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7.1 Introduction

From the hospital, to the schoolroom, to the boardroom people find that the actions
they take affect and are affected by various organizations, and the norms, proce-
dures, culture, and members of those organizations. In order to navigate through an
organizational world, agents (human and artificial) need social and organizational
intelligence. This organizational intelligence comprises many dimensions, including
communication capabilities, knowledge about who knows what, knowledge about
norms, procedures, and culture of the organization, and more.

The ability of an organization to act is certainly dependent on the intelligence of
the agents within it. However, organizations, and multi-agent systems in general,
often show an intelligence and a set of capabilities that are distinct from the
intelligence and capabilities of the agents within them. It is not difficult to find
multi-agent systems that display non-random and repeated patterns and processes
of action, communication, knowledge, and memory (beyond the lifetime of a single
agent) regardless of whether or not the agents are human. Said another way,

many multi-agent systems exhibit characteristics of organization, and sometimes
of intentional organization design. Organization designs may emerge spontaneously
or be imposed, and they can can structure activities and attention within a system
or control the actions of a system as a corporate entity.

From country to country, culture to culture, task to task, and agent type to agent
type, we find both differences and commonalties in the patterns and processes con-
necting individual agents and in the forms organizations take. In order to navigate
through environments and achieve results not achievable by individual agents, or
to exhibit capabilities not held by individual agents, organizations (and indeed all
multi-agent systems) need to act as intelligent information processors, capable of
responding as a single corporate entity, and to coordinate individual agents using
organizing principles or designs. Research in the computational organization area
employs computational techniques to theorize about and analyze organizations and
the processes of organizing.

The goal of this chapter is to describe what can be done and what others have
done in this area: the underlying principles, assumptions, concerns, and the major
streams of work. After reading this chapter you will have gained insight into
the aims, findings and new possibilities of this field. Further, after reading this
chapter you should have developed a preliminary understanding of the nature of
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computational organizational models and developed some of your own ideas about
how to construct virtual experiments using such models.

7.1.1 What is an Organization?

A classic response to the question “What is an organization?” is “I know it when
I see it.” Indeed, every text book in organizational theory provides a definition
of organizations. Unfortunately, there is no wide consensus on the definition of
“organization,” and indeed as theorists reason about organizations trying to answer
fundamentally different questions, they construct different definitions of the basic
phenomenon. While there is no single definition of organizations that is uniformly
agreed to, there are general tenets that are more or less shared. In general,
organizations are characterized as:

®= large-scale problem solving technologies
= comprised of multiple agents (human, artificial, or both)
® engaged in one or more tasks; organizations are systems of activity

®= goal directed (however, goals can change, may not be articulable, and may not
be shared by all organizational members)

® able to affect and be affected by their environment

® having knowledge, culture, memories, history, and capabilities distinct from any
single agent

® having legal standing distinct from that of individual agents

One rationale for the existence of organizations qua organizations is that they
exist to overcome the limitations of individual agency L. From this viewpoint, there
are four basic limitations: cognitive, physical, temporal, and institutional.

1. Cognitive Limitations—Agents as boundedly rational actors have cognitive lim-
itations and therefore must join together to achieve higher-levels of performance.

2. Physical Limitations—Agents are limited physically, both because of their physi-
ology and because of the resources available to them, and therefore must coordinate
their actions, e.g., to achieve higher-levels of productivity. All action takes place
situated in specific space-time locations, and agents are limited (e.g. by relativ-
ity limits) in their access to other space-time locations; this fundamental locality
means that distributed action is fundamentally a multiagent—and hence potentially
organized—phenomenon.

3. Temporal Limitations—Agents are temporally limited and therefore must join
together to achieve goals which transcend the lifetime of any one agent.

1. Other rationales include human needs for social affiliation, and the simple non-
teleological emergence of patterns of activity in complex environments. However, in this
chapter the focus is on the standard information processing approach.
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4. Institutional Limitations—Agents are legally or politically limited and therefore
must attain organizational status to act as a corporate actor rather than as an
individual actor.

There is a plethora of ways in which organizations are constituted to overcome
limitations of individual agency. Researchers in various areas refer to the way in
which an organization is organized as the form, structure, architecture or design
of that organization. Decades of research in this area have repeatedly shown that
there is no single correct or proper organizational design. Field and survey research
on actual human organizations, laboratory experiments on human groups, virtual
experiments using computational models, and analyses using mathematical mod-
els all point to the same conclusion. There is no single organizational design that
yields the optimal performance under all conditions. Which organizational design
is optimal depends on a variety of factors including the specific task or tasks be-
ing performed, the intelligence, cognitive capabilities, or training of the agents, the
volatility of the environment, legal or political constraints on organizational design,
and the type of outcome desired (e.g., efficiency, effectiveness, accuracy, or minimal
costs). The recognition by researchers of how organizational performance differen-
tially depends upon multiple factors has led to the development of “contingency
theories” of organization. From an organizational engineering perspective, locating
an optimal organizational design for a specific, multi-dimensional situation is key.
Whereas, from a theoretical perspective locating the general principles and tradeoffs
underlying organizational design in a multidimensional space is key.

Consequently, research in this area has often focused on the search for general
principles of organizing and the conditions under which these principles do or
do not apply. For example, two such linked principles are specialization and the
division of labor. Specialization of task or occupation refers to the principle that
individuals can become more effective when they are expert in particular activities
requiring particular and limited types of knowledge. Division of labor refers to
the principle that appropriate division of tasks, knowledge, and skills among
agents in an organization can improve organizational performance; e.g., by limiting
task and knowledge dependencies. In general, organizations which employ specific
and productive instances of these principles are able to overcome the limitations
of individual agency, coordinate individual actions, and leverage training costs,
skill development, and resources in such a way that the organization as a whole
achieves higher levels of performance than are otherwise achievable. However,
over- specialization and excessive division can reduce performance and flexibility
by de-skilling individuals, decreasing attention due to boredom, and increasing
decision making time, and by actually increasing coordination costs in situations of
uncertainty or failure.
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7.1.2 What is Computational Organization Theory?

