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Abstract

Transforming organizational research data into actionable information nurses can use to improve patient outcomes remains

a challenge. Available data are numerous, at multiple levels of analysis, and snapshots in time, which makes application difficult in a

dynamically changing healthcare system. One potential solution is computational modeling. We describe our use of OrgAhead, a

theoretically based computational modeling program developed at Carnegie Mellon University, to transform data into actionable

nursing information. We calibrated the model by using data from 16 actual patient care units to adjust model parameters until

performance of simulated units ordered in the same way as observed performance of the actual units 80% of the time. In future

research, we will use OrgAhead to generate hypotheses about changes nurses might make to improve patient outcomes, help nurses

use these hypotheses to identify and implement changes on their units, and then measure the impact of those changes on patient

outcomes.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Transforming organizational research data into

timely, actionable information nurses can use to identify

cost-effective changes on their units that are likely to

improve patient safety and quality outcomes is chal-

lenging for several reasons. First, organizational re-
search data are generally collected as snapshots in time,

which makes their application in a complex, dynami-

cally changing healthcare system difficult and perhaps

even risky. Second, the data tend to be numerous and at

multiple levels of analysis. Traditional analytic methods

are inadequate to handle the multitude of variables and

fail to capture the dynamics of the organization as it

adapts to changes in the environment and the inevitable
nonlinear, stochastic cross-level interactions (e.g.,

among organization characteristics, patient care unit
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characteristics, and individual staff characteristics) typ-

ical of a complex, dynamic system. One possible solu-

tion is computational modeling.

Computational modeling is a set of tools that allows

users to create a virtual model of a particular system,

such as a hospital or patient care unit, and study its

behavior under various conditions [1]. Two different
approaches to computational modeling currently exist.

The first attempts to include as many variables as pos-

sible in the model, assuming that the additional vari-

ables increase the model�s accuracy. The second creates

a virtual model that provides a functional description of

the system and omits details (e.g., physical characteris-

tics of the unit) deemed unnecessary for this level of

analysis. We have chosen the second alternative because
it allows us to explore the relationships judged most

crucial while keeping the model reasonably simple.

The usefulness of computational models for building

theory about organizational behavior and adaptation

has been recognized for some time (see [2,3] for reviews).
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In healthcare, computational modeling has been used to
model a variety of clinical problems, such as protein

structure [4], mass transfer and its link to atherosclerosis

[5], cognition and higher brain function [6], stability in

neurons [7], and human movement [8]. In addition,

computational modeling has been used in healthcare

operations research to help managers schedule ap-

pointments more efficiently [9–11], modify workflow

[12,13], project resource needs [14], and anticipate the
financial and patient outcomes of programmatic chan-

ges [15–17]. However, to date computational modeling

has had only limited application in nursing, although it

has been used to create cost reimbursement models [18]

and to reduce clinic waiting times [19].

We are currently using OrgAhead, a computational

modeling program, to transform our recently collected

research data into actionable information. OrgAhead is
a theoretically based organizational modeling program

developed at Carnegie Mellon University. We calibrated

(tuned) the basic OrgAhead model using actual data

collected from 14 patient care units as part of a research

project evaluating the impact of workplace characteris-

tics on patient outcomes. The result was 16 ‘‘virtual’’

units that were functionally similar to their real coun-

terparts both in key characteristics (culture, size, patient
population, and turbulence, for example) and their pa-

tient safety outcomes (medication error and fall rates).

In our future research, we will use the ‘‘hypothesis

generating’’ power of computational modeling to design

unit-specific strategies likely to improve patient care

outcomes.

In this paper, we provide a brief overview of com-

putational modeling and the data collection procedures
for our larger patient safety research project. We then

describe our use of OrgAhead and report the results of

our initial model validation studies.
2. Background

In the past decade, computational modeling has be-
come increasingly popular as an alternative way to study

complex organizational dynamics because the strengths

of computational modeling can compensate for weak-

nesses found in more traditional research methods. For

example, because they must rely on static snapshots of

organizations at specific points in time, traditional ex-

perimental or correlation research methodologies are ill

suited for capturing the dynamic, potentially nonlinear
changes that evolve as organizations respond to envi-

ronmental demands. Individual snapshots may accu-

rately depict the organization�s behavior at that point in
time; but the researcher has no good way to determine at

what intervals (weekly, monthly, daily, etc.) to collect

observations so that they can ultimately be assembled to

re-create the original trajectory with its underlying dy-
namics. Without knowing the various rates at which
interacting processes are unfolding, researchers are

likely to miss observations at critical points in time, es-

pecially if the processes are nonlinear. For that reason,

snapshots (observations) of the same organization taken

at different times can lead to very different, perhaps er-

roneous, conclusions. By contrast, computational

modeling gives the researcher the ability to study the

trajectories of dynamic organizational processes as they
unfold over time [1].

