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Theworld we live inis acomplexsocio-technical system. Although social, organizational
and policy analysts havelong recognized thatgroups, organizations, institutionsand the
societies in which they are embedded are complex systems; it is only recently that we have
had the tools for systematically thinking about, representing, modelling and analyzing
these systems. These tools include multi-agent computer models and the body of
statistical tools and measures in social networks.

This paper uses social network analysis and multi-agent models to discuss how to
destabilize networks. In addition, we illustrate the potential difficulty in destabilizing
networks that are large, distributed, and composed of individuals linked on a number of
socio-demographic dimensions. Thespecific resultsherein are generated, and ourability
to think through such systems is enhanced, by using a multi-agent network approach to
complex systems. Such an illustration is particularly salient in light of the tragic events
of September 11, 2001.

WHAT CAN OUR TOOLS DO?

There are a number of ways in which our tools, both classical social network techniques and the
combination of networks and multi-agent systems, can help us understand network destabilization.
Before describing these, an important word of caution is needed. Network tools are clearly not a
panaceaand it isimportant thatasa community we do not oversell these tools. Thatbeing said, there
are at least two fundamental ways in which network statistics and measures can be brought to bear to
address issues at the heart of destabilizing networks.
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Location of critical individuals, groups, technologies

Given any network, such asa communication network, or alliance structure, or monetary flow, where
the nodes are individuals, groups, computers, etc., a number of network measures such as centrality
or cut-points can be used to locate critical nodes. Additional measures based on an information
processing view of organizations also exist for locating critical employees, redundancy, and potential
weak points within groups and organizations. Many of the traditional social network measures and
the information processing network measures are embedded within ThreatFinder (Carley, 2000).
ThreatFinder is a computer program that uses a combination of network analysis and multi-agent
modelling to determining the potential information security risk from personnel that an organization
faces due to its architecture. The degree, type, and location of possible threats, such as critical em-
ployeesand lack of redundancy are assessed. These “location” techniques are useful within companies
to help ensure information security and are useful within and among groups and organizations in
mitigating the effectiveness of networks. For example, individuals or groups with the following
characteristics can be identified:

1. Anindividual orgroupwhere removal would alter the network significantly;e.g., by making it less
able to adapt, by reducing performance, or by inhibiting the flow ofinformation. Illustrative nodes
are those high exceptionally high in centrality (Bonacich, 1987) or high in structural holes (Burt,
1992).

2. An individual or group that is unlikely to act even if given alternative information. This can be
found as an individual high in centrality and Simmelian ties (Krackhardt, 1999).

3. Anindividual or group that if given new information can propagate it rapidly. Such individuals
may be seen as gossips, innovators, or early adopters (Rogers and Shoemaker, 1971). Possible
indicators are high degree centrality or high structural holes.

4. An individual or group that has relatively more power and can be a possible source of trouble,
potential dissidents, or potential innovators. Individuals with relatively more power may be high
in centrality (Bonacich, 1987; Brass, 1991; Brass and Burkhardt, 1992). Possible innovators may
be those who are isolates or those who have moved about so much that they have broad and
distributed knowledge and contacts.

5. Anindividual orgroupwhere movementtoacompeting group or organization would ensure that
the competing unit would learn allthe core orcritical information in the original group or organi-
zation (inevitable disclosure) (Carley, 2000).

6. An individual, group, or resource that provides redundancy in the network (Carley and Ren,
2001). Measures of redundancy are available in ThreatFinder (Carley, 2000).

For the measures discussed above most can be calculated using UCINET?® or the meta-network R-
package package”.

Pattern location

Over the past few years, major advances have been made in graph level analysis. These techniques
include the P* family of tools, network level metrics (such as group and graph clustering algorithms
using distance metrics such asthe Hamming distance). These pattern location techniques can be used
on any data that can be represented as graphs; such as, interaction or communication networks,
monetary networks, inter-organizational alliances, mental models, texts, web pages, who was present
at what event, and story lines. These pattern location techniques, particularly when combined with
machine learning techniques, are likely to be especially powerful for locating patternsnotvisible to the
human eye. A key to many of the detection algorithms is that they search for behavior that is different

® http://eclectic.ss.uci.edu/~lin/ucinet.html

* http://legba.hss.cmu.edu/R.stuff
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from some baseline. Thus, ifrun on network data, The baseline might be networks, biased networks,
or a sample of existing networks. For example, the following kinds of patterns or breaks in patterns
can be examined:

1 The basic components that account for the networks structure can be identified; e.g., the number
and types of sub-groups, or the number of triads, stars, and the extent of reciprocity (Anderson,
Wasserman, and Crouch, 1999; Wasserman, and Pattison, 1996).