Researchers in the field of Computational Organization Theory (COT) use mathe-
matical and computational methods to study both human and automated organi-
zations as computational entities. Human organizations can be viewed as inherently
computational because many of their activities transform information from one form
to another, and because organizational activity is frequently information-driven.
Computational Organization Theory (COT) attempts to understand and model
two distinct but complementary types of organization. The first is the natural or hu-
man organization which continually acquires, manipulates, and produces informa-
tion (and possibly other material goods) through the joint, interlocked activities of
people and automated information technologies. Second, COT studies artificial com-
putational organizations generally comprised of multiple distributed agents which
exhibit collective organizational properties (such as the need to act collectively, an
assignment of tasks, the distribution of knowledge and ability across agents, and
constraints on the connections and communication among agents). Researchers use
computational analysis to develop a better understanding of the fundamental prin-
ciples of organizing multiple information processing agents and the nature of orga-
nizations as computational entities. The general aims of research in this area is to
build new concepts, theories, and knowledge about organizing and organization in
the abstract, to develop tools and procedures for the validation and analysis of com-
putational organizational models, and to reflect these computational abstractions
back to actual organizational practice through both tools and knowledge.
Research in this area has resulted in a large number of models, each with its
own special characteristics. Many of these models focus on specific aspects of
organizational behavior. Some research projects with particular illustrative models
are listed in Table 7.1. These models differ in the way in which individual cognition
is modeled. For example, in the Organizational Consultant there are no individual
cognitive agents; in Sugarscape, the agents have physical positions and follow
simple rules to respond to each other and their environment; in VDT agents are
modeled as simple processors with in- and out- boxes; in CORP a simple model
of experiential learning is used; in ORGAHEAD both experiential learning and
annealing are used to model the decision process; and in Plural-Soar and TAC
Air Soar a fully articulated model of human cognition is used. Further, differences
in these models are effected by whether or not the agents within them can learn
(see also chapter 6). These models differ in the degree to which the organizational
design is captured; e.g., in Sugarscape organizational design is not considered, but
emergent patterns and structures of activity are an outcome of the model; the
Organizational Consultant covers design in terms of a set of features; the Garbage
Can model, AAIS, the CORP model, and the Cultural Transmission model all
consider only a small set of designs; whereas HITOP-A, ACTION, ORGAHEAD,
and VDT admit a wide range of explicitly parameterized designs. Models also differ
on the extent to which specific features of tasks are modeled. In the Garbage Can
model the task is generic and simply requires energy, in the Cultural Transition
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Table 7.1 Illustrative Models

Model Author

Garbage Can Cohen, March and Olsen (1972)
AAIS Masuch and LaPotin (1989)

CORP Carley (1992)

HITOP-A Majchrzak and Gasser (1992)
Plural-Soar Carley et al. (1992)

VDT Cohen (1992), Levitt et al. (1994)
TAC Air Soar Tambe (1997)

Organizational Consultant Baligh, Burton and Obel (1990, 1994)
ACTION Gasser, Majchrzak, et al., (1993,94)
ORGAHEAD Carley and Svoboda (1996)
TAEMS Decker (1995,1996)

Sugarscape Epstein and Axtell (1996)

Cultural Transmission Harrison and Carrol {1991)

mode] shared knowledge rather than the task itself is considered, in CORP and
ORGAHEAD a detailed classification task is used as a generic simulation activity;
ACTION captures features of 141 generic manufacturing tasks; In VDT specific
features of routine design tasks in which the precedent ordering among subtasks
and needed skills can be explored, and TAEMS extends this to non-routine tasks
as well.

Research in this area has also resulted in several ”generalist” models that can
be used in a number of applications in addition to their use in organizational
theory. For example, one useful general model of information-seeking, decision
making, and problem-solving activity in organizations is distributed search. Since
formal computational models of search are well understood, modeling organizational
activity as search can provide a clear and tractable explanatory framework (see
chapter 4). New approaches to control or task allocation in distributed search
frameworks can, by analogy, provide suggestive new approaches to these problems
in human organizations, e.g., in the development of new organizational forms or for
reasoning about the effects of alternative strategic decisions. In the end, distributed
search models provide just one type of abstraction that is useful for reasoning about
problems of both human organizations and computational ones, and so help to unify
thinking about both types.

Computational organization theories are most often grounded in existing cogni-
tive, knowledge-based, information-processing theories of individual behavior. How-
ever, COT extends this to an organizational level [60, for example] and gives preci-
sion to the notion of bounded rationality by specifying the nature of the boundaries
[7]). The original information processing perspective basically argued simply that
agents were boundedly rational, that information is ubiquitous in the organization,
and that the organization itself becomes a computational system. Today there is
a neo-information processing perspective on organizational behavior that extends
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and refines this early view. The basic tenets of this neo-information processing
perspective on organizations are:

® Bounded rationality: Organizational agents are boundedly rational. There are
two types of bounds — limits to capabilities and limits to knowledge. Capabilities
depend on the agents’ cognitive, computational, and/or physical architecture.
Knowledge depends on the agents’ ability to learn and the agents’ intellectual
history. The agents’ position in an organization influences to which information
an agent has access. Thus, an agents’ knowledge of how to do specific tasks, of
how its specific organization operates, and indeed of how organizations operate in
general, is a function of what positions the agent has held.

® Information ubiquity: Within organizations large quantities of information in
many different forms are widely distributed across multiple agents. The information
may not necessarily be correct.

» Task orientation: Organizations and the agents within them are continually
engaged in performing tasks. The tasks in which an organization and its constituent
agents are engaged require these agents to communicate, build on, analyze, adapt
or otherwise process organizational information using various technologies, and to
search out new information and new solutions.

® Distributional constraints: Organizational performance is a function of what
information is shared by whom, when, and of the process of searching for that
information. An organization’s culture is the distribution of the knowledge and
processes across the agents within it. This distribution affects the extent and
character of socially shared cognition, team mental models, group information
processing, and concurrent- information analysis.

® Uncertainty: Uncertainty about task outcomes, environmental conditions, and
about many other aspects of organizational life influences organizational activity.
Distributed computational models such as distributed search or distributed con-
straint satisfaction pose distribution itself as a source of uncertainty: distribution
can render critical uncertainty-reducing information less available because of the
cost of seeking, transmitting, or assimilating it, and because of the overhead of
coordinating information needs across agents.

= Organizational intelligence: Organizational intelligence resides in the distribution
of knowledge, processes, procedures across agents and the linkages among agents.
Organizations redesign themselves and their vision of their environments on the
basis of the information available to them, with the aim of enabling them to better
search for or process information. Such redesign is part of organizational learning
processes. It can alter an organization’s intelligence, and may or may not improve
organizational performance.

® Irrevocable change (path dependence): As agents and organizations learn, their
intelligence is irrevocably restructured. This one-directional evolution means that
the kind and order in which things are learned—particular histories—can have
dramatic consequences.
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= Necessity of Communication: In order to function as a corporate unit, agents
within an organization need to communicate. This communication may take place
explicitly by sending and receiving messages or implicitly by perceiving the actions
of others.

In addition to this neo-information-processing view of organizations researchers
in this area share a series of implicit background assumptions. These are:

® Modelability: Organizational phenomena are modelable.

® Performance differential: It is possible to distinguish differences in organizational
performance.

®* Manipulability: Organization are entities that can be manipulated and trans-
formed.