Traditional research methods are frequently inade-

quate for the kinds of cross-level analyses needed to

describe organizations [20]. For example, it is well

known that organizational knowledge resides, not only

at the organization level, but also at the individual level.

Less is known about how these levels of knowledge in-

teract, in part because of the measurement difficulties
inherent in working at multiple levels simultaneously.

By using computational modeling, researchers are better

able to explore these kinds of interactions. For example,

computational modeling research has shown that inter-

actions that occur among individuals can have nonlinear

effects on organizational characteristics, such as the

generation of social sanctions, cues and norms [21], as

well as on information diffusion [22]. Each of these may
play a role in the organization�s ability to achieve de-

sired patient safety and quality outcomes.

Improvement in patient safety or quality outcomes

may occur through two mechanisms: an organization

can learn to do the same thing better (e.g., by locating

similar kinds of patient populations on the same units)

or it may actually do something different altogether

(e.g., change the medication administration system)
[23,24]. Computational modeling research has shown

that, under some conditions, changes in organizational

structure can actually reduce the effect of individual

learning and turnover on organizational performance

outcomes [25]. For example, an organization may decide

to restructure, which requires employees to learn new

skills (e.g., multiskilled employees) and diminishes the

value of their previous specialized knowledge, which
may, at least initially, lead to worse patient outcomes

and the need for further reorganization.

Computational modeling is based on a variety of

theories (e.g., communication, learning, social, and or-

ganizational). In OrgAhead, the major theories used are

organizational learning and design, communication, and

organizational behavior. These theories are operation-

alized in OrgAhead as a set of algorithms (i.e., if. . .then
statements). For example, one of the rules states that if

nurses have more control over their own practice, then

fewer standard operating procedures such as protocols

will be used. Another rule states that, if there is more

turbulence (e.g., admissions, transfers, discharges, phy-

sician orders, etc.) on a unit, then task complexity will be

increased. Network nodes and connections are initially



J.A. Effken et al. / Journal of Biomedical Informatics 36 (2003) 351–361 353
given inputs selected from variables with distributions
that reflect realistic values for a particular characteristic

of the modeled construct (e.g., the number of various

levels of personnel, such as RNs and LPNs, or staff

autonomy).

Organizational behavior is modeled iteratively over

time. The state of the organization at Time 1 serves as

the input for the state at Time 2, which becomes the

input for the state at Time 3, etc. As the organization
adapts or learns, changes in its behavior are stored in the

database, allowing the researcher to monitor changes in

strategic or operational decisions, such as who reports

to whom or when a manager or staff member is hired or

fired, while monitoring targeted performance measures

(e.g., accuracy). Ultimately, to validate the model the

researcher compares actual observed data with the

modeling output.
Computational modeling applications vary a great

deal. They may be continuous or discrete, static or dy-

namic, stochastic or deterministic. OrgAhead is a dis-

crete event simulator that allows either static or dynamic

modeling. For our calibration (model tuning) trials, we

used the static version because the actual patient out-

come data were taken at a single point in time. To

generate hypotheses about potential change strategies,
we will use the dynamic version.

Computational modeling tools are each designed to

model a particular aspect of organizations, for example,

communication or learning. OrgAhead is designed to

simulate the organization�s ability to redesign itself,

adapt to environmental constraints, or learn. In Org-

Ahead, researchers can run virtual experiments to an-

swer questions such as:
• What is the impact of organizational size on perfor-

mance?

• What organizational structures (e.g., centralized or

decentralized) are most adaptive, given particular en-

vironmental constraints?

• How does the way information is transmitted within

the organization affect the organization�s ability to

meet its desired goals?
Once we have demonstrated that OrgAhead can ad-

equately model the current performance of our patient

care units, then we will use it to answer questions about

the workplace changes nurses can make on units to

improve their quality and patient safety outcomes. Al-

though OrgAhead has been, and continues to be, used in

a variety of organizational and military settings, this is

its first application in healthcare.
3. Modeling the impact of workplace characteristics on

patient safety outcomes

How do patient characteristics, organization charac-

teristics, and patient care unit characteristics interact to
affect quality, safety, and cost outcomes? What changes
can nurse managers make on their units that will opti-

mize outcomes for their patients? To answer these

questions, we collected data from 35 patient care units in

12 hospitals in Arizona. We analyzed the data using

traditional methods (e.g., linear regression and causal

modeling) and are now using the variables from the first

wave of data collection (16 units in 5 hospitals) that were

shown to have a significant impact on patient outcomes
as a basis for computational modeling.

