLC agent both remembers the contents of stacks that it has visited and
can ask and answer questions. There is an interaction between location
memory and communication skill: when an agent with location memory
can also communicate, it updates its mental model of the warehouse and
the items in the stacks on the basis of both personal experience and inter-
agent communication. As modeled, the BLC agent trusts its own memory
over what another agent tells it.

3.3 Coordination scheme

Plural-Soar agents in the warehouse are part of an organization that has a
coordination scheme. In this study, we concentrated on two aspects of coor-
dination: the number of agents and the communication structure. All of
the organizations that we examine in this chapter are decentralized
decision structures; that is, all agents are independent and direct their own
action. Thus, each agent acts autonomously, makes its own decisions, and
fills its own orders. Even those agents who can request information (BC
and BLC) can, and do, continue to locate items and fill orders in the ab-
sence of other agents providing them with information.

Number of Agents: The number of agents in the warehouse filling orders
varies from one to five. This range is sufficient to compare the results
obtained by simulation to those resulting from small group experimental
communication studies (e.g., Cohen, 1962; Shaw, 1981). In the one-agent
scenario, the agent fills all orders sequentially. In the multi-agent scenario,
each agent sequentially takes an order; however, all agents can be filling
orders in parallel. No constraints are placed on the number of orders that
any agent can fill; thus, the number of orders filled by each agent is oppor-
tunistically dependent on the speed with which they fill orders and the
sequence in which they initially acquire the orders.
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Communication Structure: We examine two communication structures:
No-communication and broadcast. In the No-communication structure, no
agent communicates to any other agent and all agents work independently
to fill their own orders. This type of structure is analogous to teams (Ar-
row, and Radner, 1979; Marschak, 1955; Radner, 1987). In the broadcast
structure, all agents communicate to al] other agents at once. Such struc-
tures are similar to the completely connected or ‘comcon” networks
examined by small group researchers interested in communication
(Cohen 1962; Shaw, 1981), the difference being that information flows
from one agent to all other agents in parallel, rather than serially to one
agent at a time. In the broadcast structure, the communication is effec-
tively a one-to-n communication channel. We chose these tw
because they represent, in some sense, opposite ends of a
possible communication structures and ar
used by human agents in real organizations.

O structures
spectrum of
e both structures commonly

3.4 Measuring performance and simulations

The type of agent in a particular coordination scheme defines the type of
organization. We have identified four agents and ten possible coordina-
tion schemes. By systematically varying the types of agents across the
coordination schemes, we were able to examine the relative performance
contribution of each capability and its usefulness in various coordination
schemes. The communication Structures and the types of agents overlap;
that is, Agents B and BL take part only in the no-communication struc-
ture, whereas agents BC and BLC take part only in the broadcast com-
munication structure. Consequently, the total number of organizational
types that are examined is twenty. The experimental design is shown in
Figure 3. Each checkmark in the figure represents a single organization
and a single simulation. We expected the different types of organizations
to exhibit different performance levels. There are many factors that
determine an organization's performance. In order to capture different
aspects of performance we used a variety of measures focusing on time (to

complete the’ task), effort, and Frocess. Each specific measure will be
described in detail as it is used.

Plura

Figu

(1) Bs

2) «

(3) +

(@) +1

W
organ
it is j
agent
words
wheth
vidua
sisted
comp]
more |
tional
no do

4. Res

Typica
a divis
produc
and D
but co




Plural-Soar: a prolegomenon on artificial agents and organizational behavior 107

Figure 3: Experimental design

Broadcast
Size 1. 2 3 4 5
Agent
(1) Basic agent [B] no no no no no
(2) + Location memory [BL] no no no No no
(3) + Communication Skilis [BC] yes yes yes yes yes
(4) + Location memory + Communication Skill [BLC) yes yes yes yes yes

We conducted a series of 20 simulation experiments one for each of the
organizational tvpes described in Figure 3. These simulations indicate how
it is possible to use this approach to determine if the capability of the
agents determine which coordination scheme is most effective. In other
words, simulations such as those described herein can be used to examine
whether there is a tradeoff between organizational coordination and indi-
vidual capability. As we have noted, each simulation experiment con-
sisted of running a set of Soar agents that are "working together" to ac-
complish the warehouse task. In contrast to the Monte Carlo approach
more common in organizational simulations, we simulated each organiza-
tional tvpe only once. This is because in the Plural-Soar Model there are
no dominant stochastic elements.