1 The central tendency within a set of networks, and the networks that are anomalous when
contrasted with the other networks can be located (Banks and Carley, 1994).

1 Criticaldifferences between two or more sets of networkscan beidentified;e.g.,are programming
teams structured differently than sales teams or are managers’ mental models different from
subordinates (Banks and Carley, 1994; Carley and Banks, 1993; Butts and Carley, 2001). For sets
of concepts, comparison techniques based on theidea oflossy integration and settheory have been
used to compare two or more concept networks or mental models (Carley and Palmquist, 1992;
Carley, 1997). In principle, these methods developed for text analysis could be utilized for the
comparison of social networks.

1 Which components in the network are structured significantly differently from the rest of the
overall network? Astandard approachisto locate the nodes or sets of nodes that differ significantly
from other nodes on standard measures such as degree centrality, betweenness, and number of
cliques. However, for extremely large networks or where only samples of data on the network exist
this approach may not be feasible (processing time is excessive, space requirements are too high,
or missing data is too high). Under these conditions, you can use machine learning algorithms
such as simulated annealing (Kirkpatrick, Gelato and Vichy, 1983) or Bayesian updating (Butts,
forthcoming; German, Carlin, Stern, and Rubin, 1995; Robert, 1994) to search through the
network to locate the node or set of nodes that are highest on some criteria or best match some
criteria such as excessively high or low centrality.

1 Whether the existing network is coherent; i.e., what is the likelihood that there are key missing
nodes or relations. One approach hereisto locate the differences between an actual network and
a network predicted from first principles to see where there are differences. For example, if two
individuals are not interacting in the social network but should be based on the principles of
relative similarity and relative expertise, then there may be hidden relations. This is one of the
calculations in ThreatFinder (Carley, 2000).

What-if analysisand policy guidance

Inaddition, multi-agentmodels of adaptive agentsembedded insocialnetworks can be used to address
issues of network destabilization by providing managerial and policy guidance (Carley, forthcoming
a). Inamulti-agentcomputational program the behavior of the group or organization emergesfrom
theactionsand interactionsof the agentswho are members ofthegroupor organization. Typicallythe
agents are able to learn and adapt, although models vary widely in the extent to which the agents are
cognitively realistic (Carley, forthcoming b). Few multi-agent models have more then 100,000 agents
and in general the number of agents decreases as the cognitive complexity and realism of the agents
increases. Multi-agent systems are typically non-linear and exhibit path dependence. Most multi-
agent models have no network underpinning. In the artificial life models (Epstein and Axtell, 1997)
the agents typically interact on a grid with physical proximity serving as a proxy for networks. In the
most cognitively sophisticated models, such as the Soar models (Tambe, 1997), the set of interactions
and so the network are predefined. However, recently, there has been a movement to combining
multi-agent and network models (More and Ramanujam, 1999; Levinthal, 1997; Macy and Skvoretz,
1998; Carley, 1990; Carley and Svoboda, 1997).
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Multi-agent network models, if based on known information about general or specific characteristics
of groups, cansuggest generalor specific guidance about how to affect or protect theunderlyinggroup,
organization or society. Exactly what these models can address depends on the purpose of the model
anditsveridicality. Followingisaseries ofillustrativeexamples ofpotentialapplications where various
researchers using multi-agent network models have worked or are working:

1 Suggesting factors that make groups adaptive or maladaptive (Carley and Lee, 1998).

1 Examiningthe efficacy of different policies for destabilizing networks; e.g., what kinds of networks
can be destabilized by simply removing the leader (Arquilla and Ronfeldt, 2001)? What are the
characteristics of networks that are difficult to destabilize (Watts. 1999; Carley, forthcoming a)?

