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 Intra-organizational Computation and Complexity 
 

Organizations are complex systems.  They are also information processing systems 
comprised of a large number of agents such as human beings.  Combining these perspectives and 
recognizing the essential non-linear dynamics that are at work leads to the standard non-linear 
multi-agent system conclusions such as: history matters, organizational behavior and form is 
path dependent, complex behavior emerges from individual interaction, and change is inevitable.  
Such a view, while descriptive, is still far from the level of specificity and predictive richness 
that is necessary for organizational theory.  To increase the specificity and value of our theories 
we will need to take into account more of the actual attributes of tasks, resources, knowledge and 
human cognition.  In doing so, it will be possible to achieve a more adequate description of 
organizations as complex computational systems.  More importantly, we will also achieve a 
greater ability to theorize about the complexity of organizational behavior.  

Intra-organizational computation and complexity is concerned with discovering, modeling, 
theorizing, and analyzing the fundamental nature of organizations as complex adaptive systems 
composed of intelligent but constrained adaptive agents. Within computational organization 
science, researchers search for fundamental organizational objects and the mathematical 
formalism with which to describe their behavior and interactions.  In physics, researchers search 
for laws governing gravitational, electromagnetic, and other fields of force.  In both cases, the 
aim is to discover the most reasonable basis from which, at least in principle, theories of all other 
processes and behaviors can be derived.  In a complex process there are typically many 
interacting objects (e.g. people or procedures in an organization or particles in physics) and it is 
rarely possible to proceed to a complete mathematical solution. Systems in which there are 
complex processes often exhibit non-linear behavior, phase changes in behavior, and often reach 
dramatically different end states given only minor changes in initial conditions.  Computational 
analysis, e.g., simulation or enumeration, can be used to track and analyze the detailed behavior 
within and among these objects (people or particles). Whether we are modeling the behavior of 
people, robots, organizations or atoms – computer modeling at the quantum level becomes 
extremely complicated as soon as more than a few of these objects are involved. Computational 
complexity increases and the length of time for the system to be “solved” or “simulated” on the 
computer increases. 

Such work is carried out via formal methods – mathematical and computational reasoning.  
This paper describes complexity theory and computational organization theory.  Then a 
description of organizations as complex computational systems is presented.  Specific attention 
is paid to the role of knowledge management, network theory, computational theory, and the 
study of the impacts of information and tele-communication technology within organizations.  
Implications, limitations, and directions relative to this perspective are discussed. References are 
summarized in Table 1. 

 

 

 



 
Table 1:  Summary of references 
Reference Area Key Concepts Key Contribution Approach 
     
Meyer and 
Scott, 1983. 

Complex 
Systems 

Size 
Institutions 
Environments 
Open Systems 

Neoinstitutional theory. 
 

Statement of theory with 
description.  Draws on previous 
case studies and large scale 
surveys. 

Perrow, 
1984 

Complexity as 
Metaphor 

Design 
Coupling 
Errors 
Accidents 

Accidents as inevitable. Detailed theory development 
drawing on case studies, 
ethnographies, and archival data. 
 

Epstein and 
Axtell, 
1997 

Computational 
Organization 
Theory 

Agents 
Adaptation 

A-life models of 
emergent social 
behavior. 

Computational theorizing from 
stylized situations.  Face 
validity. 
Large numbers of spatially 
located simple adaptive agents. 

Burton and 
Obel. 1998 

Computational 
Organization 
Theory 

Design 
Strategy 
Managerial practices 
Processes 

The Organizational 
Consultant.  An expert 
System integrating the 
findings of contingency 
theory into a unified 
system for designing 
organizations. 

Computational theorizing about 
real and hypothetical 
organizations.   
Validation from case studies. 
Reasoning using rules derived 
from contingency theory. 

Harrison  
and Carrol,  
1991 

Computational 
Organization 
Theory 

Culture 
Evolution 
Design 
Learning 

Emergence and 
maintenance of distinct 
cultural forms in 
organizations. 

Computational theorizing about 
organizational culture. Face 
validity. Single parameter model 
of culture. 

Jin and 
Levitt, 
1996 

Computational 
Organization 
Theory 

Design 
Teams 
Skills 
Agents 
Tasks 
Organization Chart 
Pert Chart 
Communication 
technology 
Rework 

The virtual design team.  
A process model 
combining project 
management, agent 
expertise, and 
organizational chart 
information. 

Computational theorizing about 
real world design teams faced 
with routine tasks. Validation 
from case studies. 
Variable number of agents 
varying in ability and access. 

Cohen, 
March and 
Olsen, 1972 

Computational 
Organization 
Theory 

Decisions 
Agents 
Access 
Salience 
Problems 
Solutions 
Effort 

The Garbage Can 
Model. A simple model 
of organizational 
decisions resulting form 
personnel, solutions, 
and problem flows. 

Computational theorizing about 
highly stylized organizational 
designs.  Face validity.  Small 
number of agents varying in 
ability, interests and access. 

Carley and 
Svoboda, 
1996 

Computational 
Organization 
Theory 

Agents 
Knowledge 
Task 
Change strategies 
Access 
Learning 

ORGAHAD. A multi-
agent model of 
organizational 
adaptation where the 
agents are intelligent 
and adaptive. 
 