4. Results

Typically in organizations, for many tasks — especial]y. tasks which admit
a division of labor— there are economies of scale, in that the unit cost of
production decreases as the size of the operating unit increases (Chandler
and Dames 1980). In our simulations, organizations exhibit this simple,
but commonly encountered aspect of organizational behavior (see Figure
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4). In order to determine this, we defined each external action an agent can
take as requiring one time unit for execution,

Figure 4: As more agents are involved, time decreases

Time units to -—— B
complete task —e— BL
-—a— BC
200 7 —— BLC
180
160 -
140
120
100 7
80 M T T M Ll ¥ T A |

0 1 2 3 4 5 6

any agent. Figure 4 shows the time it took an organization to perform a
task. It can be seen that while two agents take less time to perform the task
than one agent, adding a third may not save the organization additional
time. Adding extra agents, however, typically decreased the average num-
ber of time units spent by any specific agent. ,

The general, albeit naive, €xpectation is that the more agents that are
involved in a task, the less effort each agent has to expend, both cognitive-
ly and physically, simply because there is less for each agent to do. Of
course, as Brooks (1982) points out, assigning tasks to a group does not
proportionally decrease individual effort. Coordination, extra meetings,
and so forth, all serve to make group work more complex. In a limited
system, like Plural-Soar, many of the factors that make groups less efficient
are not possible. Our agents, after all, cannot call meetings. Thus, we expect
that effort average per agent will indeed decrease as more agents engage in
the task, but that the decrease will not be linear. Regardless of the number
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of agents, there will be certain cognitive and physical start-up costs that an
individual will engage in regardless of the number of agents. In addition,
communication is also expected to reduce the amount of effort that agents
must expend. Indeed, various communication technologies, in promoting
the sharing of information, should improve organizational performance
by reducing the number of times the same problem needs to be solved.
Thus we expect that agents who can communicate will exhibit less cog-
nitive and physical effort than other agents. We measured "cognitive
effort’ as the average number of decision cycles per agent in the or-
ganization.

Our expectation was born out: cognitive effort decreased as more agents
were engaged in the task (see Figure 5). Further, agents who could com-
municate required fewer decision cycles to perform the task than did those
agents who had no communication skills, provided there was a sufficient
number of communicating agents. Even though the effect was in the right
direction, communication had little total effect on overall cognitive effort.

Figure 3. Cognitive effort decreases as more agents are involved.

Average decision
cycles per agent
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Since we implemented communication in a very rudimentary way, this
could have minimized the effect of communication. The main reason
communication had little impact was that the distribution of items in
orders across stacks was such that the likelihood that any agent would
have encountered a needed item (and could thus tell another agent about
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its location) was extremely low. Consequently, although the agents could
communicate, they rarely had anything of value to say.

Similar results emerge when physical effort is examined. With a fixed
number of orders, the more agents, the fewer orders any particular agent
will need to fill. Since agents can move items into unexpected locations,
increasing the number of agents having location memory will in effect
increase the likelihood that any individual agent's memory is incorrect.
We defined "physical effort" as the number of moves the agent made
(steps to the right and left), plus the number of times the agent moved an
unwanted item to the right or left, plus the number of times the agent
moved a wanted item to the conveyor belt. We found that as the number
of agents in the organization increased, the average physical effort per
agent decreased (see Figure 6). There is, however, hardly any difference
between the various tvpes of agents. This is due to the very low ratio of
sought items to unsought items per stack. Despite the fact that many items
are moved, very few of the moved items were those required by agents to
fill orders.

Figure 6: Agents expend less physical effort as more agents are involved

Average physical —o— B
effort per agent ——e— BL
——  BC
200 - —o— BLC
100
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0 1 2 3 4 5 6

Number of agents

We further expected that the idle time per agent would increase with the
number of agents in the organization, due to the delay in the queues to get
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access to stacks. Communication skills and location memory, however,
should somewhat reduce the amount of waiting as agents would be more
likelv to go to the stack where an item was located, rather than waiting at
every stack along the way to determine if the needed item would be in that
stack. We found that as the number of agents increased, more time was
spent waiting (see Figure 7).

Surprisinglv, we found that for three or more agents, communicating
agents spent more time waiting than did non-communicating agents. This
result was an unintended cbnsequence of making the communicating
agents “lazy.” Recall that agents prefer to ask than to search. Thus, when
an agent obtains an order, it remains in front of the order stack and broad-
casts a request for information on an items location. This behavior
increases the waiting time for other agents who cannot take an order until
the questioning agent moves away from the order stack. No agent in this
situation waited for anvthing other than to take an order. This is an ex-
ample of an unintended social consequence where individually rational
behavior results in dysfunctional social behavior.