® Designability: Organizations are entities that can be designed. This is not to say
that organizations do not evolve, nor that they cannot be found in nature, for
assuredly both events occur. However, they can also be consciously designed and
redesigned: organizational transformations can be purposeful and principled.

®= Practicality: Organizational transformations (based on the design or manipulation
of models) can be transferred into and implemented in actual practice.

= Pragmatism: The costs of modeling and researching organizations using compu-
tational methods are relatively lower than the costs of manipulating or researching
similar aspects of actual organizations in vivo, and the benefits gained outweigh
the costs.

These assumptions that underlie the research in computational organization the-
ory are the result of a fundamentally interdisciplinary intellectual history. Research
in this area draws on work in distributed artificial intelligence (DAI), multi-agent
systems, adaptive agents, organizational theory, communication theory, social net-
works, and information diffusion. One of the foundational works in this area is The
Behavioral Theory of the Firm [13] in which a simple information processing model
of an organization is used to address issues of design and performance. While the
strongest roots are in the information processing [60, 48, 64, 19, 13]. and social in-
formation processing [59], tradition, current models also have roots in the areas of
resource dependency [54], institutionalism [56], population ecology [31], and sym-
bolic interaction [21]. Formalisms and specific measures of organizational design
are drawn from the work in the areas of coordination [45), social networks [65], and
distributed control {12, 16, 41].

7.1.3 Why take a Computational Approach?

Organizations are heterogeneous, complex, dynamic nonlinear adaptive and evolv-
ing systems. Organizational action results from interactions among adaptive sys-
tems (both human and artificial), emergent structuration in response to non-linear
processes, and detailed interactions among hundreds of factors. As such, they are
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poor candidates for analytical models. Because of the natural complexity of the
object of study, existing models and theories of organization are often vague, in-
tuitive, and under-specified. Scientific progress will be more readily achievable if
the theories are more explicit and well defined. Computational theorizing helps to
achieve this.

Computational analysis is an invaluable tool for theory building and examining
issues of organizational dynamics as it enables the researcher to generate a set of
precise, consistent and complete set of theoretical propositions from basic princi-
ples even when there are complex interactions among the relevant factors. Com-
putational models allow researchers to show proofs of concept and to demonstrate
whether or not completely modelable factors can generate certain phenomena. In
this way, computational models can be used to show the potential legitimacy of
various theoretical claims in organization science.

Theoretical computational models can be used to demonstrate lower bounds
or tractability of organizational information processing phenomena (e.g., minimal
information necessary to reach distributed agreement or awareness [29], or the
tractability of an organizational decision or negotiation processes [57]. Experimental
and empirically-based models can also provide computationally-plausible accounts
of organizational activity [36, 15].

7.2 Organizational Concepts Useful in Modeling Organizations

In order to model an organization the following factors are generally modeled at
some level of detail: agents comprising
the organization, the organization’s de-
Agent sign or structure, tasks the organiza-
tion carries out, any environment of the
organization, the organization’s mate-
rial transformation and/or information
processing technology, and any stres-
sors on the organization (see Figure
7.1). Organizations can use different
configurations of agents, designs, tasks,
Technology | and technology to accomplish the same
@ goal-this is the concept of “equifinal-
ity.” In fact, one of the major issues
in the computational organization area
is determining what organizational de-
signs make sense when and what are
the relative costs and benefits of these
various configurations that exhibit de-
grees of equifinality.

Design

Figure 7.1 Necessary elements in an or-
ganizational model.
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Models in the COT area vary dramatically in the level of detail in which agents,
designs, tasks, and technology are modeled. The better or more detailed these
underlying models, the more precise the predictions possible, but the greater the
computational and modeling resources required. Models run the gamut from sim-
ple abstract models of generic decision making behavior (such as the Garbage Can
Model and CORP) to detailed models of specific organizational decisions or decision
making processes (such as VDT, HITOP-A and ACTION). For example, ACTION
represents literally tens of thousands of organizational relationships among 14 dif-
ferent categories of organizational elements [23]. The simpler more abstract models
are typically referred to as “intellective” models. These simpler models allow the
researcher to use the model to simulate the general behavior of classes of organiza-
tions, policies, technologies, tasks or agents. For these models a central research goal
is theory building: to discover general principles underlying organizational behavior.

The more detailed models are often referred to as “emulation” or “engineering”
models. These detailed models may allow the researcher to use the model to emulate
specific organizations by entering specific detailed parameters such as authority
structures, detailed organizational procedures, or specific skill requirements. For
these models a key research goal is organizational engineering: to examine whether
or not the performance of a specific organization will be affected by making some
specific change such as re-engineering the task in a particular way or adding a new
technology.

7.2.1 Agent and Agency
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manager agents, another might be worker agents. Importantly, an agent’s knowledge
is potentially comprised not just of task-based or technical knowledge but also of
social or organizational knowledge. Classes of agents, differing in their cognitive
architecture and/or knowledge, would be capable of different actions.

From an artificial agent standpoint, what actions an agent can take is a function
of the agent’s cognitive capabilities and knowledge. Figure 7.2.1 is based on Carley
and Newell’s (1994) argument that the cognitive architecture serves to constrain
what the agent can know and when the agent can know what and so constrains
what types of actions are needed. Knowledge about the social and organizational
world constrains what types of actions are possible. In Figure 7.2.1 as you move
down each column the cognitive architecture becomes increasingly well specified
and creates increasing need for more types of actions. As you move across each
row the context becomes increasingly realistic and increasingly knowledge rich. An
agent, in a particular cell, should be capable of taking all the actions to the left and
up of its position. The MODEL SOCIAL AGENT, which is capable of all human
actions, would be in the bottom right corner. Computational organizational models
can be contrasted one with the other in terms of where they are at in this matrix
of possibilities. For example, all models mentioned in Table 1 are positioned in the
relevant cell in Figure 7.2.1.

Today, advances in the computational organization area are being achieved
through the use of multi-agent modeling techniques (see chapters 1 and 2). In most
organizational models, these multiple agents are viewed as cooperating together
to achieve some collective goal such as producing more widgets, finding the best
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and so forth. In this case the agent’s abilities are represented as numerical arrays or
values. For example, what problems are salient to an agent is represented by which
cells in an agent by problem matrix are ones, and agent energy is simply a numeric
value. In VDT the agent is modeled as an in-box, an out-box, a set of preferences for
how to handle information, a set of skills, and so forth. In Plural-Soar each agent is
modeled as a separate Soar agent. In this case the agent’s knowledge is a set of rules
in a series of problem spaces. In very sophisticated models, such as TAC Air Soar
and Plural-Soar, agents are represented as complex, multilevel search processes,
which have several interleaved levels and timescales of reasoning, and include both
strategic and tactical modes.