Computational theorizing about 
real and hypothetical 
organizations. Strategic response 
as annealing process coupled 
with individual experiential 
learning. 
Validation from experiments and 
case studies.  Variable number 
of agents varying in  

 



 

Literature review, summary and evaluation  

Essentially, complex systems are non-linear systems, one sub-class of which may exhibit 
chaotic behavior.i The study of non-linear dynamics has a long history and many books at 
varying level of theoretical and methodological rigor exist.  Complexity theory is actually not a 
theory; rather, it is a paradigm, set of procedures and techniques, and an approach to complex 
systems. Complex systems typically have internal change, adaptation, or evolutionary 
mechanisms that result in behavior that on the surface might appear random but actually has an 
underlying order (Holland, 1995), where complex outcomes emerge from simple processes and 
there are multiple possible outcomes depending on input conditions and history (Kauffman, 
1995), some of which may be catastrophic (McKelvey, 1999b). Complex systems have the 
ability to self-organize (Bak, 1996).ii  Much of the formal work in complexity is in physics, 
biology and chemistry; however, complex processes also occur in organizations.  Complexity 
analysis provides us with a means for re-thinking and extending organizational theory 
(McKelvey, 1999a; Morel and Ramanujam, 1999) and social theory more generally (Axelrod and 
Cohen, 1999). The general work on complex systems extends decades of work that took either a 
contingency theory or information processing perspective.  The result is that a number of now 
classic findings have emerged both computationally and empirically such as, there are multiple 
configurations to achieve any organizational objective, different organizational objectives require 
different configurations, history and order effects are critical (i.e., path dependence exists), and 
overall system behavior is highly non-linear.  The mathematics aside, a number of books and 
articles have appeared in the last decade exploring the role of complexity in the social and 
organizational sciences (see for example, Eve, Horsfall, and Lee, 1997; International Symposium 
in Economic Theory and Econometrics, 1996; Pines, Cowan, Meltzer, 1999; Baum and 
McKelvey, 1999).  Much of this work looks at complexity simply in terms of the metaphor – 
thus the vocabulary of emergence, holism, chaos, self-organizing, criticality, bifurcation, path 
dependence, etc. is used to describe organizations and their behaviors with little attention to the 
mathematical meaning behind those concepts. 

Within organization theory, complexity and the study of complex or adaptive systems has 
taken on three identities –complex systems, metaphor, and computational theory building.  Each 
of these will be described in turn and differences in the perspectives highlighted.  The point here 
is not to gainsay the value of either the complex systems or the metaphorically based work or to 
exclusively laud the value of the computational work.  To be sure, much can be learned via the 
relation between complexity and design, via reasoning from metaphors, and via reasoning from 
formal theory.  Moreover, it may well be that some of the empirical finding about complexity 
and design are useful in validating the computational models. It may be that some of the “new 
doors” opened through metaphorical reasoning will result in simulations being constructed to do 
theory development relative to that topic.  However, just because the terms of complexity theory 
and non-linear dynamics are used does not mean that the findings or claims have a solid 
underlying mathematical base.  Moreover, empirical results that are based on constructs derived 
from a metaphorical interpretation of words such as emergence, chaos, etc. may not be 
appropriate for testing, validating, or extending the formal theories. It is the case that all of the 
approaches tend to characterize complexity in terms such as number of personnel (or agents), 
resources, tasks, and/or the number of interconnections (network ties) among them, or number of 



steps in the processes used to evaluate, form, move things through or modify these networks. 
However, if we are to link empirical data to computational models we need to move beyond 
common characterizations to actually using the same construct, e.g., complexity and all related 
constructs, and measuring these in the model and the real world in exactly the same way. Now 
let us consider the three areas.  

Complex Systems   

Within organization theory more generally, the study of organizations as complex systems 
has a long history.  Throughout the past 50 years, researchers have examined organizational 
complexity, in terms of the level of detail, number of objects, or degree of interconnections in the 
organizational or task design. This work, on organizations as complex systems, which is largely 
empirical, reasons about complexity using an understanding of organizational, task and process 
design. The goal of this work is to understand the relation between the elements of organizational 
design, the environment and performance. In many empirical studies, the complexity of the 
organization is measured in terms of perceived coupling among sub-groups, tasks, or procedures, 
the length of the process needed to go through to make a decision, or the number of people, 
resources, or constraints involved.  Much of the research has looked at the fundamental nature of 
organizations (Etzioni, 1961), and the relation between complexity and size (Scott and Meyer, 
1994), coordination (Klutzy, 1970) and formalization (Hall, Haas and Johnson, 1967). Much of 
this work resulted in, or advanced, structural, contingency theory and neo-institutional theory. 
This work is independent of the formal work on complexity theory – although there are notable 
analogies.  One of the major limitations in linking this work to complexity theory is the lack of 
agreement on how to measure complexity; e.g., is it the number of personnel or the density of the 
social network.  Rarely is complexity measured using the metrics of complexity theory; e.g., 
rarely is the Lyapunov exponent calculated nor are tests for non-linear determinism run. The 
Lyapunov exponent is a measure of sensitivity to initial conditions.  Further much of the 
empirical work on complex systems, particularly that on processes, focuses on perceived 
complexity, which may or may not be systematically related to actual complexity as measured in 
complexity theory.   

An example of this approach is seen in the work of Meyer and Scott (1983).   They present a 
neo-institutional approach in which organizations are complex systems due to their size (e.g., 
number of employees, number of divisions, number of processes) and are embedded in, define 
and respond to environments that are themselves complex (e.g., number of stake holders, 
legislations, institutions, and other organizations).  The arguments are supported by a large 
number of studies many of which are based on large-scale surveys of organizations.  As 
organizational complexity increases on one dimension, such as size, it increases on other 
dimensions, such as formalization of processes defining linkages.  In contrast to the rational actor 
approaches of economics, they suggest that formal organizational structures are symbolic 
phenomena designed in response to the environment to demonstrate rationality rather than to 
achieve efficiency.  Thus, complex structures and behaviors emerge from response to external 
events and processes for achieving legitimation. 



Complexity as Metaphor   

Recently, within organization science, metaphor and myth have outrun formal theory 
building and empirical analysis of complex systems.  Most of the work in this area takes the 
language of complexity theory, treats it as metaphor and builds on that. For example, a 
complexity analogy has been used to create a revision and extension of contingency theory (Dow 
and Earl, 1999). The goal of the complexity theory as metaphor work seeks to open up new 
avenues of research, develop new theory, using analogical reasoning from complexity theory 
(Dow and Earl, 1999), chaos theory (Thietart and Forgues, 1995), or biological adaptation 
(White, Marin, Brazeal, and Friedman, 1997). This body of work is less statistical than the 
complex systems work. Nevertheless, the research building on the complexity theory as 
metaphor work moves beyond discussions of the level of complexity and its relation to 
organizational design and performance to talk about the processes within such a system and the 
effects of complexity – e.g. coupling, self-organization, bifurcation, and chaos.  One of the best 
examples of such work is Perrow’s (1984) study of accidents where in-depth ethnographic and 
historical analysis lays the basis for arguments about complexity. In contrast to Perrow, many of 
the studies in this vein simply use the language of complexity and reference organizational 
examples. 