The conceptual framework for our research is the

Systems Research Organizing (SRO) Model [26]. The

framework contains four constructs: patient character-

istics, organizational characteristics, unit characteristics,

and patient outcomes (Fig. 1). All constructs are as-

sumed to interact with each other. We believe that the

best target for a nursing intervention will be at the pa-
tient care unit level because patient and organization

characteristics are likely to be less amenable to change

by nurse managers. However, we recognize that the

kinds of patients on a patient care unit (e.g., their

complexity and acuity) and the organization�s culture

and other characteristics may have profound effects on

any planned unit-level change.

Hospitals that participated in the research included
teaching and non-teaching hospitals, as well as public and

privately funded hospitals that ranged in size from 60 to

over 400 beds. We used only adult medical or surgical

units to control for variability due to specialty units. Data

were collected in two ‘‘waves’’; patient care units from

half the hospitals were assigned to each wave. Each wave

of data collection required 6 months to complete. Data

related to each of the model components were collected
through surveys of patients, staff, managers, quality im-

provement departments, and information services. Pa-

tients about to be discharged were introduced to one of

our research assistants by unit staff. Patients were invited

to participate in the study by completing a questionnaire

that included three separate scales (General Symptom

Distress Scale; Self Care: Condition Management; and

HowWell CaredForWereYou?) either before leaving the
hospital or via telephone within their first 72 h at home.

Unit staff (nurses, physicians, and other team members)

completed a single survey comprised of several scales (Job

Satisfaction, Relational Coordination, Self Regulation,

Control over Nursing Practice, Accessibility, Hospital

Culture, and Perceived Environmental Uncertainty)

duringmonths 3 and 4 of data collection.Nursemanagers

completed a monthly survey and a second, one-time sur-
vey that assessed unit and hospital characteristics. Tar-

geted quality (e.g., medication errors, falls) and financial

data (e.g., census, insurance data, average length of stay;

ICD-9s) were submitted monthly by information services

and quality management staff.

All data were entered into an SPSS file, where they

were cleaned to ensure data entry accuracy. Ten per cent



Fig. 1. The conceptual (SRO) model. Also shown are the concepts and variables (in parentheses) used to operationalize each of the four constructs in

the model.
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of the data was checked for accuracy. A 5% error rate

was set as the acceptable limit and was achieved on all

checks. Missing data were estimated using multiple im-

putation techniques. Because many data elements were

derived from survey instruments, the psychometric
properties of each scale were assessed at individual and

group levels. Many of the measures were collected from

individuals, but were aggregated to the group level for

analysis purposes; hence the need for determining psy-

chometric properties at both levels. Internal consistency,

reliability, and construct validity were assessed through

exploratory factor analysis at the individual level.

Standard group level assessment techniques of intra-
class correlation coefficient, between group significance,

and percent of aggregated inter-item correlation coeffi-

cients >.40 were performed. Altogether, during the first

wave of data collection, data were collected from 482

patients, 411 nursing staff and interdisciplinary team

members, and 16 nursing unit managers on 16 medical–

surgical units in four hospitals.

Following an initial descriptive analysis of the data
(e.g., means, medians, standard deviations, and range),

data reduction was accomplished using correlation, fac-

tor analysis, and linear regression. This resulted in the

elimination of a number of variables that did not factor

successfully and the addition of several new composite

variables: nursing culture, team culture, staffing, work-

load, and turbulence per patient day.. Causal modeling

with unit-level data was used to evaluate each of the re-
lationships in the SRO model. The variables shown to be

significant in the revised data set were then used as the

basis for our computational modeling [27–29].