1 Examining the efficacy of different datacollection and privacy policies. Forexample, would we be
more likely to mitigate a bioterrorist attack if we kept absentee data or if we tracked hits on web
based medical information pages (Carley, Yahjaand Fridsma, 2001)?

' Predicting the rate ofinformation diffusion and the impact of different technologies for spreading
information and so changing beliefs through social influence processes (Oram, 2001; Watts, 1999;
Carley, forthcoming c; Macy and Strang, forthcoming).

1 Predictingvotingoutcomes orlikelihood of consensusingroups, given the existing social networks
and initial beliefs (Friedkin, 1998; Bueno De Mesquita and Stokman, 1994).

1 Suggesting factors that can slow the rate of response by a network to a new situation or event,
mitigate the emergence of new behaviors, and limit the ability of the networkto adapt (Wegner199
5; Axtell, 2000; Carley, forthcoming a).

1 Predicting civil violence (Epstein, Steinbrunner and Parker, 2001)

1 Determining how close your group or company is to having its core competencies and processes
discovered by another group (i.e. inevitable disclosure) (Carley, 2000).

1 Examinetheefficacy ofdifferentmarketingand information warfare strategies (Pew and Mavavor,
1998, ch. 11).

Doubtless each researcher in this area has thought of these and other possible applications. We note
that at the moment there are a number of difficulties in applying existing tools to complex socio-
technical systems. First, most of the existing multi-agent network models are implemented for small
networks. Even when the underlying measure can be used on large networks, containing 1000s or
10,000s of nodes, the underlying computer software or hardware often limits the feasible analysis to
small networks, those less than a few hundred nodes. For example, UCINET can handle large node
sets, but, in practice the memory limitations on the machine on which it is run and the lack of
parallelization procedures means that it is an impractical tool for networks of tens of thousands of
nodes. Second, we have no public databases of large networks on which to test new technologies.
However, large networks based on web linkages are being developed. Third, the existing measuresand
tools work best when the data is complete, i.e., when we have full information about the links among
the nodes. However, large scale distributed networks may have considerable missing data. We will at
best have sampled information, some of the information may be intentionally hidden (hence missing
data may not be randomly distributed), the data is likely to be at different time scales and layers of
granularity, and the cost and time to get com plete information may be prohibitive. Thus, we need to
begin to address issues of sampling, of estimating the impact of missing information, of estimating
networks given basic human cognitive properties and population level and cultural data, and in
combining data from alternative and dispersed sourcesusing techniques such as multiple imputation
(Rubin, 1987,1996; Schafer, 1997; Yuan, 1990). There are obviously other difficulties, but even these
providesomeguidance for what to expectwhen applying our existing tools to complex socio-technical
systems.
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WHY MIGHT IT BE DIFFICULT TO DESTABILIZE DISTRIBUTED NETWORKS?

One possible approach at overcoming, or at least ameliorating, some of these difficulties is to use
computational analysis, where the models combine multiple cognitively realistic agents and social
networks. We now illustrate the use of such models to address the issue of network destabilization.
Asnoted, socio-technical systems are complex. First,letusconsider the source of complexity. We can
point to a large number of sources of complexity: e.g., new technologies, emergent cultures, complex
trade laws, etc. At a more fundamental level there are two very dominant sources: (1) humansadapt
and (2) humans interact. Humans adapt in part because they can learn, but what they learn is limited
because they are boundedly rational. Human interactions are of course influenced by the web of
affiliations (kinship, religion, economics, etc.) that interlock people to varying degrees at different
times. Since individuals can adapt and are woven together into a complex network, the groups,
organizations and institutions of which they are members also have these properties. Thus, we have
intelligent adaptive agents and multiple networks. However, these are not de-coupled systems.
Humans learn when they interact with each other and what they learn changes the knowledge network
(who knows what), with whom they interact (the social network), and how they perform tasks. Who
you know and what you know are linked together in a feedback loop. The result is that the networks
in which people are embedded are dynamic.