Figure 7. Agents spend more time waiting the more agents are involved
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Figure 8: Agents ask more questions the more agents are involved

Average number of —p—  BC
questions asked -  BLC

Number of agents

The average number of questions asked per agent decreased as the
number of agents increased, because agents only asked questions when
they obtained a new order. As the number of agents increased the number
of orders per agent decreased and, so consequently did the number of ques-
tions (see Figure 8). We expected that agents with location memory would,
on average, ask fewer questions than those without, due to the interaction
of two preferences: the agents prefer to ask rather than to search for items
(thus increasing the number of questions asked in the no-memory case)
and the agents prefer to follow their memory from observation or instruc-
tion rather than ask for an item (thus reducing the number of questions in
the location memory case). Both behaviors were exhibited (see Figure 8).

Finally, we expected the average number of questions answered per
agent to decrease as the number of agents increased. Basically, the total
number of questions asked was independent of the number of agents, so
the number of questions to respond to was constant. However, as the
number of agents increased, each agent would spend more time waiting
and would work on fewer orders. Both of these factors contrived to
decrease the amount of information available to the agent. Since agents
could only answer questions when they knew where the requested object
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was located, the average number of answers per agent should decrease as
the number of agents increased.

Figure 9: Number of questions answered depends on number of agents
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In Figure 9, however, we see a curvelinear relationship between ques-
tions answered and organizational size. While the argument just
provided holds for four and five agents, it does not hold for two agents.

In general, the relationships we observe are not linear. This corre-
sponds to the fact that there are decreasing returns from scale. Moving
from one agent to two agents vastly simplifies the task from both the
organization's and the individual's perspective.- Additional agents, how-
ever, confuse the issue. That is, as more agents are added, they begin to get
in one another's way.

5. Discussion

In this chapter, we have shown how it is possible to study organizational
phenomena by taking a set of generally intelligent artificial agents, placing
them within an organizational structure with the constraints that it places
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on behavior, and providing them a task to perform collectively. Even an
organization of extremely primitive agents, like those employed in this
study, when engaged in a joint task nevertheless exhibit some of the basic
phenomena that characterize life in an organization. Since the agents in
this studv are primitive, the organizational results should be viewed as
indicative of the kind of phenomena that can be investigated using this
approach and not modeled results about how Organizations actually be-
have. Despite the simplicity of the simulation, the results qualitatively
match observed organizational behavior in several ways; that is, the num-
ber of agents involved in the task makes a difference to both individual
and organizational performance. In addition, the model provides
intriguing hypotheses that can be further explored; for example, the sug-
gestion that increasing agent capability is not necessarily advantageous to
the organization. Finallv, and most important, this research demonstrates
the viability of the approach. We have constructed a Soar system, albeit
restricted in size and function, that solves a version of the task. This sug-
gests that we have the basic apparatus for running concurrent, interactive
Soar processes that can provide data on the three-way relationship bet-
ween individuals, tasks, and organizational design.

We have demonstrated that the effects of location memory and com-
munication can be studied Separately. The negligible impact of location
memory in this research is due to the infrequency with which required
items appeared in the stack. Thus, future studies should vary the likeli-
hood of the required item appearing in a stack. Further, in this inves-
tigation communication has a small, but noticeable impact. This is at-
tributable to the fact that only the most rudimentary aspects of com-

tant to consider the differences due to one-to-one and broadcast com-
munication. '

There are a large number of ways in which the mode] of the agent can
be extended to make it increasingly valid, such as to incorporate multiple
wavs of communicating, varying the types of information to
tommunicate, and simulating information loss through oblivion. The
extension of the mode] is therefore cone of extending the artificial agent's
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how humans learn and acquire task-related knowledge within a group
setting. We expect that observation of human subjects performing this
task will refine our model.

While Plural-Soar as a model of the social agent is restricted, the
warehouse task is already sufficiently complex to elicit a wide range of
coordination and communication behavior. A further advantage of this
task is that it can be implemented by simulation or by physical configura-
tion without any major loss of information. Thus, human experimental
studies and the simulation can be made empirically symmetrical:
manipulations and alternative configurations can be made both in the
human warehouse and the computer warehouse. In fact, experimental
studies can be done in which some of the agents are humans and some
simulations. Thus, this task facilitates important collaboration between
observation and simulation with predictions and insights gained by joint-
ly conducting behavioral task simulations and modeling those efforts.

By building the warehouse agent in Soar, we have built a social agent
on top of a general cognitive agent. A large amount of research has
demonstrated the validity of Soar as a viable, scientific articulation of a
theory of general human cognition (Newell, 1990). Thus, by building the
warehouse agent in Soar, we are importing all the complexities and
realism of the Soar cognitive agent. Such a move makes it possible to
incorporate all of the more established aspects of Soar, such as universal
subgoaling and chunking, as well as more recent developments such as
the mechanisms for recovery from error and learning declarative
knowledge. Nevertheless, as Carley and Newell (1990) argued, the Soar
agent is not a full social agent. A major aspect of creating a social agent is

the specification of social and cultural knowledge for the agent. In Plural-

Soar, we have specified only task constraints and preferences in agent
behavior vis-a-vis the task. Future studies will need to provide more
details to the agent on social and cultural knowledge that goes beyond the
specific task.