7.2.2 Organizational Design

An organization’s design can be conceptualized as a specific configuration of param-
eters that control the organization’s behavior. The types of parameters generally
considered include all of the configuration elements noted above (tasks, roles, orga-
nization structure, etc) as well as specific model-dependent parameters (inbox-sizes
and delays for VDT, critical process variances for ACTION, etc.) Taken together,
the parameters with their ranges of potential values define a parameter space, which
in turn defines a space of potential organization designs. The process of designing
an organization is in essence a process of refining and constraining that space to a
single point (or to a set of points for a dynamically-restructurable organization).
Other commonly modeled design-oriented parameters include procedures and
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Within the COT area the two most typical ways of conceptualizing the organi-
zation’s design is as a set of attributes (such as centralized or decentralized com-
munication, authority, skill, or other structures, or density of communication ties)
or as a set of matrices. The attribute approach is used in HITOP-A, the Organi-
zational Consultant, and AAIS. The matrix approach is used in the Garbage Can
Model, CORP, VDT and ACTION. Illustrative structures in both their matrix and
graphical network form are shown in Figure 7.3.
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In Figure 7.3 two examples of each
of three of the types of structures that
comprise the overall design of an or-
ganization are shown. The resource ac-
cess structure (top) links agents to re-
sources; the decision access links agents
to possible decision choices, and the
skill structure links agents to their
skills. Such structures show what is
possible for each agent. A segregated or
specialized structure implies that each
agent is unique. This can imply little
or no overlap in their mental models.
A hierarchical structure at this level
implies that there is one agent who
has comprehensive access to, or knowl-
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ture was embedded in each agent by (1) temporarily restricting its problem-solving
capabilities (i.e., “skills”) to a subset of its full set of available capabilities by
“shutting off” some-this established a specialized “role”; (2) providing communi-
cation and reasoning mechanisms that linked current problem-solving capabilities
(the current role) to agents and thus drove communications dynamically, and (3)
providing strategic-level mechanisms for dynamically reconfiguring agent roles and
role-to-agent maps (selectively activating and deactivating agent skills), thus imple-
menting changes in the organization structure simply by changing the knowledge
and skills of the agents.

In other cases, an organization’s structure is represented as a series of rules for
when to communicate what to whom and how to structure the communication. Rep-
resenting organization’s structure as a series of procedures or rules also facilitates
linking up models of structure with models of intelligent agents. This approach is
taken in the team (or multi-agent) Soar work [37, 62, 63, 6]. In much of this work,
organizational structure changes in response to changes in the environment because
built into the agent’s knowledge base are a set of standard operating procedures
for how to restructure the communication under various conditions.

7.2.3 Task

The organization and its members are engaged in one or more tasks at any point in
time. Further, over time, the organization repeatedly engages in a sequence of often
auite similar tasks. These tasks mav he comnased of suhtasks which mav themaelves
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Figure 7.4 when the task environment oscillates between two types of tasks (such as
selling swimming pools in the summer and selling Christmas goods in the winter),
this oscillation can be rapid (high volatility) or slow (low volatility).

Bias: the extent to which all possible tasks, regardless of task features, have
the same outcome or solution. For example, in the binary choice task, a biased
environment would be one where most outcomes were to choose 1 (as opposed to
an unbiased environment where 1’s and 0’s would be equally likely).

Complexity: the amount of information that needs to be processed to do the
task. For example, in the warehouse task, as the number of items on the order, the
number of stacks, and the number of items per stack increases the complexity of
the task increases. ‘

Typical task environment changes
are step change, oscillating, and grad-

Time ual (see Figure 7.4). In a “step change”
Repetitiveness: degree of similarity environment, a discontinuity caused by

NN legislation or technology alters the en-
== E E E E vironment faced by the organization.

stream of tasks in task environment For example, when a new manufac-
turing technology is introduced firms
change from one task to another that is

- quite different. In an “oscillating” envi-
p— I ronment tasks or sets of tasks are cho-
i avimgmen2] | 5€D alternately from two different sets.
environmen | Aﬁm‘ Seasonal firms, for example, face oscil-

Jow
< l:lzl l l I I |\ lating environments. One such seasonal

firm is the firm which sells swimming
I l I l I | I l ' l | l |imf/ pools in the summer and Christmas
gh
m{nﬁ environment 2 goods in the winters. In an environment
ecadual change of gradual change, minor changes result

in a gradual shift in the types of tasks

/ faced by the organization. For example,
il /| the gradual aging and learning of stu-
dents results in gradual changes in the
types of problem sets the teachers must
devise.

The performance of an organization can be measured with respect to the task
or tasks it is performing. Three types of performance measures are commonly
employed: effectiveness (is the task being performed well), efficiency (is the task
being performed in such as way that output is maximized relative to some input),
and perceived effectiveness (is the organization perceived as performing well by
one or more stakeholders such as the general public, the government, the board
of directors, or the media). For many tasks in which the product is generated by
the group as a whole, while it might be possible to measure an organization’s
overall performance, in real human groups it is often impossible to objectively

Enviroamental Change

Figure 7.4 Characteristics of the task
environment.
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measure the actual contribution of any one member. Three aspects of effectiveness
are: relative performance (how well is the organization performing compared to
other organizations), accuracy (how many decisions are being made correctly), and
timeliness (how rapidly are decisions begin made). For particular tasks or industries
there are often entire literatures on how specifically to measure performance in
specific situations. In general, for most models, multiple measures of performance
are be gathered.

Within the COT area there are two strands of research on tasks. Some models,
such as VDT, offer the capability of modeling a wide variety of organizational tasks,
focusing on dependencies among subtasks but leaving the specific content of what is
done in any particular subtask otherwise unspecified. In contrast, other models such
as CORP are constrained to highly stylized and specific experimental tasks that,
although retaining key features of actual tasks, differ in detail and complexity from
those done in actual organizations. These highly stylized tasks are often referred to
as canonical tasks, and they are valuable as research vehicles because researchers
can share them among different modeling systems and environments and can more
easily compare results. A set of such
tasks is emerging for COT research.
This set includes: the sugar-production
task, the maze task, the binary classi-
fication task, the radar task, the ware-
house task, the PTC task (production,
transportation, and consumption), and
the meeting scheduling task. In Figure
7.5 the binary choice task [5] and the
warehouse task [6] are illustrated.