Perrow treats complexity in terms of size (the number of individual decision-makers, 
knowledge and tasks) and networks (the linkages between individuals, knowledge and tasks).  
Reasoning from in-depth case studies and archival records he presents the argument that the 
processes and technologies used in high-risk situations, such as nuclear power plants, have often 
resulted in tightly coupled systems (many linkages).  He argues that errors and accidents are 
perfectly normal, and indeed inevitable.  Moreover, the coupling in these organizations enables 
the effect of errors to cascade through the organization resulting in catastrophic consequences.  
Small deviations can have, in a tightly coupled system, large-scale consequences.  

Computational Theory Building about Complex Systems  

Computational approaches are particularly useful in examining complex adaptive systems in 
general and organizations in particular.  Computational approaches have been used successfully 
to look at the dynamics of change and complexity in a number of organizational areas: design 
(Jin and Levitt, 1996; Burton and Obel, 1998), innovation and evolution (March, 1996; Gibson, 
1999), adaptation and change (Sastry, 1997), coordination (Carley and Prietula, 1994), 
emergence of hierarchy (Hummon, 1990), cooperation (Macy, 1991), organizational learning 
(Lant, 1994), and knowledge management (Carley and Hill, forthcoming).  Over the past 25 
years, on average, the models have become increasingly sophisticated from an algorithms 
perspective, increasingly grounded in empirical data, increasingly used to augment other 
methodological approaches, and increasingly tied to theory development.  In addition, there has 
been an increase in the effort to link models to each other and to build on previous work. 

The movement in computational organization theory is slowly leading to a new perspective 
on organizations.  The evolving paradigm sees organizations as complex structures of agents, 
tasks, knowledge, and resources composed of intelligent adaptive agents (Carley and Gasser, 
1999) operating under context and historical constraints, the structure of which can be designed 
and the behavior predicted (Burton and Obel, 1998).  Through a process of synthetic adaptation, 



groups and organizations become more than the simple aggregate of the constituent personnel 
and become complex, computational and adaptive agents in their own right (Carley, 
forthcoming).  Organizations are thus intelligent, adaptive and computational agents in which 
learning and knowledge are distributed (Hutchins, 1995) and where ecologies of skill and 
strategy (Padgett, 1997) and complex social properties emerge (Epstein and Axtell, 1997).  The 
organization and the agents within it are not simply boundedly rational information processors 
(March and Simon, 1958), but are cognitive agents (Carley and Newell, 1994) limited both 
structurally, cognitively, and emotionally. Within organizations, agents, resources, knowledge 
and tasks are connected by, and embedded in, an ecology of evolving networks (Carley and 
Prietula, 1994; Carley, 1991; Krackhardt and Carley, 1998) all of which change dynamically 
through an ecology of learning mechanisms (Carley and Svoboda, 1996) and change processes 
(Sastry, 1997). 

Computation is the methodology of choice in these and related areas for a variety of reasons.  
First, there is a general recognition that the non-linear dynamics that characterize the system are 
not mathematically tractable; hence, simulation is needed.  Second, there is a desire to develop 
empirically grounded theory – but the data with sufficient detail is ethnographic in nature and 
therefor consistent with the computational approach.  Third, there is an interest in exploring both 
the short and long term implications of the theory as learning, adaptation, and evolution occur 
and computational analysis is particularly amenable to the study of emergent behavior.  Finally, 
there is a growing concern with issues of scalability – that is, do behaviors remain the same, do 
our theories hold, as we move from groups of 2 or 3 to thousands? Again, through simulation, we 
can gain some insight into whether scale matters to the non-linear dynamics that underlie 
fundamental organizational processes.  This is particularly important as we move into a world 
where technology is making organizations of unprecedented size and distribution possible and 
giving people unprecedented access to larger numbers of others, ideas, technologies, and 
resources.   

One of the earliest works the area of computational organizational theory is Cohen, March 
and Olsen’s Garbage Can Model of organizational choice (1972). They present a simple 
information processing model of choice in which agents, solutions and tasks flow through the 
organization.  Effort, saliency, and access link agents to tasks and solutions (resources) and so 
determine.  Results suggest that most decisions are made by oversight.  Describing the 
implications for various types of organizations, such as educational institutions provides the 
model with face validity. This model, like others of its generation, demonstrates the potential for 
a simple models to generate surprising results.   

Key aspects of this model that are retained in current models are the information processing 
approach, networks linking agents to resources and tasks, and organizational decisions resulting 
from individual decisions.  Current models tend to be more detailed, more algorithmically 
complex, and to be more grounded on actual empirical data. Modern models vary in their 
reliance on database, artificial intelligence, and cognitive science techniques.  Three models that 
all derived from the Garbage Can Model, and that have combined a contingency theory, 
information processing theory, and institutional theory perspective are VDT, ORGAHEAD and 
the Organizational Consultant. 



The virtual design team (VDT) can be used within firms to evaluate the design of teams 
doing routine work (Jin and Levitt, 1996).  VDT characterizes the organization in terms of 
agents, expertise (knowledge), tasks and the relations among these.  Complex inter-connected 
tasks can be represented.  Agents cannot learn. At a technical level project management 
techniques are combined with information processing models of agents, the organization’s 
authority relations, and the available communication technology.  Actual or hypothetical project 
management plans and organizational charts can be entered.   Changes in policies, re-designs, 
and re-engineered tasks can be examined by looking at the impact of such changes on various 
outcomes including workflow, re-work, and the speed of processing.  Researchers and managers 
can use VDT to see how small changes in their team’s structure can have dramatic effects on the 
outcomes for routine tasks. 