The goal of the computational modeling portion of

the research is to ‘‘reuse’’ the data we collected to create

virtual patient care units that have the key characteris-

tics of the observed units and then to use the modeling
tool to generate specific design strategies that, if imple-

mented, can be expected to improve the patient safety

outcomes on each unit. These strategies will be shared

with nursing staff, together with the expected amount of

improvement per change initiative, so that nursing
leaders can implement the solution they feel will be the

most cost effective for them. Experience has taught us

that one solution rarely fits all because of the variation

in patient care unit cultures, technology, patient popu-

lations, and leadership. Therefore, we expect that indi-

vidualized solutions will be more actionable, and

therefore more effective, than a ‘‘generic’’ solution.
4. OrgAhead: a computational modeling tool

4.1. Description

OrgAhead is a theoretically based computational

modeling program for examining organizational per-

formance that was developed by Dr. Kathleen Carley
and her team at Carnegie Mellon University. For our

purposes, computational modeling has two unique ad-

vantages: it allows us to analyze complex, adaptive

systems (patient care units) and it facilitates theory

building and hypothesis generation [30]. We are using

OrgAhead, a computational modeling program, to

transform the results of our research into actionable

information for the patient care units. In contrast to
computational models that assume that by simply add-

ing more variables, the complexity of the real life situ-

ation will be captured, OrgAhead focuses on modeling

the essence of the real situation, using an organizational

science approach and an agent-based methodology. The

latter allows us to examine the emergent interaction

patterns of individual unit staff in dynamic patient care



Fig. 2. Solving the nine-bit binary choice classification task. Each task

corresponds to a patient. Various bits of information about the patient

are seen by each staff member, and individual ‘‘decisions’’ are passed

along up to the RN who makes the ultimate decision about whether

there are more A�s or B�s in the string (i.e., what is the status of the

patient?).
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situations. The model also allows us to look both at
successful and unsuccessful performance, which elimi-

nates the potential bias of looking at only successful

outcomes [30]. Additional details about the program are

available online at http://www.casos.ece.cmu.edu/pro-

jects/OrgAhead/.

OrgAhead is grounded in the vast body of empirical

and theoretical research on organizational learning and

design. For example, the model assumes that managers
have bounded rationality (i.e., that they have limited

information on which to make a decision). This is op-

erationalized as each individual having access to a lim-

ited subset of information, the size of the information

subset being determined by their education. In our in-

stantiation of the model, RNs ‘‘see’’ four pieces of in-

formation, LPNs and patient care technicians (PCTs)

see two, and Unit Clerks see three. Further, the model
assumes that organizational decision making is distrib-

uted among a number of members. That is, decisions

made by agents at lower levels of the hierarchy are

passed up to the supervisors at higher levels for a ‘‘final’’

decision. The model also assumes that different design

choices will be effective under different conditions. Most

theories treat matching the change to the environment

fairly statically, without considering how the organiza-
tion learns to change to a new design based on either

current performance or past experience. In OrgAhead,

the linkages between strategy, design, and performance

can be explored dynamically. The simulated organiza-

tion can change its structure based on perceived envi-

ronmental changes or desired outcomes, and individual

employees can learn and therefore improve their per-

formance over time [23]. Because the focus of our re-
search is on identifying interventions that nurse

managers can implement on their units, our ‘‘organiza-

tion’’ is actually the patient care unit.

The organization and individual employees operate

in a ‘‘task’’ environment wherein a ‘‘task’’ equals a pa-

tient. In OrgAhead, patients are modeled as nine-bit

binary choice classification tasks, a device used exten-

sively in team and organizational performance research.
Specifically, the organization�s task is to determine, for

each ‘‘patient,’’ whether a given binary string is of Type

A or B. Think of this as making a correct diagnosis or

treatment decision, given only two options. Each

member of the organization makes a decision (Type A

or B) based on the information available to them, and

then passes that information up to a superior. The top-

level manager (in our case, the registered nurse) makes
the final decision (Fig. 2). For more details, see [23].

The patient care unit is modeled as two interlocking

networks: an authority structure (who reports to

whom?) and a resource management structure (who has

access to which resources?). For our initial experiments,

we modeled each as a four-layered structure with reg-

istered nurses (RNs) at the top level, licensed practical
nurses (LPNs)—when present—at the second level, pa-

tient care technicians (PCTs) and/or Nurse Aides at the

third level, and unit clerks at the bottom level. Each

individual ‘‘agent’’ (e.g., RN or PCT) may have one or

more subordinates and report to one or more managers.

This allows researchers to model teams, hierarchies,

matrix structures, etc. No individual can make a patient

care decision alone (again assuming bounded rationality
and distributed decision making); instead the unit deci-

sion is modeled as a majority vote of the individual

decisions.

In OrgAhead, individual learning occurs through a

standard stochastic learning model for boundedly ra-

tional agents (e.g., staff members) [31]. In contrast, or-

ganizational learning, or adaptation, occurs as a

simulated annealing process, which is an optimization
heuristic similar to the hill climbing algorithm. To get an

intuitive idea of how annealing and hill climbing work,

consider a blind person who wants to climb the highest

peak in a range of mountains. By extending a cane, the

individual can detect a slope. Adopting a rule to climb

up each time a slope is detected will result in the person

reaching the top of one of the peaks in the mountain

range, but it may not be the highest. To reach the
highest peak, it may be necessary to descend from one

mountain before climbing up the next.