Network dynamicsisafunction of not just the social network, but a meta-matrix of networks—notthe
leastof which are the knowledge network (who knows what), the information network (whatideas are
related to what), and the assignment network (who is doing what) (Carley and Hill, 2001, Krackhardt
and Carley, 1998). A highly simplified version of this meta-matrix representation of the meta-network
isshownin Table 1,whereforthesakeof simplicity only the networksrelated to agents, knowledge and
tasks are shown. As noted by Agranoff and McGuire (1999) “the ability to tap the skills, knowledge,
and resources of others is a critical component of networking capacity,” the ability to manage the
organization. Similarly, to determine how to change or destabilize a network, then, it isimportant to
consider the further webs in which a social network is situated and the way in which human cognition
operates (Krackhardt, 1990; Carley and Hill, 2001).

Table 1. Simplified Meta-Matrix Representation of the Meta-Network
Agents Knowledge Tasks
Agents Social Network Knowledge Network Assignment Network
Knowledge Information Network Needs Network
Tasks Task-Precedence Network

We have built a relatively sim ple computational model of this dynamic process — CONSTRUCT-O
(for a description of this model, see Carley and Hill, 2001). Such models are valuable in addressing
theoretical, social, managerial and policy issues (Carley, 2001; Carley and Gasser, 1999; Epstein and
Axtell, 1997). A key feature of these models is that they let us think systematically about the rami-
fications of policies, at a scale not comprehensible by the unassisted human mind, and so can help
uncover major problems. We can use this model to address the question “what leads to the desta-
bilization of networks?” Itisworth noting thatthe predecessor ofthismodel, CONSTRUCT, was used
to examine the factors enabling group stability (Carley, 1990; 1991) and the evolution of networks
(Carley, 1999).

The model works by first assuming a set of agents who differ in terms of their socio-demographic
characteristics (such as age, gender, education), their knowledge and beliefs. Individuals also forget.
Individuals interact if they are available for interaction and are motivated to do so. There are two basic
motivations to interact — relative similarity and relative expertise — both of which are basic to human
nature. Relative similarity is the tendency of people to choose to interact with those who are more
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similar. Relative expertiseisthetendency of people to seek outnew information from those whom they
perceive to be more expert. When people interact they learn and their learning changes whom they
view as relatively similar or expert, how well they perform the tasks to which they are assigned, and who
can be assigned to which tasks.

These changes also alter whether or not thereisan emergentleader and which individual takes on that
role (Cohen, Bennis and Wolkon, 1962). Individuals are more likely to develop effective leadership
skills if they have high cognitive ability, prior experience (Atwater, Dionne and Avolio, 1999), and
extroversion (Kickuland Neuman, 2000). Individuals who have high cognitive ability and experience
typically take on more tasks, are given more resources, and have more knowledge. Prior experience
and extroversion often lead to a wider range of interaction partners. Stress typically occurs when cog-
nitive load increases. Additionally, individuals are likely to emerge as leaders if they have high stress
tolerance, have strong self-esteem (Atwater, Dionne and Avolio, 1999) and are open to new exper-
iences (Kickuland Neuman, 2000). As such they are likely to be willing to tell others what to do, shed
tasks, give away resources, etc. Individuals with high cognitive loads are likely to be emergent leaders
for a variety of reasons including they are most likely to tell othersto do things (i.e., shed tasks) and
most likely to be ina position of power in terms of what and whom they know. An agent is more likely
to be an emergent leader and to direct the activity of the distributed network, even if only temporarily,
ifthatagentisinastrongstructural position inthe social, knowledge and assignment networks. Overall
cognitive load, not simply structural power, is key to tracking who is likely to be the emergent leader.
Based on these considerations, we define the emergent leader as the individual with the highest
cognitive load (the most people to talk to, the most information to process, the most tasks to do, the
hardest tasks to do, the most people to negotiate with to getthe job done, etc.) (Carley and Ren, 2001).

The cognitive resources of the group and the leader, the cognitive load, and the behavior of the leader
have a combined impact on performance (Fiedler, 1986). Consequently, emergent leaders, by virtue
of their centrality across the entire meta-network are good candidate agents to remove if the goal is to
destabilize the network. Therefore, the effect ofnode extraction on network evolution willbe examined
by removing the emergent leaders from the networks at a particular pointin time and then seeing how
the networks evolve.