ORGAHEAD (Carley, K.M. and D.M. Svoboda, 1996) is a multi-agent model that can be 
used to examine the way in which organizations adapt to change. ORGAHEAD characterizes the 
organization in terms of agents, knowledge (knowledge/resources), tasks and the relations among 
these.   Only simple choice tasks can be represented.  There is a learning ecology such that 
agents and the organization learn, at both the knowledge and structural level.  Changes in 
strategic redesign, HR, and re-engineering policies and personnel characteristics can be 
examined by looking at the impact of such changes on various outcomes including workload, 
performance, adaptivity, robustness, and historical trajectories.  Technically ORGAHEAD 
combines machine learning and optimization techniques to create a model of organizational 
learning and adaptation in which the strategic and tactical levels co-evolve.  Actual or 
hypothetical authority and communication relations as well as access to resources or assignment 
to tasks for small to medium sized organizations can be entered.  Researchers and managers can 
use ORGAHEAD to see how initial conditions and institutional or cognitive constraints 
influence adaptation. 

The Organizational Consultant (Burton and Obel, 1998) is an expert system model 
embodying all the findings of contingency theory.  The Organizational Consultant characterizes 
the organization in terms of features of its design (such as size) and processes (such as degree of 
coupling).  Unlike VDT and ORGAHEAD, specific decision makers are not modeled.  Rather 
the organizations performance and suggestions for change, are predicted from a set of rules 
governing the complex ways in which the various aspects of organizational design and 
environment interact to effect performance. Changes in processes, structure or environment can 
be examined by looking at the impact of such changes on various outcomes including potential 
for errors and locus of problems. Technically the Organizational Consultant combines expert 
system technology with case study protocols with rules derived from the literature.  Actual or 
hypothetical descriptions of the organization’s structure and processes can be entered.  
Researchers and managers can use the Organizational Consultant to see whether their reasoning 
is correct about what will happen and why given a particular organizational and environmental 
configuration. 

Computational organization theory models vary dramatically in the level of detail used to 
describe and represent the agent, resources, knowledge, task, organizational structure, culture 
and technology.  The more detailed, the more veridical these underlying models the more precise 
the predictions possible from the model, the more useful the model as a managerial tool. Garbage 
Can Model (Cohen, March and Olsen, 1972) is simple and abstract.  VDT (Jin and Levitt, 1996) 



and the Organizational Consultant (Burton and Obel, 1998) are more detailed and less abstract.  
ORGAHEAD is in between.  The simpler more abstract models are typically referred to as 
intellective models.  For these models, the central research goal is theory building: to discover 
general principles underlying organizational behavior.  The more detailed models may allow the 
researcher to use the model to emulate specific organizations by entering specific authority 
structures and/or procedures.  For these models a key research goal is organizational engineering: 
to examine whether or not the performance of a specific organization will be affected by making 
some specific change such as re-engineering the task in a particular way or adding a new 
technology.  In general, both the intellective and the emulative models can be used for theory 
building.  One reason for this is that the act of building a model requires theory specification. 

From the body of work in computational organization theory, which goes well beyond the 
examples described above, a neo-information processing paradigm has emerged. The 
information processing paradigm centered on the recognition that what information is available 
to whom when determines organizational outcomes.  The neo-information processing paradigm 
uses recent findings from a variety of areas, including cognitive science, social networks, and 
distributed artificial intelligence to provide precision and specific underlying models to the 
general claims of information processing.  Thus, the general notion of a boundedly rational agent 
has been replaced with exact specifications of a cognitive agent, often embodied in a general 
empirically grounded cognitive model such as Soar.  The general notion of structural limitations 
on access to information has been replaced with the way in which the agents and organizations 
are embedded in networks influences access to information, the rate of information diffusion, 
and the relative power of structural positions.   Collectively, the result provide a more precise 
understanding of the nature of information, the way in which different types of information are 
affected by learning processes and affect decision processes, the mechanisms for controlling the 
flow of information, the impact of information enablers and constraints, and so forth. 

Contemporary issues and debates  

Networks  

One of the linking pins that brings computational organization theory together is network 
analysis.  As researchers in this area have moved to modeling processes - the role of networks in 
affecting the hiring, firing, mobility, decision making, etc. processes has come to the fore.  As 
researchers in this area have moved to modeling organizations as collections of agents, the role 
of networks in structuring and being structured by the interactions among these agents becomes 
critical.  As researchers model inter-organizational alliances, the links between organizations and 
the processes by which they form again become central.  Networks, whether between agents, or 
between agents and resources or knowledge or tasks, is the glue that needs to be examined in 
order for computational theorizing to move beyond simple statements about individuals or dyads.  
The network approach is resulting in common representation schemes thus enabling data to be 
transferred between computational models and enabling experimental and field data to be used as 
input to or for validation of computational models.iii  For example, VDT (Jin and Levitt, 1996) 
and ORGAHEAD (Carley and Svoboda, 1996) use essentially the same network based 
representation scheme for the organization's authority network and knowledge network (who 
knows what or has access to what resources).  Since much of the computational organization 
theory work derives from the information processing tradition, where organizational structure 



and cognition constrain individual and organizational decisions, it was a natural leap to use 
network methodology and representation, so amenable to describing the flow of information, to 
describe and measure snapshots of the organization through time. 

One area in which the relation between complexity, computation, and networks is emerging 
is in the area of power laws.  Complex systems, differ from random system, in that they display 
surprising, although sometimes subtle, regularities.  One that has often been referred to is the 
tendency of the products of complex process to follow a power law distribution.  A commonly 
touted example is the distribution of firm sizes, which is approximately 1/f - i.e., a power law.   
Recent research is suggesting that the topology of human and organizational networks also have 
regularities, which can be described by power laws.  For example, Faloutsos, Faloutsos and 
Faloutsos (1999) found that despite the apparent randomness of the Internet, there are some 
surprisingly simple power-laws that describe the topology of the Internet. The power-laws they 
discover describe concisely skewed distributions of graph properties such as the out-degree 
associated with sites. For a complex system, the discovery of power laws is important.  Power 
laws can be used to estimate important parameters such as the average neighborhood size. 
Power-laws can be used to generate and select realistic topologies for computational theorizing 
purposes, thus enabling the development of grounded theory. 