The warehouse task (Figure 7.5 top)
is a simplified version of the more gen-
Goal: il il owders from Keree i acka, Mhiple ack, eral search task. The key element of a
\— owdersiilems, sgents. /| search task is that there are a set of
( EDIARY things being searched for, a set of lo-

TASE cations where those things might be,

and the organization must find all of
the items. Organizational performance
is based on the rapidity with which
items are found and the effort spent
0001 11000 in locating them. If the items cannot
01010 1010 . be depleted and the rule linking items
Goal: Determine whether the string has more 1's or 0's. Multiple . .
Y agents, odd aumber of bits in string, J] to location does not change, then this
problem, for a single agent, is simply
a matter of remembering where things
are. The task is complicated by agents being too boundedly rational to remember
where things are or to act rapidly enough, by items being depleted or moved, and
by information errors in what items are asked for and how items are represented at

Figure 7.5 Illustrative tasks.
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the various locations.

The binary choice task (Figure 7.5 bottom) is a simplified version of the more
general classification choice task. The key element of a classification choice task is
that there is a set of incoming information, a set of possible outcomes, and the
organization must classify the incoming information to determine which outcome
is most likely to be correct, and then the organization is told what was the correct
classification. Organizational performance is based on the rapidity and accuracy
with which a problem is classified. If the rule linking incoming information to
choice does not change dynamically, then this problem for a single agent, is simply
a matter of remembering what outcome is associated with which incoming pattern
of information. This task is complicated by agents being too boundedly rational
to be able to handle all of the information, by information errors or incomplete
information, and by errors or latency in the feedback.

For both tasks, the goal is not to find the optimal way of solving this task.
Rather, the goal of a computational organization theory model is to do the task as
an organization would and to show the relative tradeoffs between different types of
organizational designs, the relative impact of various communication technologies,
or the relative benefits of different mixtures of agents.

From an organizational perspective, the question is how to structure a group
of agents (what resource structure, what authority structure, what task structure,
etc...) so that the organization as a whole exhibits high performance despite these,
and other, types of complications (or stressors).

7.2.4 Technology

Research on organizational behavior needs to account for the role of information
and telecommunication technologies. Most COT models ignore issues of technol-
ogy within the organization. In a few cases, researchers have begun to look at how
different technologies for processing, storing, retrieving, or communicating infor-
mation might affect the actions of the individuals within the organization and/or
the organization’s overall performance. Two different approaches to examining the
impact of technologies have appeared: technology as tool and technology as agent.

One approach to modeling technology is to treat it as a tool and to differentiate
tools in terms of the attributes such as access, speed, synchronicity, and record-
ability. This approach is taken in the Virtual Design Team (VDT) [42, 35]. Within
VDT, the organizational agents have a suite of communication technologies avail-
able to them like telephone, face-to-face meetings, and email. The agent also has
a preference to send certain information via certain technologies. Using VDT the
researcher can begin to examine how altering the way in which memos are sent,
e.g., by paper or email, may affect the speed with which the organization solves a
task and the amount of rework that needs to be done.

A second approach to modeling technology is to treat it as an artificial agent (and
as altering the information processing capabilities of existing human agents who
have access to the technology). This approach is taken in the constructural model
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(36]. Within the constructural model the agents have an information processing or
communication technology available to them which affects how many other agents
they can simultaneously communicate with, whether the communicated message
must be the same to all receivers, how much information the agent can retain,
and so on. The technology itself may act as an agent with particular information
processing and communicative capabilities. For example, a book as an artificial
agent can interact with many other agents at the same time, send a different message
to each receiver, can survive longer in the population than human agents, and, unlike
human agents, cannot learn. As another example, a website as an artificial agent
can interact with many other agents at the same time, send a different message to
each receiver, has a shorter lifespan than its creator, and can ”learn” by a specific
subset of interactants adding information to the site. Within a computational model
of an organization, such artificial agents can be represented simply as a separate
class of agents with capabilities and knowledge that differ from humans and each
other in systematic ways.

7.3 Dynamics

Many of the key issues in the COT area center around organizational dynamics.
How do organizations learn? How do organizations evolve? What new organiza-
tional designs will emerge in the next decade or century? To examine such issues
researchers use many tools, ranging from empirical observation and explanation
of the behavior of complex agent-based models such as the DVMT, TAEMS, or
Plural-Soar on dynamically-evolving tasks, to complex adaptive approaches or op-
timization approaches, such as genetic algorithms, genetic programming, neural
networks, and simulated annealing. This work demonstrates that interactions be-
tween agent architecture, the way agents are coordinated, and the way the agents
and the coordination structure adapt and change over time affect organizational
behavior. Another common result is that for collections of even minimally intelli-
gent agents organization often spontaneously emerges. Indeed, many studies show
how structures that can be characterized as hierarchies sometimes spontaneously
emerge.

Organizations are seen to be potentially dynamic in many ways. Organizations
are capable of being redesigned or re-engineered moving the organization in a
configuration space, making changes such as what agent reports to what other
agent, or which agent handles what tasks. Agents within an organization are capable
of changing; e.g., by learning or, in the case of artificial agents, by reconfiguring
themselves or acquiring new knowledge. The processes, communications, or types
of interactions can change, and so forth. There is a variety of processes that affect
an organization’s ability to adapt. For example, in order to achieve new levels of
performance organizations often need to engage in an exploration process where
they examine new technologies, new ways of doing business, new designs, and so
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on. However, organizations can also improve performance by exploiting current
knowledge and technologies and getting better at what they do best. Exploration
and exploitation are somewhat at odds with each other and organizations need to
balance these two forces for change [46]. Organizational change is not guaranteed to
improve performance. Organizations are typically more likely to redesign themselves
when they are new and such changes may in turn cause the organization to fail.
Such early failure is referred to as the liability of newness.

A variety of different approaches to organizational dynamics has been taken. To
illustrate some of the issues involved two different approaches to will be briefly
described. The first approach is based on the idea of flexible agents — agents which
can restructure themselves in response to changes in the environment. The second
approach is based on the idea of dual-level learning — organizations in which agent
level and structural level learning occur in response to changes in the environment.