Figure 1. A Stylized Hierarchical Centralized Network

There are atleastthree indicators of destabilization. One iswherethe rate ofinformation flow through
the network has been seriously reduced, possibly to zero. A second is that the network, as a decision-
making body, can no longer reach consensus, or takes much longer to do so. A third is that the
network,asanorganization,islesseffective;e.g., itsaccuracy atdoing tasks orinterpreting information
has been impaired. There are other instances of network instability, but such measures are sufficient
for this brief introduction.
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Using this model we examine two very distinct structures —a hierarchical centralized structure and a
distributed decentralized one. For both structures, although different in scale, the underlying
distributions of knowledge/resources and tasks are similar as are the networks linking knowl-
edge/resources to tasks and tasks to tasks. These other networks are not shown as the figure becomes
unwieldy; however, they doimpact who learns what over time and so changes in the social network and
cognitiveload. The Krackplot representations ofonly thesocial network component of these structures
are displayed in Figures 1 (hierarchical) and 2 (decentralized). In Figures 1 and 2, the spatial
arrangementof nodes represents knowledge proximities between agents (i.e., the closer two nodes the
more likely they have similar knowledge). Those closer together also tend to share more knowledge.
The amount of knowledge, resources and tasks associated with each individual agent is not shown.
Individuals seek out otherswho (1) are similar, knowledge-wise and (2) can provide the resources for
completing his or her tasks. A line connecting two agents indicates that during the window of
obhservation these two agents interacted with each other. The bold-lines denote strong interaction
network ties that occur when an agent has established a relationship that is part functional (i.e., task-
resource based) and part social (i.e., general knowledge and demographic based).

A rectangular node labeled ‘LEADER’ denotes the “Emergent Leader” agent. This agent is the
individual with the highest cognitive load (i.e., most resources, tasks, and communication/network
ties). An oval node labeled ‘CENTRAL’ denotes the agent with the most network ties. If the agentis
both the emergent leader and the most central then a rectangular node labeled ‘LEADER/CENTRAL’
denotes that agent. Some agents may share information with others but are nevertheless not
interacting with any of the other agents during a particular window of observation. Such agents will
appear as isolated nodes with no lines connecting them to other agents.

‘_.k\.
LEADER-/CENTRAL
‘

Figure 2. A Stylized Distributed Decentralized Network

Itis important to note that if you only observe the social network, as in Figures 1 and 2, you cannot
determine who has the highest cognitive load and is therefore likely to emerge as a leader. In the
hierarchal network (Figure 1), or for that matter in any network, the emergent leader is not necessarily
the most central agent. If we were to only looks atthe social network, we mightassign leadership on the
basis of the power of the agent’s structural position. That is, examining just the interaction matrix one
might be tempted to conclude that the agent with the highest degree centrality or betweenness was the
leader. However, this can be misleading. While thereis often acorrelation between an agent’s position
in the social network and their overall cognitive load, it is not perfect. Centrality is only one of the
factors that enters into the overall calculation of a cognitive load. To determine loads, the networks
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linking individuals to knowledge/resources, tasks are needed, as are the networks linking knowledge
to tasks and tasks to tasks. For example, in Figure 1, the most central agent, although interacting with
the most others and being cognitively more similar to the most others (closeness in physical space), is
notthe emergentleader. The reason isthatthis social network islinked into a set of networksdenoting
who knows what, does what, what is needed to what tasks, the order in which tasks need to be done,
and soon.

When they visually examine the hierarchical network, most people will predict that removal of either
the leader or the central agent will be most likely to destabilize the structure. Further, given just the
social network, most people predict that the most central agent is likely to emerge as the new leader.
In contrast, for the distributed decentralized structure, Figure 2, itis not clear whether there isasingle
node that could be removed to destabilize the network. There is substantial disagreement among
people who examine this network over which node to remove to destabilize the network, and even over
whether it is even possible to destabilize the network. This isthe case even when, as in Figure 2, the
emergentleaderisthe most centralagent. Further,there s little agreementoverwho will emerge as the
leader.

To really determine whether removal of a node will destabilize a structure we need to account for
adaptation. Since individuals can learn,theunderlyingsocial networks are dynamic. They will change
whether or not various nodes are removed. Further, individual learning will lead the overall structure
to adapt, often in unforeseen ways as nodes are removed or isolated. Asaresult, removing anode may
result in a new emergent leader. This new emergent leader cannot be predicted just from the social
network. A possible path of change for the hierarchal network in Figure 1 is shown in Figure 3 and a
transition path for the distributed network of Figure 2 is shown in Figure 4. In each graph, the
emergent leader is again shown as a rectangular node labeled ‘LEADER’ and the most central agent as
an oval node labeled ‘CENTRAL." In addition, to help orientthe reader, when anagentisremoved the
position that that agent would have had if he/she had not been removed is labeled with the word
‘REMOVED.’