The annealing model was developed originally as a

heuristic for solving complex combinatorial optimization

http://www.casos.ece.cmu.edu/projects/OrgAhead/
http://www.casos.ece.cmu.edu/projects/OrgAhead/
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problems [32,33]. Simulated annealing is a computa-
tional analog of the physical process of annealing

(heating and cooling) a solid, in which the goal of the

process is to find the atomic configuration that mini-

mizes energy costs. In organizations, this is analogous

to a design problem in which the organization is

trying to optimize its performance under various

constraints [34]. We assume that annealing also can be

used to model the efforts of a nurse manager to find
the specific unit characteristics that will maximize

patient outcomes with acceptable costs (staffing, for

example).

During each OrgAhead simulation, organizational

changes (e.g., hiring or firing an individual) are oc-

casionally proposed as a random function of the

program. The organization has the capability to ‘‘look

ahead’’ (the ‘‘ahead’’ part of OrgAhead) to evaluate
the impact of the proposed change over the next 100

tasks (patients). We assume that a patient care unit

endeavors to optimize performance (e.g., achieve de-

sired quality and patient safety outcomes) while

reducing or maintaining costs. The unit will change

how it delivers patient care if it views that change as

facilitating desired outcomes—and sometimes may

even make a change that initially looks unfavorable, a
more risky decision, if it is viewed as likely to succeed

in the long term. OrgAhead�s annealing logic simulates

degrees of organizational risk taking. In the annealing

model, temperature corresponds to the organization�s
current level of risk aversion. Temperature drops

every 100 tasks (patients) so that the probability of

accepting a proposed ‘‘bad’’ change strategy gradually

decreases [35].
Organizational adaptation, as depicted in OrgAhead,

has two components: executive decisions about partic-

ular restructuring goals and strategies and individual

employees� experiential learning [31]. Executive deci-

sions are commonly assumed to be ‘‘satisficing,’’ rather

than optimizing. Research has shown that executives do

not consider all possible strategies; instead the first one

that seems likely to move the organization toward the
goal is selected [36,37]. Similarly, RNs cannot and do

not consider every possible intervention when address-

ing a patient problem, but select the first one that seems

likely to work, given their previous experience and

current constraints.

4.2. Using OrgAhead

Our use of OrgAhead required four distinct steps:

Step 1. Identify the core variables in OrgAhead that

correspond to the constructs in the conceptual model

(e.g., unit size, task complexity or autonomy). On the

surface, some variables in OrgAhead (e.g., agent,

CEO, or augmenting the probability of an RN being

hired when there is a vacancy on the unit) appeared
quite unlike those in our data. Some of the mappings
initially seemed counterintuitive, for example, mapping

culture onto the ‘‘probability of adding a manager�s
task.’’ However, there is a rationale for this mapping.

In our implementation of OrgAhead, a manager

equals an RN, so this feature determines which nurse

would be assigned to a new patient, for example.

Based on the literature, we assumed that hospital

culture is a key determinant of whether a new patient
is assigned to a nurse based on skill level or workload.

From our data, we determined whether the prevailing

patient care unit culture was predominantly affiliative

or rational. When the culture on the patient care unit

was more affiliative (family-like), we expected that a

patient assignment would more likely be made on the

basis of maintaining harmony on the unit, rather than

on the basis of matching skills available to skills re-
quired.

During the mapping process, it became clear that

modeling our patient care units required the addition of

a new OrgAhead variable, ‘‘task complexity.’’ Task

complexity (TC) is a complex variable built by inte-

grating several data elements in our research model re-

lated to the patient and patient care unit constructs

(Table 1). First, TC incorporates several patient char-
acteristics (i.e., number of comorbidities, age, and in-

surance) that, in our first wave of data, were predictors

of patient safety outcomes. TC also includes patient unit

characteristics that were found to be predictive of pa-

tient safety outcomes (i.e., workload and turbulence per

patient day). Each of these is also assumed to contribute

to the complexity of care, and therefore the workload, at

the patient care unit level. For example, if patients have
more comorbidities, are older and do not have insur-

ance, then they are likely to require more complex care

and the demands on caregivers will be more challenging.