Information Technology  

A growing recognition among computational researchers is that we cannot adequately 
explain, predict, or understand organizational behavior without also taking into account the 
information technology (IT) environment within and around the organization.  From a 
computational perspective a number of questions have emerged.  The primary question is what is 
the fundamental nature of IT?  How do we represent IT in these models?  Research, both field, 
simulation, and experimental, has demonstrated that IT is both an agent and an agent enhancer. If 
IT is an enhancer then the reason that IT does or does not effect change is because it augments or 
changes the information processing capabilities of humans.  For example, email is seen to effect 
differences in communication because it proponents of this view often predict that one of the 
core effects of email, the web, and various other IT will be that they will simply scale up current 
organizations leading to larger, more distributed, organizations and more knowledgeable, more 
connected individuals.  

Nevertheless, new technologies have the ability to create and communicate information, 
make decisions and take action.  In other words, modern IT is intelligent and the work in 
computer engineering is making it more so.  Many of the databases and webbots of the future 
will be agents.  Theories of social change in which IT is characterized as an agent have been 
successfully employed to explain the effect of previous communication technologies; e.g., 
Kaufer and Carley (1993) use this approach to explain the impacts of print. Moreover, IT as 
agent computational theories have led to important new findings about the limitation of IT in 
effecting a unified and educated mass.  In particular, this work suggests that IT is not a panacea 
equally facilitating all individuals decreasing the socio-economic distance between disparate 
groups.  Rather, this research suggests that since individuals who know more or no more people 
have more ability to learn new information, and will gravitate to IT agents, IT has the possibility 
of increasing the socio-economic distance between the intellectual haves and have nots (Carley, 
1995; Allstyne and Brynjolfsson, 1995). Finally, the IT as agent approach can be used to 



accurately model and predict the behavior of organizations in which humans, webbots, smart 
databases, robots, avatars, and so forth all work together to perform organizational and social 
tasks (Kaplan, 1999).    

Algorithmic Complexity 

Algorithmic complexity is concerned with the length of the algorithm; loosely speaking, for 
two algorithms the one with more steps is more complex.  Knowing the algorithmic complexity 
needed to do some task, to model some process, or to generate some organizational structure is 
valuable.  The degree of algorithmic complexity can be used to guide development, suggest 
procedures for ruling out certain data as sufficient for testing certain models, determine the need 
for heuristic search procedures and tractability of data analysis, and enable more precise 
theorization.  A variety of measures of algorithmic complexity, e.g., Kolmogorov-Chaitin, and a 
variety of proxies exist (which are often turned to for pragmatic reasons) (Lempel and Ziv, 
1976).  For the most part, social and organizational theorists have not attended to the role of 
algorithmic complexity.  One advance in this area is the application of algorithmic complexity to 
determining the complexity of social and organizational networks (Butts, forthcoming).   Butts 
argues that there is a precise correspondence between the equivalence and the structure of the 
social network, and the use of reduced models. For example, if a social network can be 
accurately characterized in terms of sets of structurally equivalent nodes and the relations among 
the node sets, then it is algorithmically simple.    Social networks, which cannot be described in 
this way, are algorithmically complex.  More precisely, the structure of a network is 
algorithmically complex to the extent that a long program is required to regenerate the structure.  
Thus, highly compressible structures that can be succinctly described by a set of equivalency 
classes of nodes and relations among the classes are algorithmically simple. Knowing the 
algorithmic complexity of a network provides a mathematics for reasoning about fundamental 
organizational constructs such as roles, power, and groups. 

Algorithmic complexity can also be applied to theories of organizations that are realized in 
terms of grammars.  A grammar can produce a series of statements or sequences describing 
behavior. The algorithmic complexity of these statements is related to the complexity of the 
grammar from which they were generated (Nordahl, 1988). We can take any organizational 
theory, or general theoretical statements, and express the theory or specific statements as a 
sequence.  The degree complexity in these statements provides a guideline for the complexity of 
the grammar, which will be required to represent real-world organizational behavior.  This in 
turn provides guidance in ruling out or in various proposed grammars (and associated theorem 
provers) purported to be adequate for the organizational behaviors they describe. 

Comparison of Models 

The art of analyzing complex systems involves finding the means to extract from the 
computational theory no more information than we need and to map processes and results from 
one model onto another. This means that the researcher is called upon to develop and use virtual 
experiments to assess core findings. The non-linearities inherent in the underlying processes 
when coupled with the large number of processes, agents and variables leads to a system about 
which it is difficult for humans, unassisted by computation, to effectively reason about the 
consequences of any one action or change. Computational analysis, both enumeration and 



simulation, becomes an important tool for generating hypotheses about the behavior of these 
systems that can then be tested in the lab and field (Carley, 1999). For each scientific method, 
methodologists work to develop procedures for overcoming the limitations of that methodology.  
In survey analysis, for example, specialized sampling procedures can be employed to increase 
the generalizability of the results.  In computational research, one of the limitations has to do 
with the extent to which model specifications are driving the outcome.  The assumptions made in 
constructing the computational model and the way in which the basic processes are characterized 
may, but need not, affect the generalizability of the outcomes.  Thus computational theorists 
have developed a variety of techniques for generating hypotheses, determining the veridicality of 
the results, and determining the generalizability of the results. These techniques include 
sensitivity analysis, parameter space exploration, and docking. For example, Monte Carlo 
techniques are used to average out assumptions about parameter values (Balci, 1994), empirical 
data is used to calibrate the model (Carley, 1999) and docking (Axtell, Axelrod, Epstein, and 
Cohen, 1996) is used to understand the match between two models with different core processes. 