REMOVED

CENTRAL

Figure 3a. Removal of an Emergent Leader in a Stylized Hierarchical
Centralized Network — Immediate Response to Removal of Emergent Leader

For the hierarchy, we begin with the hierarchy shown in Figure 1. Initially, the emergent leader’s
cognitive load is significantly higher than the subordinates in the hierarchy. Then over the course of
thesimulationtheemergentleaderisextracted. Upon destabilization, the distribution of cognitive load
shifts such that more agents have higher loads, and more than one leader emerges. Figure 3a contains
the resultant network that emerges after the original emergent leader is removed. Immediately, the
extraction of the leader agent in Figure 1 causes the hierarchy to break up into two smaller networks.
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Once the leader is extracted the network reforms with two emergent leaders who are essentially
competing for control — neither of which is the most central agent. After further simulation, the
network has adapted to the lossand a new single leader has emerged (see Figure 3b). Inreforming itself
back into a hierarchy, a new leader emerges whose cognitive load is higher than that of the first leader,
indicative of a less pure hierarchy. Not all hierarchies will change in this way — but this diagram is
illustrative of the impact of extracting a leader on a hierarchical network.

Removing the leader in a hierarchy not only destabilized the network, it also makes the overall
communicationstructure moredecentralized. When centralized groups become decentralized initial
leaders are often demoted and moved to positions of leastimportance (Cohen, Bennis, and Wolken,
1962). Cohen, Bennis and Wolken (1962) suggested that such a change may be a psychological
response to imposed leadership. Our analysis suggests that this may simply be the result of structural
differencesin the meta-network which lead to differencesin cognitive load. Noticethatthe leader on
theright in Figure 3aisdemoted in 3b.

REHOVED

LEADER/CEMNTRAL

Figure 3b. Removal of an Emergent Leader in a Stylized Hierarchical
Centralized Network — Eventual Response

Thisexampleillustrates that destabilizinga hierarchy may haveunintended consequences— demotion
of leaders and initial in-fighting. Italso illustrates thatvisual inspection of the social network alone led
toanincorrect prediction as to who would emerge as the new leader. We might ask, what if the central
agent rather than the leader was removed. Further simulation analysis shows that not only does the
hierarchy not break into factionsinitially, but its performance is hardly even affected. For hierarchies,
the simulation analysis suggests that regardless of the size of the hierarchy, removal of the leader
degrades performance more than removal of the central agent. Moreover, hierarchies, relatively
quickly restabilizewith onlyasingle new emergentleader. Anumber of actions may have consequences
similar to node removal: e.g., isolating, hiring away the leader, reducing the number or complexity of
tasks the leader isdoing, or stopping the flow of information or resources through all links connected
to the leader. For the hierarchical network, the leader’s ability to control the hierarchy can also be
decreased by adding new links in the social network. Such additional linkages can also lead to
performance drops.

In Figure 4, the consequences of removing an emergent leader on a distributed decentralized network
are portrayed. The initial structure isthatin Figure 2. As with the hierarchy, during the course ofthe
simulation the emergent leader, LEADER/CENTRAL, is now extracted. In Figure 4a, like Figure 3a,
the position that the original leader would have held if he/she had notbeen extracted is denoted by the
word ‘REMOVED’. InFigure 4a we see thatafter that a new leader emerges in the same vicinity asthe
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original LEADER. However, this newly emergent leader is neither the most central nor does he/she
re-establish the ties that were lost with the former leader. In the long run, Figure 4b, multiple new
leadersemerge. Inaddition, the agentwho in Figure 4awas the most centralalso becomes anemergent
leader. A third leader emergesin a structural position very similar to that of the original leader (who
was removed). The factthat two of the new leadersare near the original leader is indicative of the fact
that the structure of the task, knowledge and resource networks (which are not visible) in that vicinity
promotes the development of emergent leaders. Further, when the original leader was present, that
agent was inhibiting the emergence of alternative leaders. The original leader had maintained key
resources, knowledge and important ties. The original leader had played the role of the gatekeeper
between the left and right sides of the network. Once the agent LEADER/CENTRAL was removed,
tasks and resources could be redistributed, agents had to rely on other experts, and multiple leaders
could eventually emerge.