Similarly, patient care units that have a high degree of

change in their environments, care for a wide variety of

patients, and have many admissions, transfers, and

discharges are likely to place more demands on care-

givers, as well.
Step 2. Explore the parameter space. This requires

defining the range of values that specific variables can

take. In some cases, continuous variables in our data set

had to be rescaled or converted to dichotomous vari-

ables. For example, each virtual organization completed

a training period before performance was measured. The

length of each training period was determined by the

reported level of staff education on the unit, calculated
as [mean years of education] + [years in hospi-

tal] + [2� years on the patient care unit]. We used the

mean score for the 16 units as a threshold for distin-

guishing high from low values. Units with higher edu-

cation were assigned a training period of 500 binary

choice tasks before their ‘‘life cycles’’ began and units

with lower education values were assigned 200.



Table 1

Examples of the mapping from constructs/variables in the research model to OrgAhead variables used in the initial ‘‘static’’ modeling

Construct/concept Research variable and data source OrgAhead variable and description

Insurance Percentage of patients who are self pay (one of three

components that sum to task complexity)—obtained

from hospital financial data

Task complexity (how many task resources are used).

This is the key variable that we manipulate. Self pay

status is only one of several components (see below)

Risk for adverse

outcomes

Age (% patients >75 years old) (one of three

components that sum to task complexity)—obtained

from financial data

Task complexity component

Risk for adverse

outcomes

Comorbidities (Avg.) (one of three components that

sum to task complexity)—obtained from hospital

financial data

Task complexity component

Workload Composite variable calculated as average number of

patient days/RN full time equivalents

(FTEs)—increases or decreases task

complexity—obtained from hospital financial data

Task complexity component

Turbulence per patient

day

Composite variable comprised of how often staff leave

unit, distance staff travel on unit to deliver care,

responsiveness of support systems, dynamism divided

by average number of patients per day—increases or

decreases task complexity—calculated variable based

on data obtained from staff and nurse manager

surveys

Task complexity component

Staffing Education, hours of care, vacancies (used to calculate

probability of hiring each level of staff when new staff

are hired.)—calculated from data obtained in nurse

manager survey

Training period

Autonomy Control over practice score (based on staff survey

response to Control over Practice scale)

SOP (standard operating procedures); (the probability

that standard rules or protocols will be used; as

control over practice increases, the use of SOP

decreases)

Staffing Number of RNs, PCTs, LPNs, NAs, and Unit Clerks Number of people in organization & Levels of

hierarchy

Experience Months of experience in hospital and on

unit—obtained from staff survey

Training Period (number of time periods simulation

runs, as training, before data are collected); This is set

at 500 if highly trained staff; 200 if poorly trained

Safety Reported medication errors, and falls with injury,

obtained from hospital quality data

Accuracy (in OrgAhead, this refers to the accuracy of

the decision made about the binary choice task (i.e., in

each nine-bit string {patient} presented, were there

more A�s or B�s?)
Quality Percentage of time minimum criterion for complex self

care and symptom management achieved; obtained

from patient surveys on discharge

Completion rate (describes the degree to which the

organization (unit) has sufficient information re-

sources to handle their assigned tasks (patients)

For these analyses, memory cycle, unit structure (people to people and people to resource connections), and information per person were held

constant across units. Data sources for the research variables are included, along with descriptions of the OrgAhead variables.
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Selecting the parameters that will be allowed to vary

(independent variables) and values for those parameters,

as well as the dependent measure (e.g., accuracy) defines

a virtual experiment. For the initial validation studies,

we varied task complexity, autonomy, and training pe-

riod. Our calculated values for task complexity were

rescaled for OrgAhead into a range of odd values be-

tween 5 and 17. In the original version of OrgAhead, the
variable that corresponds to our autonomy measure

(standard operating procedures, or SOP) was simply an

on-off switch. However, that proved to be too insensitive

so SOP was modified to be a continuous variable, which

allows us to use our actual values.