One particular type of knowledge that will be imperative to the social
agent is knowledge about the other agents in the task. That is, the agents
will need a person-memory which is the agent's mental model of where
other agents are in the warehouse and the correctness of the information
given it by other agents. Having both location- and person-memory will
make it possible to distinguish the relative impact of knowing certain
information and the certainty of that information, since the agent will be
able to distinguish the source of its information. An agent with only
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location memory cannot distinguish how jt acquired the information in
its model: that is, the agent will weight equally direct observation and
hearsay. ‘An agent wilh only persan-memory, on the other hand, cannot
recall information it has observed. When an agent has both location- and
berson-metnory, it will be able to distinguish how it acquired the infor-
mation.

In the current system we have not taken into account all of Soar's
capabilities — most noticeably learning. While some of the agents we
have modeled can learn (e.g.. those with location memory can learn by
augmenting their memory when they see new items), they do not learn
through chunking. Given the fact that items did not repeat in orders, nor
in the stacks. and since chunks are built only upon retuming from sub-
goaling, and since the agent's subgoals are directed toward tinding a
specific item, potential chunks would be of Titte use to the agent. Conse-
guently, while there would be across-trial learning (in the case where the
agent is faced with an identical warehouse), there would not be substantial
within-trial learning. In future studies, it will be important to examine the
impact of true learning on bhehavior. 1t will also be important to cxamine
the relationship between superstitious learning (such as "if it happened
once, it will happen again®) with the agent's model of the environment
(how the warchouse is stocked). We specifically identify this type of
‘mislearning” because it not only oceurs in organizations but is also a type
of mislearning to which Soar is particularly susceptible.

Even with a (ully articulatpd agent, it will be necessary to analyze the
resulting simulation tests to determine the robustness of the results in the
face of small changes in the task. Such changes would include: varying the
number of tvpes of items, the number of items in an order, the number of
orders to be filled, the number of stacks in the warchousc, the number of
ltems in a stack, and the likelihood of a required item being in & particular
stack.

6. Conclusion

Plural-Soar is the first system tu place Soar in an organizational or social
setting. Like many Al systems, Soar has demonstrated problem-solving
skills; however, like most Al systems, Soar has not demonstrated social
skills. Such utilization of the Soar system provides valuable insight into
what nceds to be done (o create an artificial system that is a mode! of not
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only a cognitive agent but a socio-cognitive agent. Earlier in this chapter
(Table 1), we provided a list of the type of capabilities an intelligent agent
must exhibit if it is to be a social agent within an organization. Now we
can re-examine these capabilities to see how much progress has been
made. ‘

As can be seen in Table 2, there are two major g-aps: the Plural-Soar
agents are not capable of analvzing either the task or the social environ-
ment. Associated with this fact is the point that these agents do not have a
memory of task, a memory of where other agents are located, or a memory
of what these other agents are aoing (other than a memory that somebody
asked a question). Further, the communication skills exhibited by these
agents are extremely minimal and do not make it possible for one agent to
supervise another agént, as it happens in organizations. We expect that
major progress in using models of task-oriented cognitive agents as the
basis for micro-level theories of organizational behavior will require the
expansion of a system like Plural-Soar in such a way that the agents have a
mode! of the task, other agents, and the organization.

Table 2: Exhibited social agents capabilities

Perception and Action

Perceives the environment X

Physically manipulates objects X

Moves self to different locations ) b3
Memory

Location X

People

Task

Instruction X
Task Analysis

Decomposes task
Coordinates subtasks for self to do

Communication Skills

Asks questions/Provides answers X
Gives commands/Receives commands
Talks to a single individual/Talks to a group x

Social Analysis
Models of other agents
Model of organization
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From an organizational perspective, we expect that this approach will
enable the development of a more cognitively motivated theory of micro-
organizational behavior. This theory would reach beyond more classical
information-processing models of organizations, which tend to leave
concepts such as knowledge ill-defined with respect to cognition, by exten-
ding its analysis to include agent capabilities expressed directly as
knowledge. A final advantage to this approach is that it focuses attention
on the role of individual preferences in determining social outcomes
within the organization. Consequently, this approach makes possible a
theory of organizational behavior that takes into account not only agent
capabilities but the preferences of the agents which determine their ap-
plication of those capabilities. Since such preferences are often the result of
existing norms or the accidents of history, the approach we have proposed

in this chapter makes possible a truly cognitive and social account of
organizational behavior.
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