Figure 4a. Removal of an Emergent Leader in a Stylized Distributed Decentralized
Network — Immediate Response to Removal of Emergent Leader

Computational analysis reveals that even the removal of the LEADER/ CENTRAL agent may have
unforeseen effects. In the distributed network adding or dropping links is as likely to increase an
individual node’s power as to decrease it. Consequently, the overall impact of removing the leader in
a distributed network is not as likely to create a power vacuum as in the hierarchical network. If this
is the case, then removal of that agent will have little impact. It may be necessary to simultaneously
remove more nodes to have the same impact on a distributed decentralized system as removing one
node would have on a hierarchy, In this sense, the problem of destabilization is more difficult for a
distributed than for a hierarchical network. We might ask what if the leader was not also central. As
with the hierarchy, further simulation reveals that the removal of the central agents as opposed to the
leaders is less likely to degrade performance. Computational analysis also reveals that removal of a
single node does not transform the structure, despite agent adaptation; i.e., hierarchies remain as
hierarchies and distributed structures remain distributed.

We note that many resistance groups are organized as distributed decentralized networks. For
example, in the Earth Liberation Front (ELF) according to ELF publicist, Craig Rosebraugh, there is
a “series of cells across the country with no chain of command” (Barr and Baker, 2001). In such cases,
there is “no central leadership where they can go and knock off the top guy and it will be defunct" (Barr
and Baker,2001). Ouranalysissuggests further thateven if you find emergent leaders, removing them
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simply pavestheway for new leadersto emerge and the overall network will remain more or less intact.
However, unlike the hierarchy, the removal of the initial LEADER may serve to, in the long run,
increase internal fighting as multiple LEADERS are likely to eventually emerge. The hierarchy splits
into factionsthen reformsasahierarchy with one leader, the distributed system does not faction at first
but may eventually as multiple leaders emerge.

To really track and understand network dynamics, to really be able to determine how to destabilize
networks, we need to consider the position of individuals and groups as they are embedded in the
overall meta-network. We need to move beyond embeddedness in the social network (Granovetter,
1985) to overall embeddedness in the meta-network. Although he does not use the network nomen-
clature, this is essentially Schein’s (1985) point in his discussion of leadership.

Figure 4b. Removal of an Emergent Leader in a Stylized Distributed Decentralized
Network — Eventual Response

Herein we used cognitive load to track embeddedness in the overall meta-network linking personnel,
knowledge/resources and tasks. Now examine the change in the distribution of cognitive load for the
distributed decentralized network (Figure 5). These distributions, going form leftto right, correspond
to Figure 2, Figure 4a and 4b respectively. The original leader has a much higher cognitive load than
do other members of the distributed decentralized structure. Initial destabilization results in multiple
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Figure 5. Changein the distribution of Cognitive load
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emergent leaders forming, as indicated by the subsequent distributions of cognitive load. While the
number of emergent leaders drops as the network re-stabilizes, the emergent leaders are not as
distinctive as the original.

As network theorists, we often think about networks as snapshots — pictures of a group at a point in
time. The techniques and tools that have been developed over the past several decades are extremely
useful in understanding such networks (assuming of course that the data is complete or almost so).
Moreover, we oftenthink of networks primarily interms of arelatively small, single relation and single
type of node; e.g., friendship among students. At this point in time, few tools are available to the
analystinterested inlarge,adaptive, multi-plexed, multi-coloured networkswith high levels of missing
data. The development of such tools is necessary if we are to successfully meet the challenge of
understanding, predicting and explaining the behaviour of multi-agent networks of thisilk. Whether
the topic isterrorism, the global economy or the nature of the Internet, we are dealing with complex
socio-technical systems that are large, multiplex, multi-nodaland adaptive. Itiscritical that we rise to
this challenge and develop a new set of tools combining the methodologies of social networks and
computer science. Without such tools, we will be theorizing in the dark.
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