Step 3. Set non-core variables for each patient care

unit, based on actual data. These include variables such

as the levels of hierarchy to be described, the number
of staff at each level, and the probability of staffing

changes (hiring or firing) at each level. Levels of hier-

archy and numbers of staff are obtained directly from

the data. The probability of hiring someone in any

given month is a calculated variable, based on the

number of vacancies and resignations in the previous

month. This probability is relevant only for the dy-

namic experiments.
Step 4. Conduct virtual experiments. Computational

modeling allows for developing organizational experi-

ments that would be difficult to control in the real

setting. The purpose of our initial experiments was

model validation. Because OrgAhead had not been

used in healthcare before, it was important to know

whether we could really use it effectively to model

patient care units.
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5. Model validation

5.1. Calibrating the patient safety model

Our initial experiments were aimed at model valida-

tion using a calibration technique and patient safety

data. We needed to determine how well the Accuracy

measure in OrgAhead mapped onto our observed pa-

tient safety outcome measures (i.e., Medication Errors
and Falls—with and without injury). Because our data

were reported, not actual, medication errors and falls,

we set our desired level of match at pattern, rather than

actual values. Our goal was to calibrate OrgAhead so

that the accuracy of simulated units generally (at least

80% of the time) ordered in the same way as observed

units.

5.1.1. Design and procedure

Calibration entailed comparing the observed total

reported Medication Errors and Falls (with and without

injury) for 16 units with their corresponding Accuracy

measures in OrgAhead. We carried out ‘‘static’’ (non-

annealing) simulations for each of the 16 units with task

complexity, autonomy, training period, and number of

staff on the unit set on the basis of our observed data.
These particular variables were selected because of their

statistically significant impact on medication errors or

patient falls in our previous causal modeling. In addi-

tion, we controlled the structure of the organization.

Although the number of people varied according to the

actual unit data for number of staff at each level, we

kept the amount of information each level (i.e., RNs,

LPNs, PCTs, and Unit Clerks) could access the same,
and also kept the hierarchical structure the same across

units. We then rank ordered the performance of virtual

and actual units and compared them using Pearson

Product Moment Correlation statistics.
Table 2

Virtual unit performance accuracy compared with actual unit total errors fo

Unit Virtual

Accuracy Rank order

1 75.85 15

2 74.95 16

3 77.75 11

4 84.55 1

5 81.6 3

6 79.45 7

7 81.3 4

8 77.65 12

9 81 5

10 83.4 2

11 77.65 12

12 78.6 9

13 79.2 8

14 76.45 14

15 78.45 10

16 80.95 6
5.1.2. Results and discussion

When the rank orders of Accuracy (virtual units) and

Total Errors (actual units) were compared for all 16

units (Table 2), the correlation coefficient exceeded our

target, r ¼ :83. Correlation at the value level (Accuracy

and Total Errors) was reasonably high as well, r ¼ �:62.
With two small specialty units that were outliers both in

terms of size and the task complexity excluded from the

sample, the correlations were even stronger. At the
pattern level (rank order of virtual and actual perfor-

mance measures), r ¼ :86. At the value level (i.e., Ac-

curacy for virtual units and Total Errors for actual

units), r ¼ �:76. Overall, our effort to model the 16

patient care units by controlling the variables shown

to be statistically significant in the causal modeling

exceeded our expectations.

5.2. Calibrating the quality outcomes model

Our second set of experiments utilized a second

OrgAhead outcome measure, Completion Rate. We

initially had assumed that Completion Rate would

correspond to Length of Stay. However, some of our

research team found it equally plausible that Comple-

tion Rate might reflect the degree to which units suc-
cessfully met quality criteria (e.g., the percentage of

patients that achieved minimal self care outcomes). Our

second experiment was conducted to test these com-

peting hypotheses.

5.2.1. Design and procedure

We adopted the same design and procedure that we

had adopted to calibrate the safety outcomes model.
However, for this analysis, quality measures were

converted to percentage of achievement above mini-

mum thresholds. Quality measures used in the study

were Simple Self Care (e.g., patients� abilities to get
r 16 patient care units

Actual

Total errors Rank order

21.02 15

12.49 14

8.15 12

1.79 1

2.13 2

2.88 3

4.73 7

26.18 16

4.09 6

4.87 8

10.83 13

5.4 10

3.04 4

7.22 11

4.98 9

3.26 5



Table 3

Corresponding values of OrgAhead�s completion time measure with actual observed quality outcome variables, and average length of stay for 16

patient care units

Patient care unit Completion time Simple self care Complex self care Symptom management Length of stay