Ishida, Gasser and Yokoo [33, 34] [see also [25])] demonstrated the potential for
flexible organizational structures to emerge from flexible agents. The basic idea
underlying their approach is that the agents are flexible entities and knowledge
interactions are the stable foundation of social grouping. Agents were modeled as
sets of problem-solving production rules; i.e. mappings of individual rules to rule-
collections. These mappings were flexible-rules could migrate from collection to
collection (from agent to agent). Knowledge interactions were modeled as individual
production rules. That is, an individual production rule is a way of saying that under
certain meta-level control (rule-firing) conditions, certain particular knowledge
(modeled as a LHS clause or input) interacts with certain other knowledge (another
specific LHS clause or input) to produce specific additional knowledge (a particular
RHS clause). This new RHS clause maps into (interacts to produce) an LHS
clause for another rule or to an output. These production rules never changed.
Agents flexibly emerged out of a fabric of interactions—production rules—which
got mapped and re-mapped to rule collections. Agents re-configured their local
knowledge and the structure or pattern of interactions among themselves, in
response to changes in the environment. The actual number and character of agents
changed over time as did the organizational structure. Which agents reported to
which other agents was clearly not fixed, since the content and boundaries of agents
themselves were not fixed. Experimental simulations showed that highly effective
organizations tended to learn adaptations over time; i.e., on repeated exposure to
similar (oscillating) environmental changes these organizations went through fewer
adaptations over time. In this sense the organizations of agents learned how to
learn. ,

Carley and Svoboda [9] used the ORGAHEAD model of organizational change to
demonstrate the importance of learning histories and that organizations in which
both the agents and the structure were flexible and could learn over time were
not guaranteed to improve their performance. The ORGAHEAD model is based
on the social conception of organizations as inherently complex, computational and
adaptive in which knowledge and learning occurs at multiple levels. Within ORGA-
HEAD organizational action results from both the behavior of multiple agents and
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the structure (or network) connecting these agents and the way in which knowledge
is distributed among these agents. Agents learn through gaining new knowledge
through experience. This is implemented using a standard experiential learning
model in which agents add new knowledge to old knowledge and continually up-
date the probability with which they take certain actions based on the likelihood
that the proposed action led to the desired outcome in the past. Learning occurs
at the structural level—by altering procedures and linkages among the agents and
tasks (such as who reports to whom and who does what)—as the organization
redesigns and restructures itself. This strategic learning is implemented as a simu-
lated annealing algorithm. In this case there is a CEO (the annealer) that proposes
a change, evaluates the potential impact of this change on the organization by try-
ing to anticipate what will happen in the future, and then decides whether or not to
accept the change according to the Metropolis criteria. According to the Metropolis
criteria the change is always accepted if it is anticipated to improve performance
and is accepted but with decreasing likelihood over time if the change is risky and
is anticipated to decrease performance. The results from these studies show that
not all change is advantageous. Individual and structural learning clash; e.g., or-
ganizations re-engineer themselves for better performance only to lose the lessons
of experience learned by various agents as those new agents are moved to different
tasks or leave the organization. Because of such learning clashes change often re-
sults in maladaptation. The history of how and when the organization changes is as
much a determinant of the organization’s performance as the organization’s design.
And, truly adaptive organizations, those whose performance actually improves over
time are those organizations which engage in a meta-learning to balance change due
to learning at the structural level with change due to gathering new experiences at
the individual agent level.

7.4 Methodological Issues

There are numerous methodological issues involved in the development and testing
of computational models of organizations and organizing. There are three, however,
that require special mention. The first, is the use of virtual experiments to examine
the implications of the computational model. The second, has to do with validation,
verification and the relation of the computational models to data on organizations.
The third, has to do with the role of development tools and frameworks to mitigate
the costs of developing these models.

7.4.1 Virtual Experiments and Data Collection
Unlike early models in this area, such as the Garbage Can Model, today’s com-

putational models of organizations are often sufficiently complex that they cannot
be completely analyzed. For example, the parameter space of set of options is fre-
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quently so extensive that the researcher cannot explore all possible input combi-
nations to determine the performance of the system. Nevertheless, a large number
of combinations need to be explored as the performance of the system may change
drastically for different combinations of inputs. One of the reasons that modern
models are so complex is that organizations themselves are complex. Another, is
that models are often designed by representing process. As such, the same model
can be used to address a number of questions about organizations and organizing.

To address this problem, researchers in this area run virtual experiments. A
virtual experiment is an experiment in which the results are gathered via simulation.
In running a virtual experiment the researcher sets up a series of simulations to
address a specific question. For the virtual experiment the researcher chooses a
small set of parameters—perhaps three—and then varies these systematically over
some range. All other parameters are typically held constant or allowed to vary
randomly in classic Monte Carlo fashion. Statistical procedures for designing and
analyzing the resulting data can be used for virtual experiments just as they can
for experiments using humans in the laboratory.

For example, imagine that the computational organizational model allows the
researcher to control the number of agents, the way agents make decisions (following
standard operating procedures or based on experience, how the agents can send
messages (such as face-to-face one-on-one or group meetings, email to one other
agent or to all other agents), the complexity of the task, the complexity of the
organization’s authority and communication structure, and a variety of other
parameters or options. Such a model could be used to address a number of research
questions including: (1) How large does the organization need to be to reap the
benefits of email? And (2) for the same task are there different combinations of
technology, authority structure, and communication structure that lead to the
same level of performance? To address the first question the researcher might
vary the size of the organization from say 2 to 200 in increments of 20 (11 cells
) and may consider all four communication technologies. This would by a 11x4
experimental design. To address the second question the researcher might consider
all four communication technologies, two different authority structures (e.g., team
and hierarchy), and two different communication structures (e.g., a completely
connected structure like everyone-to- everyone and one that follows the authority
structure (only communication is to or from manager). This would be a 4x2x2
design. In each case some number of simulations would be needed to be run for
each cell, with the number chosen based on the required power of the test.

7.4.2 Validation and Verification

Computational organization theory is a type of grounded theory [28]. That is, the
models that embody the theory are informed by and tested against empirical data.
This grounding is done using various validation and verification procedures. In the
COT area three types of validation are particularly important: theoretical, external,
and cross-model. Theoretical verification has to do with determining whether the
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model is an adequate conceptualization of the real world for assessing the key issue
being addressed. The adequacy of the conceptualization is often determined on
the basis of whether or not a set of situation experts consider the model to have
captured the main factors that they observe in organizations. External validation
has to do with determining whether or not the results from the virtual experiments
match the results from the real world. Finally, cross-model validation has to do
with determining whether or not the results from one computational model map
on to, and/or extend, the results of another model.3

For both theoretical and external validation the real world may be a human
organization, a laboratory experiment, or an organization of artificial agents, and
so on. Organizations leave “traces” of their activities such as accounting records,
stockholder reports, technical connections among parts, operating procedures, web
pages, etc. These can be analyzed using computational methods. Such data can also
be captured, mapped, analyzed, and linked to other computational models either
as input or as data against which to validate the computational models. Such data
helps to form and test computational theories of organization and organizing.

7.4.3 Computational Frameworks

One of the pressing issues in the COT area is the development of a general testbed or
framework that has the appropriate building blocks to minimize the time required
to develop organizational and social models. A variety of tools are beginning to
appear; as yet, however, no one tool dominates. Among the existing tools are:
MACE, SDML, Multi-agent Soar, and SWARM.