Computational models of organizations need to be built at varying levels; e.g., micro and 
macro, or human as actor, group as actor, organization as actor etc.  Computational models are 
often heralded as the means for linking the micro to the macro.  To an extent, this is true.  In 
addition, different computational models and methods can be used at multiple levels and used to 
reason across levels if the organization community would create a more detailed hierarchical 
structure for analysis.  An approach, drawn from physics, is for the research community to 
develop a hierarchical structure of simple models each of whose function is to make possible and 
practical the analysis of the system being studied at that particular level of complexity.  Each 
successive level gains in complexity.  The logical relationship between contiguous levels needs 
to be established so that the researcher knows that the methods used at any one level are 
supported by the body of fact and theory that have been gathered across all levels. This 
hierarchical approach can be applied at the micro level, the macro level, or both.  To an extent 
this is being done, albeit not systematically in the area of organizational culture.  Carrol and 
Harrison’s (1991) single factor model of organizational culture and Carley’s (1991) construct 
model of culture formation are both consistent with the body of findings regarding culture and 
enculturation but operate at different levels of complexity.   

Central Questions That Remain Unanswered  

The past decade has witnessed important recent advances in machine learning, social and 
organizational networks, and toolkits for computer modeling.  These advances, together with the 
ubiquity of computing, and the growing recognition of the inherent complexity and dynamics of 
organizations has increased the general interest in computational modeling and theory building.  
As more work in this venue has appeared a series of questions have emerged that need to be 
attended to for major advances in this area to occur. 

Issue 1: Representation 

As the field of artificial intelligence matured researchers came to recognize the criticality of 
representation; i.e., how should core elements of the model be represented.  This recognition led 
to a greater understanding that representation is not an art.  Rather, research on how to represent 
model elements such as tasks, process, knowledge, resources, goals is central to the scientific 



enterprise.  Appropriate representation schemes affect the algorithmic complexity of the model 
and speed of processing.  They also affect the types of hypotheses and findings that can be 
derived from the model and the type of data needed to validate, calibrate or develop the model.  
As research in this area matures, common representation will be key to sharing and integrating 
models. 

Issue 2: Relative Impact of Task 

Within the computational organization area a number of tasks are emerging as canonical.  
These include the sugar production task, the binary-choice task (or its variant the radar detection 
task), the maze task, and the warehouse task (or its variant the web search tasks).  This set does 
not span the space the tasks.  Research using these tasks underscores the lesson from contingency 
theory and operations management that the nature of the task determines the effectiveness of the 
organizational structure and procedures.  Both in the field and in virtual experiments many 
critical parameters have been found to affect the value of various organizational designs.  These 
include at least task complexity, degree of coupling or interdependence, knowledge intensity, the 
degree of routinization, whether resources are consumed, the speed with which the task must be 
completed, and the allowable error margin.  Nevertheless, we do not have a comprehensive 
understanding of the space of tasks, how to represent tasks in general, and exactly how the 
various aspects of task interface with organizational goals and constraints to determine the way 
in which organizations are and should be designed for effective performance. 

Issue 3: Learning 

Organizational researchers have turned with increasing interest to the area of organizational 
learning.  This work has highlighted that learning does occur at the organizational level and that 
within the organization there are multiple types of learning.  Three types of learning commonly 
referred to include experiential (learning by doing), expectation based (learning by planning), 
and imitation (learning from others).  Each of these types of learning becomes embedded in the 
minds of individuals, in data bases, and in routines.  The computational work has highlighted 
another type of learning – structural.  Structural learning is concerned with the embedding of 
knowledge in the relations connecting personnel, or organizations, or tasks.  Core issues center 
around the relative effectiveness of the different types of learning, the interaction between 
learning and organizational memory, the role of IT in retaining organizational memory and 
enhancing learning, and the relation between learning and adaptation. 

Issue 4: Detail 

Perhaps the hardest issue being faced in the computational organization area is how detailed 
do the models need to be.  Current models run from simple intellective models like the garbage 
can model (Cohen, March and Olsen, 1972) to emulative models like VDT (Jin and Levitt, 
1996).  A basic answer is the level of detail depends on the purpose of the model.  However, this 
answer does not address the core concerns, many of which have to do with the philosophy of 
science.  On the one extreme, high predictability is expected; e.g., the results from engineering 
models often correlate .9 or better with the behavior of the systems they emulate.  On the other 
extreme, extremely simple models are the most easily understood and replicable.  At issue then is 
a fundamental tradeoff in the way in which research is conducted.  However, the effects of detail 



may be more pernicious than expected.  A recent study examined the impact of organizational 
structure on performance – while varying the level of detail (or veridicality) in the model of the 
agent.  A key result is that the observed performance of the simulated organizations varied with 
structure and the level of detail in the agent model.  In other words, we must carefully consider 
the impact of detail on the theoretical propositions derivable from the model. 

Issue 5: Emergence and Constraint 

Organizations often show an intelligence and a set of capabilities that are distinct from the 
intelligence and capabilities of the agents within them, or the average behavior of those agents 
(Epstein and Axtell, 1997; Padgett, 1997 Kauffman, 1993; Macy, 1991). Organizational behavior 
cannot be predicted by looking at the average behavior, or even the range of behaviors, of the 
ensemble members, or even that of the CEO or top management team.  Rather, it is, at least in 
part, an emergent property of the decisions and actions taken by the set of heterogeneous agents 
within the organization who are in turn constrained and enabled by both their cognitive abilities 
and their interactions with others (Simon, 1955, 1956).  The networks linking agents, knowledge, 
tasks, etc.  affect and are affected by these agents.  This web of interconnections serves to 
constrain and enable who takes what actions when, and the efficiency of those actions.  These 
networks, coupled with the agents’ cognitive processes, dictate what changes can occur, are 
likely to occur, and will have what effect (Carley and Newell, 1994). Computer modeling, 
because it can take into account the complexities of network dynamics and cognitive processes 
facilitates accurate prediction and helps us to move from saying interesting complex behaviors 
will emerge to saying what behaviors will emerge when.  As such, a great deal of research is 
needed on what behaviors will emerge under what conditions and on what future scenarios are 
likely to occur or are infeasible given the constraints of human cognition, socio-economic 
policies, and the way in which the extant networks change, constrain, and enable individual 
behavior. 