51 0.176 0.68 0.66 0.64 3.39

53 0.321 0.61 0.61 0.67 8.33

54 0.269 0.48 0.44 0.5 3.22

55 0.471 0.77 0.71 0.84 2.3

61 0.22 0.69 0.69 0.66 3.43

62 0.282 0.52 0.59 0.75 3.9

63 0.318 0.29 0.59 0.56 4.22

64 0.475 0.69 0.85 0.92 8.22

65 0.325 0.75 0.63 0.52 3.58

66 0.476 0.75 1 1 6.43

91 0.37 0.67 0.62 0.65 3.21

101 0.282 0.75 0.55 0.65 4.56

102 0.275 0.55 0.65 0.71 4.77

103 0.299 0.7 0.6 0.8 5.27

104 0.299 0.67 0.53 0.39 5.33

105 0.326 0.59 0.59 0.71 4.05

J.A. Effken et al. / Journal of Biomedical Informatics 36 (2003) 351–361 359
help, take medications, and follow their treatment

plan on discharge), Complex Self Care (e.g., patients�
abilities to manage their conditions and adapt their

treatment plans), and Symptom Management (e.g., how

well patients are able to manage their symptoms on

discharge). The thresholds used for these measures were

recently validated in a national study using a Delphi

technique [38].

5.2.2. Results and discussion

Ranking units by percentage of achievement resulted

in a number of ‘‘ties’’ at various values; for that reason,

order level validation could not be used. Therefore, we

compared the values of observed measures for quality

indicators for 16 units with their corresponding comple-

tion time measures in OrgAhead. The results are sum-
marized in Table 3. The correlation between Average

Length of Stay and Completion Rate, which we initially

expected to be high, was not (r ¼ :34). The correlations

between Completion Rate and Complex Self Care

(r ¼ :64) and between Completion Rate and Symptom

Management (r ¼ :62) were judged as adequate for

modeling purposes, but the correlation between Com-

pletion Rate and Simple Self Care (r ¼ :29) was not.
When a composite quality variable was created by cal-

culating themean of theComplex Self Care andSymptom

Management scores, the correlation of that value with

Completion Rate was slightly higher (r ¼ :66). Assuming

that these correlations remain consistent when we retest

with the second wave of data, we will map Completion

Rate to the composite quality value.
6. Conclusion

We are using OrgAhead, a computational modeling

program, to transform data collected for a large research
project into actionable information. In validation studies,

we demonstrated that we can create virtual units that

match the performance of the actual units in our firstwave

of data collection. Two OrgAhead outcome variables,

Accuracy and Completion Rate, were shown through a

correlation study to correspond to Total Errors and a

composite quality measure comprised of Complex Self

Care and Symptom Management, respectively.

6.1. Limitations

Thenumber of parameters thatmust be experimentally

set in OrgAhead to model a specific unit is quite high,

particularly for the dynamic simulations. This means that

the number of independent variables in a seemingly sim-

ple experiment can quickly get too high for statistical
analysis. For our preliminary validation studies, we found

it useful to use the staticmodel and control some variables

so that the effects of others were clearer.

OrgAhead has several parameters that are actually

switches; that is, they are either ‘‘on’’ or ‘‘off.’’ Initially,

standard operating procedure (SOP) was one of those

parameters. Because it had such a dramatic effect on

organizational performance, it was modified to be a
continuous variable so that it mapped more appropri-

ately to our data. So far, this is the only switch that we

have changed; however, it is possible that others may

need to be altered in the same way.

Not all the data we collected for the research project

are available routinely in the hospital, although the fi-

nancial and quality data are. However, it is not un-

common for hospitals to conduct staff surveys—and
patient surveys are common in most organizations. We

continue to be limited by the availability of nurse-sen-

sitive outcome data. For example, we are using ‘‘re-

ported’’ medication errors, not observed or actual

medication errors; because those data do not exist in the
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hospitals we are studying. This lack of precise measures
of outcome data is likely to make it more difficult to

model accurately a patient care unit�s performance.

6.2. Implications and directions for further research

Computational modeling is a theoretically motivated

analysis methodology that, although not developed

specifically for healthcare, has the potential—when

variables are correctly mapped—to afford researchers a

promising new way to analyze the complexities of the

healthcare system and develop predictive models that

patient care managers can use to help in their decision

making. We have successfully mapped variables col-
lected in a healthcare domain onto OrgAhead. We have

provided initial validation for the model by replicating

the pattern of performance of 16 patient care units in the

first wave of data collection.

Once the results from the second wave of data col-

lection are available, we will refine the model further.

We then will use the dynamic version of OrgAhead to

generate hypotheses about change strategies that have a
high probability of improving outcomes on four pilot

units and determine the face validity of the generated

change strategies with nurses on the pilot units. As-

suming adequate face validity is obtained, we will gen-

erate potential change strategies for the remaining units

and work with nurse managers to assess the cost effec-

tiveness of each for their purposes. In subsequent re-

search, we expect to work with selected units to
implement the selected change initiatives and evaluate

their impact on patient safety and quality outcomes.
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