MACE
MACE [20, 21] was one of the first general (domain-independent) testbeds for
modeling multi-agent systems. It was one of the first truly concurrent distributed
object systems built. MACE introduced the idea of using agents for all phases of
system construction, user interaction, and management of experiments, as well as
for the basis of the modeled system itself. For example, “user interface agents” were
used as actual asynchronous user-to-system and system-to-user representatives,
interpreters, translators, displayers, managers, and so forth. This feature meant
that the testbed and the experiment were an integrated multi-agent organization
for interacting with the experimenter and for testing ideas about the structure of
organizations of artificial agents.

MACE also included explicit social modeling concepts drawn from sociological
theory. One such idea was the notion of recursive composition of agents so that
a group can itself be treated as an agent with distributed internal structure.
In other words, agents, groups and groups of groups all have “agency”; l.e., a
set of specialized knowledge and a set of possible actions that can be taken.
The second idea is that of the “social worlds.” Herbert Blumer, Anselm Strauss,

3. Cross-model validation is also called docking [2].
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and other symbolic interactionists introduced the notion that individual people
negotiate their lives by operating within social worlds which constrain both what
they need to know and with whom they interact. In MACE, social worlds were
operationalized as knowledge-based agent boundaries. Each agent defined a set of
“acquaintances.” This acquaintanceship knowledge, rather than explicit constraints,
laws or testbed programming structures, defined the boundaries of communication
and interaction, and hence the social structure. This concept provides a clean
semantic model for flexible agent organizations. Finally, MACE used “modeling
other agents” as its foundation of social knowledge and social structure, drawing
on the ideas of G.H. Mead and the symbolic interactionists. Here the concept of
‘taking the role of the other’ served as a unifying principle for mind, self, and
society over time. Acquaintances were also based on Hewitt’s [32] ideas of Actor
acquaintances (which were a much simpler notion, basically just message addresses
for actors). MACE included specific facilities to model a number of features of
other agents (including goals, roles, skills, etc.) in special a acquaintance database,
and it used these to structure individual interactions and thus to establish social
structure defined as patterns of interaction over time. This idea of modeling others
and acquaintances has now become commonplace within MAS and DAI research;
however, few researchers recognize the link they are making to social theory.

SDML
SDML (Strictly Declarative Modeling Language) (53, 17, 52] is a multi-agent
object-oriented language for modeling organizations. SDML is particularly suited
for modeling multi-agent systems in which the agents interact in a team (flat)
or hierarchical organizational structure. SDML is effectively theory-neutral with
respect to the cognitive capabilities of the agent. It is flexible enough to represent
both simple agents and more sophisticated agents as well as the linkages among
them. SDML currently includes various libraries for alternate architectures such as
genetic programming and Soar. These libraries facilitate exploring the interaction
between agent cognition and organizational design.

Key social ideas are captured in the SDML architecture. For example, social
agents are capable of distinguishing between explanation and action. The declara-
tive representation within SDML makes this possible. Within SDML agents in the
same class can be represented by sharing rules between them. Another key idea in
organizations is that within the organization there are predefined linkages among
agents and predefined roles in which knowledge is embedded and that constrain be-
havior. From this perspective, structure is patterns of positions or roles over time.
This notion of structure is integral to SDML as within SDML the structure of the
multi-agent system is represented as a container hierarchy. For example, agents may
be contained within divisions which are contained within organizations. Containers
and their associated agents are also linked by an inheritance hierarchy. Change in
agents and in the linkages among them is made possible by controlling the time
levels associated with agent and container data bases.

Multi-Agent Soar
Soar is a computational architecture for general intelligence [38]. Agents are goal
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directed and can be characterized in terms of their goals, problem spaces, states,
operators, and associated preferences. Preferences can be used to represent shared
norms or cultural choices about the existence of, acceptability of, or relative ranking
of goals, states, problem spaces and operators. The agent’s goals need not be
articulable and can be automatically generated or consciously selected by the agent
as deliberation ensues. The agent’s long term knowledge base is a set of rules. The
agent’s short term memory is the set of information currently in working memory.
Soar was designed as a specification of key psychological ideas such as bounded
rationality. As such, Soar can be thought of as a unified theory of cognition.
Indeed, empirical research on Soar suggests that in many instances its behavior
is comparable to that of humans both in how well it does and in what errors are
made.

Multi-agent Soar is an approach to modeling teams as collections of Soar agents
(37, 62, 63, 6]. The current Soar system facilitates inter-agent communication and
does not require each agent to be a separate processor. Multi-agent soar is built
around three core social ideas: internal models of other agents, cognitive social
structures, and communication. In multi-agent Soar models, each team member is
a Soar agent with a mental model of what other agents either know or will do in
certain circumstances. This knowledge may include expectations about the other
agents’ goals, preferences, and so forth and allows the agent to anticipate what it
thinks others will do. Further, each Soar agent in the team has embedded in its
knowledge (its set of rules) a cognitive social structure. A cognitive social structure
is an agent’s perception of who interacts with whom, how, and about what. Finally,
each Soar agent in the team has knowledge about how to communicate and what
to communicate when and to whom, and how to compose and parse messages.
Communication in these models is handled by passing communique’s with specific
task-related content. Within the multi-agent Soar models, agent’s typically monitor
their environment and so can be interrupted by communications from other agents,
changes in the environment, or changes in what other agents are present.

SWARM
SWARM is a multi-agent simulation language for modeling collections of concur-
rently interacting agents in a dynamic environment [61, 51, 1]. SWARM emerged
from of work in computational biology. As such, SWARM is particularly suited to
exploring complex systems composed of large numbers of relatively simple agents
which interact as they seek to optimize some function. Within SWARM the agents
can, to an extent, dynamically restructure themselves to accommodate changes in
the input data and the objective function. In a SWARM model it must be possi-
ble to define the objective function. SWARM agents can act either synchronously
and asynchronously. Consequently, many different technological or biological con-
straints on communication and adaptation can be modeled within SWARM. One of
the intended applications of SWARM is to artificial life applications. That is, one
of the goals of SWARM models is to demonstrate that certain complex group level
behaviors can emerge from concurrent interactions between agents who by them-
selves are not capable of exhibiting that complex behavior. One of the intents of




7.5 Conclusions

25

a SWARM model is to “grow” realistic looking social behaviors. Todate, there has
been little attempt to empirically validate whether the behaviors grown in SWARM
models are comparable to those seen in human systems. ‘

The key social idea that is captured in SWARM is the logic of collective intel-
ligence. That is, over time systems of SWARM agents come to exhibit collective
intelligence over and above the simple aggregation of agent knowledge. This notion
of emergent intelligence is central to the science of complexity. A second key idea
that is captured in SWARM is evolution. That is, there are large populations of
agents who can engage in reproductive activities and cease to exist.

7.5 Conclusions

Computational organization theory (COT) is the study of organizations as compu-
tational entities. As noted, the computational organization is seen as taking two
complementary forms: [1] the natural or human organization which is replete with
information and the need to process it and [2] computational systems composed of
multiple distributed agents which have organizational properties. Computational
analysis is used to develop a better understanding of organizing and organizations.