Issue 6. Training tools 

One of the major difficulties in this area is the lack of adequate educational material.  First, 
there is a lack of textbooks.  The only textbooks in the area are focused just on simulation.  An 
important exception here is Gerhard Weiss (1999) Distributed Artificial Intelligence which is an 
upper-division or Ph.D. level text.  Nevertheless, what is needed is a text focused more 
specifically on organizations.  Second, there is not an educational computational testbed filled 
with multiple models that students can easily use, compare, contrast, adapt etc. in order to learn 
how build models and evaluate them.  Third, most small intellective models have not been 
archived together with their results and post-processing algorithms.  This makes the task of re-
implementing those models and replicating earlier results non-trivial.  Additional educational 
material is critical for the advancement of the field.  Major advances in organizational research 
were made when statistical packages and text books became available.  We can expect similar 
levels of advance when comparable educational materials become available for computational 
modeling, analysis and theorizing. 



New and Emerging Directions  

A number of exciting and important research directions are emerging in this field.  Several 
that promise to have sweeping consequences include — the extension of the network approach, 
the focus on IT, mutable boundaries, the study of emotions, and the development of data archives 
and intelligent analysis tools.  In all cases, the advances are being made possible by linking 
computational modeling of complex systems to other areas.  Linking work on mental models and 
cognitive agents to work on social networks and task management facilitates the extension of the 
network approach.  The IT work is enabled by linking work on information diffusion, learning, 
and discovery to work on networks, and technology.  Emotions based research is facilitated by 
linking work in cognitive psychology with that on learning, structural embeddedness, procedures 
and task performance.  The new approaches to computational analysis rely on machine learning, 
intelligent search, and data mining techniques. 

Direction 1: Extending the Network Approach 

As organizational theorists address issues of dynamics, increasing attention is paid to the link 
between knowledge, memory, procedures, learning, on the one hand and networks, tasks, 
personnel, technology on the other.   This growing concern with the link between knowledge and 
interaction plays out in a number of venues — knowledge management, organizational decision 
making, change management, transactive memory, etc. The growing need to understand how 
agents and knowledge link within and among organizations is leading to new network based 
studies of learning, adaptation, impact of technology, and so forth. Traditional social network 
techniques, which have heretofore been concerned with just the relations among people, or just 
the relations among organizations, are being extended to look at any and all relations including 
the relations among information (mental models).  Krackhardt and Carley (1998) suggested a 
meta-network scheme, PCANS, that uses networks of relations among individuals, resources, 
and tasks to derive organizational propositions. Carley and Hill (forthcoming) proposed a similar 
approach in the area of knowledge management.  A generalization of these schemes to include 
knowledge management issues and strategic inter-organizational issues is described in table 2.  
The core concept is that webs of affiliation link agents, knowledge, resources, tasks and 
organizations into a giant meta-network. The advantage of a meta-network approach to 
knowledge management, organizational analysis, etc. is that it enables the researcher to employ 
the wel-developed network methodology in the study of other organizational topics.  Changes in 
policy, procedures, IT, and institutional arrangements, new discoveries, organizational births, 
mergers, and deaths, and personnel turnover and promotions all effect changes in this meta-
network by altering the nodes and or relations.  To understand such changes and to facilitate the 
ease of such transitions one needs to understand the impact of those changes on the meta-
network. Tracking these changes, tracking this meta-network, lies at the core of being able to 
predict and manage such changes; i.e., it lies at the heart of knowledge management and strategic 
decision-making.  

 
 
 
 
 
 



Table 2.  A Meta-Network Approach to Organizational Representation 
 People 

 
Knowledge Resources Tasks Organizations 

People 
Relation 
 

Social Network 
Who knows who 
 

Knowledge 
Network 
Who knows 
what 
 

Capabilities 
Network 
Who has what 
resource 

Assignment 
Network 
Who does what 

Work Network 
Who works 
where 
 

Knowledge 
Relation 
 

 Information 
Network 
What informs 
what 
 

Skills Network 
What 
knowledge is 
needed to use 
what resource 

Needs Network 
What 
knowledge is 
needed to do 
that task 

Competency 
Network 
What knowledge 
is where 
 

Resources 
Relation 
 

  Substitution 
Network 
What resources 
can be 
substituted for 
which 

Requirements 
Network 
What resources 
are needed to 
do that task 

Capital 
Network 
What resources 
are where 

Tasks 
Relation 
 

   Precedence 
Network 
Which tasks 
must be done 
before which 

Market 
Network 

What tasks are 
done where 

Organization
s 
Relation 
 

    Inter-
Organizational 
Network 
Which 
organizations 
link with which 
 

 

Direction 2: IT Focus 

The rapid development of new forms of information technology (IT) creates the promise of 
new ways of organizing and doing work.  As we have moved into the realm of e-commerce 
organizational researchers in general and computational organizational theorists in particular, 
have begun to examine the relationship between IT and fundamental organizational processes 
and forms. One of the most promising areas is the use of computational models to understand the 
impact of information technology within and among organizations.  Modeling modern IT also 
requires modeling learning, as the IT itself is becoming intelligent and capable of learning and 
because organizational learning and search affect the organization’s technological competence 
(Stuart and Podolny, 1996), Computational work on organizations and IT is facilitated by the 
emergent neo-information processing paradigm. 