Organization is seen to arise from the need to overcome the various limitations on
individual agency—cognitive, physical, temporal, and institutional. Organizations,
however, are complex entities in which one or more agents are engaged in one or
more tasks and where knowledge, capabilities and semantics are distributed. Thus,
each organization has a design, a set of networks and procedures linking agents,
tasks, resources, and skills that describes these various distributions.

Computational organizational models are grounded operational theories. In other
words, unlike traditional DAI or multi-agent models COT models draw on and have
integrated into them empirical knowledge from organization science about how
human organizations operate and about basic principles for organizing. Much of
this work follows in the information processing tradition. Many of the COT models
are models composed of other embedded models. In these multi-level models, the
traditional distinction between normative and descriptive often becomes blurred.
For example, the models may be descriptive at the individual level—describing
individuals as boundedly rational, with various built in cognitive biases—but
normative at the structural level—finding the best organizational design subject
to a set of task based or procedural constraints.

Computational analysis is not simply a service to organizational theorizing;
rather, computational organizational theorizing is actually pushing the research en-
velope in terms of computational tools and techniques. COT makes contributions
to mainstream Al and CS, including fostering progress on such issues as: large
scale qualitative simulation, comparison and extension of optimization procedures
(particularly procedures suited to extremely complex and possibly changing per-
formance surfaces); aggregation/disaggregation of distributed objects; on-line/off-
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line coordination algorithms; organizational and multiagent learning; semantic het-
erogeneity; and understanding/managing the tradeoff between agent quantity and
computational complexity. Research in this area requires further development of
the scientific infrastructure including developing: easy-to-use cost-effective compu-
tational tool kits for designing and building computational models of organiza-
tions, teams, and social systems (e.g., a multi-agent oriented language with built in
task objects and communication); multi-agent logics; intelligent tools for analyzing
computational models; validation procedures, protocols, and canonical data sets;
managerial decision aids based on computational organization models; and proto-
cols and standards for inter-agent communication. Key theoretical concerns in this
area center around determining: what coordination structures are best for what
types of agents and tasks; whether hybrid models (such as a joint annealer and
genetic programming model) are better models for exploring organizational issues
and for locating new organizational designs; representations for, and management
of, uncertainty in organizational systems; the interactions among, and the relative
advantages and disadvantages of various types of adaptation, evolution, learning,
and flexibility; measures of organizational design; the existence of, or limitations of,
fundamental principles of organizing; the tradeoffs for system performance of task-
based, agent-based, and structure-based coordination schemes; representations for
information and communication technology in computational models; and the re-
lation between distributed semantics and knowledge on teamwork, organizational
culture and performance.

Three directions that are particularly important for future research are organiza-
tional design, organizational dynamics and organizational cognition. The key issue
under organizational design is not what is the appropriate division of labor, nor
is it how should agents be coordinated. Rather, there is a growing understanding
that there is a complex interaction among task, agent cognition or capabilities, and
the other structural and procedural elements of organizational design. As such, the
issue is finding what combinations of types of agents, structures (patterns of in-
teractions among agents), and ways of organizing the task are most likely to meet
the organization’s goal. The key issue for organizational dynamics is not whether
or not organizations adapt. Rather, the issues center on how to encourage effective
learning, how to change to improve performance, how to retain capabilities and
knowledge as the organization changes to address changes in the environment, and
what new designs are possible. As to organizational cognition (perception, memory)
there are a variety of issues ranging from how to represent organizational knowl-
edge, to what level of sharing (of knowledge, procedures, or semantics) is necessary
and by which agents to ensure effective organizational performance.

7.6 Exercises

1. [Level 1] Provide a critical discussion of the following statement. You do not
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need to know organizational theory to create good models of organizations. Anyone
who has ever worked in an organization can develop such models.

2. [Level 1] Provide a critical discussion of the following questions. How does the
organizational design and the task bound the agent? What are typical constraints
and opportunities afforded the agent by the design and task? Provide at least five
examples for both design and task,

3. [Level 1] For an organization that you are familiar what types of agents exist in
that organization, what are their limitations.

4. [Level 1] Develop a measure of coordination based on structures like those shown
in Figure 7.3.

5. [Level 2] Develop a simple model of a small group of agents (1,2 or 3) trying to
collectively solve a simple canonical task such as the binary choice task or the maze
task. What additional issues are involved, and what extra features does the model
need, as you move from 1 to 2 to 3 agents working together to do the task? How is
performance affected by the increase in the number of agents?

6. [Level 3] Reimplement and extend in one or more ways the garbage can model of
organizational choice [11]. There are many possible extensions, some of which have
been discussed in the literature. Possible extensions include, but are not limited
to the following: adding a formal organization authority structure, having agents
work on multiple tasks simultaneously, altering the task so that it requires specific
skills and not just energy to be completed, and allowing agent turnover. Show that
your model can replicate the original results reported by Cohen, March and Olsen
(i.e., dock the models {2]). Then show which results are altered, or what additional
results are possible, given your extension.

7. [Level 8] Reimplement and extend in one or more ways the CORP model of
organizational performance [43]. There are many possible extensions, some of which
have been discussed in the literature. Possible extensions include, but are not limited
to the following: adding an informal communication structure, having agents work
on multiple tasks simultaneously, allowing agents to be promoted, altering incoming
information so that it is potentially incomplete or erroneous, altering the nature
of the feedback (e.g., by delaying it or making it more ambiguous), and making
the agents competitive (e.g., make agents try to maximize the performance relative
to other’s performance). Show that your model can replicate the original results
reported by Lin and Carley (i.e., dock the models). Then show which results are
altered, or what additional results are possible, given your extension.

8. [Level 8] For a small organization (5 to 30 people) develop a description of
its design. What is the formal organization chart? What is the informal advice
network (who goes to whom for work related advice)? What are the main tasks
and subtasks being accomplished? Develop a task dependency graph matrix. What
are the skills or resources needed to do those tasks? Develop a resource/skill access
matrix and a resource/skill requirements matrix. What were the major difficulties
you encountered in locating this information for an actual organization?
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9. [Level 4] Develop a comprehensive representation scheme for task or a multi-
agent language for doing task based models of organizations. Consider how task is
represented in various organizational models. What are the limitations or features
of the various representation schemes? What features should be built into your
approach? Demonstrate the strength of your approach by reimplementing one or
more existing COT models.

10. [Level 4] Develop a general purpose approach for modeling telecommunication
and information processing technologies in the organization. What are the critical
features or components of these technologies that must be modeled? How does
your approach contrast with the technology as agent approach and the technology
as feature approach? What are the limitations and advantages of your approach?
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