Direction 3: Mutable Boundaries 

One interesting notion that has emerged in the neo-information processing area is that of 
mutable boundaries. In most organizational research, individuals, organizations, tasks, resources, 
etc. are treated as entities with concrete and immutable boundaries.  Thus, a task or resource 
moved from firm to firm retains the same configuration and remains essentially the same.  
However, from a neo-information processing perspective, the characteristics of these 
configurations depends on the information available and their information processing 
capabilities, including their ability to learn. A configuration is a particular combination of agents, 
resources, knowledge, tasks, etc. organized to meet some objective.  Consider the objective of 
refilling stock in a store.  The individual with pen, ink, whiteout, paper, ledger and inventory list 
writing a note is one configuration, and another is the web-bot sending automated email orders 
when a sensor in the inventory system indicates depletion is near.  Boundaries are, in this sense, 
mutable. Since the information available to the agents in a configuration depends on the exact 
position of the entity in the meta-network, moving it about changes its’ characteristics and 
affects learning at the individual, group, structural and organizational level.  Thus, not only are 
the boundaries around agents, task, etc. mutable, particularly for synthetic agents such as 
workgroups and organizations; but these configurations exist within an ecology of learning 
mechanisms which enables the organization to engage in meta-learning. Through such meta-
learning the organization develops norms and procedures which in turn become institutionalized.  
Such meta-learning also leads to the emergence of diversification and heterogeneous behavior at 
the organizational level. Advances in emergent agents and intelligent systems are enabling 
organizational theorists to rethink the basic nature of organizing, the mutability of boundaries, 
the impact of learning ecologies, and the conditions under which self-organization occurs and 
synthetic agents emerge. Research on the processes underlying meta-learning and 
institutionalization of behaviors needs to progress. Such progress is likely to blur the line 
between intra- and inter-organizational behavior. 

Direction 4: Emotions 

Most of the work in complexity and in computational organization theory, when the agents 
has been the focus of concern, has treated the agent as an intelligent adaptive being.  However, 
recent work in cognitive psychology has moved beyond this to consider the role of emotions 
relative to cognition.  Similarly, some organizational theorists are beginning to look at emotions, 
such as trust, and the role they play in distributed work settings within or between groups and 
organizations. One of the motivations is that emotions in general, and trust in particular, may 
play a greater role in the organizations of the future where personnel are more distributed.  
Essentially, there has been an implicit assumption that in organizations, since personnel know 
each other, see each other, etc. trust existed and emotions were kept under control or were 
irrelevant.  However, as work is out-sourced, as more temporary workers are employed, as work 
is distributed geographically and temporally and as work proceeds at a faster pace (and 
presumably under more stress, the role of emotions may be more critical.  Research needs to be 
directed at developing a model of the emotional-organizational agent, determining the value of 
emotions as a coordination mechanism, and the factors that may make the play of emotions 
important or irrelevant in an organizational context. 



Direction 5: On-Line Data Archives 

The network approach also enables both models and data collection to proceed from the same 
representation base, thus facilitating docking, calibration, and validation.  As more data is 
collected from firms using this representation scheme and stored in a common space (such as the 
web) multiple computational models can employ it. Web-accessible data archives, where there is 
a common meta-network representation, will enable more grounded theories, and make it 
possible for the models to serve as virtual laboratories where practitioners and scientists can 
conduct what-if analysis on the potential impact of policy changes, new procedures, new 
institutional arrangements and new IT.  Such archives need to be created and research needs to 
proceed on how to automatically collect and maintain such data at the requisite level of detail. 

Direction 6: Intelligent Analysis Tools 

If we look back at the computational organization models of the 1970’s we find that those 
models tended to be exceedingly simple – only a few lines of codes, a few agents, etc.  Today, 
many models are more complex (even algorithmically).  With the models of the 1970’s it is 
possible to run a comprehensive analysis of the impact of all parameters built into the model.  
The space of outcomes can be completely simulated.  Today, this is no longer possible for all 
models.  Many models are sufficiently detailed that a complete sensitivity analysis across all 
parameters cannot be done in a feasible amount of time; rather, researchers often use response 
surface mapping techniques, experimental designs and statistical techniques to examine key 
aspects of the models.  Thus, a key area of research is how to validate and test these highly 
complex models.  Another key research area is how to use intelligent agents to automatically 
navigate the parameter space and run virtual experiments. 

Synopsis  

Computational analysis and theorizing is playing an increasingly important role in the 
development of organizational theory.  In part this is due to the growing recognition that social 
and organizational processes are complex, dynamic, adaptive, and non-linear, that organizational 
and social behavior emerges from interactions within and between ecologies of agents, resources, 
knowledge, tasks, and other organizations and that the relationships among and within these 
entities are critical constraints on, and enablers of individual and organizational decision making 
and action.  In part, the computational movement is due to the recognition that organizations are 
inherently computational since they have a need to scan and observe their environment, store 
information and procedures, communicate, and transform information through human or 
artificial agents. Computational theories are providing the organizational research with both a 
new toolkit for examining organizations and new insights into the fundamental nature of 
organizations. Computational models have value beyond theory building.  They can also be used 
for experimental and survey refinement, the comprehension and visualization of dynamics, and 
the comprehension and visualization of complexity.   
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i Actually, the term chaos does not refer to a class of systems, but to the dynamic behavior of many non-linear 
systems.  The behavior of concern is high sensitivity to initial conditions.  Complex systems need not be chaotic and 
“chaos cannot explain complexity” (Bak 1996, p.31). 
 
ii The edited volume by Kiel and Elliot (1996) provides base models and measures as does the review by (Mathews, 
White and Long, 1999).  Standard information on the nature of chaos, dynamical systems and approaches for 
measuring the Lyapunov exponent are also provided. There are also a number of very useful websites in this area: 

http://www.calresco.force9.co.uk/sos/sosfaq.htm 
http://views.vcu.edu/complex/ 
http://views.vcu.edu/~mikuleck/ON%20COMPLEXITY.html 
http://www.ices.cmu.edu/casos 
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iii An example here is the A2C2 project funded by ONR, where a network representation scheme of the 
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Connecticut, the ORGAHEAD simulations at Carnegie Mellon University, and the experiment data collection 
efforts at the Naval Post Graduate School.  This facilitated direct comparison of the output of the three models and 
the experimental data. 


