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Abstract—While structured by social and institutional 

networks, disease outbreaks are modulated by physical, 
economical, technological, communication, health, and 
governmental infrastructures. To systematically reason about the 
nature of outbreaks, the potential outcomes of media, prophylaxis 
and vaccination campaigns and the relative value of various early 
warning devices, social context and infrastructure must be 
considered. Numerical models provide a cost-effective, ethical 
system for reasoning about such events. BioWar, a scalable city-
wide multi-agent network numerical model, is described in this 
paper. BioWar simulates individuals as agents who are embedded 
in social, health, and professional networks and tracks the 
incidence of background and maliciously introduced diseases. In 
addition to epidemiology, BioWar simulates health care seeking 
behaviors, absenteeism patterns, and pharmaceutical purchases, 
information useful for syndromic and behavioral surveillance 
algorithms. 
 

Index Terms—bioterrorism, multi-agent network, social 
network, syndromic and behavioral surveillance. 
 

I. INTRODUCTION 

HE capability to assess the impacts of large scale 
biological attacks and the efficacy of response policies is 
necessary from intelligence and planning perspectives and 

requires reasoning about social response and disease 
transmission within a complex social system. The recent case 
of an atypical pneumonia (SARS) [1] illustrated the 
importance of and close linkage among social networks [2]-
[3], disease transmission, and early detection. Like natural 
epidemics, biological attacks will also unfold within spatially 
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defined, complex social systems, and the societal response will 
have profound effects on their outcome.  

It is not always clear how best to detect and respond to a 
disease outbreak, either natural or malicious. The goal of our 
research is to develop tools to simulate how diseases spread 
through socially connected groups so that these tools may be 
used to test the various detection and response options. This 
paper focuses on bioterrorist attacks, but the model structure 
has been applied to emergent and familiar diseases as well. 

In trying to prepare for attacks, policy makers need to be 
able to think through the consequences of their decisions in 
various situations. Role-playing “simulation” physical 
exercises can provide valuable insights but are limited in 
number, size, scope, and scenarios due to cost, time, and 
cognitive constraints [4]. 

Designed and validated correctly, computer simulations can 
be more cost-effective, faster, and more comprehensive, 
allowing enormous numbers of complicated, outside-the-box 
scenarios to be examined systematically.  

Recently, GIS (Geographic Information Systems) based 
epidemiological models have been developed that take into 
account the spatial and geographical dimensions [5]-[6], 
however this work does not consider the social dimension nor 
the interplay between different dimensions which would affect 
the complex outcome of the interacting real world systems. 
There has also been relevant work in RoboCup rescue [7], 
swarm/ants intelligence [8], and mathematical modeling of 
multi-agent systems [9]-[10]. While RoboCup rescue is useful 
for investigating rescue strategies in a simulated earthquake, it 
is concerned with designing smart algorithms, not with 
investigating a current human social system as it exists and 
designing a public policy for it. The swarm/ants intelligence 
work focuses on the emergence of smart group behaviors out 
of simple individual routines (e.g. for those of insects such as 
ants), instead of on knowledge-intensive and context-intensive 
human social system and the effects of epidemics within it. 
The mathematical modeling of multi-agent systems is an 
idealized approach to modeling social systems that is good at 
describing population dynamics. It concerns itself with 
deriving equations to describe macro-behaviors from micro-
behaviors, often needing to make assumptions such as the use 
of a generalized Markov model, which are not necessarily 
sufficient to describe social systems. 

BioWar is a single integrated model of the impact of a 
bioterrorist attack on a city that combines state-of-the-art 
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computational models of social networks, communication 
media, and disease transmission with demographically 
resolved agent models, urban spatial models, weather models, 
and a diagnostic error model. Unlike traditional models that 
look at hypothetical cities, BioWar is configured to represent 
real cities by incorporating census data, school district 
boundaries, and other publicly available information. 
Moreover, rather than just providing information on the 
number of infections, BioWar models the agents as they go 
about their lives – both the healthy and the infected. This 
enables observation of the repercussions of various attacks and 
containment policies through natural measures such as 
absenteeism, medical website hits, medical phone calls, 
insurance claims, over-the-counter pharmacy purchases, and 
hospital visit rates, among others. BioWar is useful for clients 
concerned with preparedness training, response analysis, 
detection algorithms evaluation, stakeholder communication, 
and public policy analysis. The intended user base of BioWar 
is policy analysts and developers representing such clients. 
Versions of BioWar have been made available to several 
outside groups, including Charles River Analytics, Inc. and the 
US Army. As it presently stands, BioWar still requires expert 
users: we are in the final phase of developing a simplified 
graphical user interface implementation. 

 

II. LIMITATIONS OF PREVIOUS EPIDEMIOLOGICAL MODELS 

Epidemiologists have used the SIR (Susceptible-Infected-
Recovered) framing for modeling the course of epidemics 
[11]. Such models are typically implemented assuming 
homogeneously mixing populations, with no medical 
intervention, no spatial dimension, no social (and network) 
connections [12], nor symptom-based behavior.  

Cellular-automata models for disease spread, such as the 
Brookings’ individual-based computational model of smallpox 
epidemics [13], improve upon the differential model of SIR, 
allowing spatial operation and discontinuities. The geometry 
of cellular automata, however, does not match the spatial 
reality of the real world, oversimplifying disease propagation 
processes. 

System dynamics models such as Epi-Engine of CiMeRC 
(National Bioterrorism Civilian Medical Response Center) 
abstract away the underlying social interactions with a system 
of mathematical equations [14]. While system dynamics 
models capture the general trend of epidemics and feedback 
loops, they are problematic for the subtleties of micro- and 
meso-behaviors, and they largely ignore the symbolic aspects 
of a population such as knowledge about school districts, 
recreational preferences, the calendar of events and holidays, 
and traffic regulations, among others. 

A discrete event simulation model of antibiotic distribution 
was used to examine post-exposure prophylaxis [15]. Though 
providing useful insights, it did not model the social 
interactions and physical dimensions of disease spread and 
response. 

Purdue University’s Measured Response simulation model 
is based on Synthetic Environment for Analysis and 
Simulation (SEAS), a DNA-like agent model for a synthetic 

economy [16]. The model represents agent inputs/sensors as 
binary “genes” and agent outputs/actions/decision factors as 
binary “genes” (e.g. financial security and liberty genes).  The 
model has a routine that determines the mapping between its 
input and output attributes/genes, and updates the state of its 
genes. Measured Response model has been used for annual 
training exercises of the same name with local, state, and 
federal officials as participants, and has a good interactive 
interface. The model however often uses abstract/high-level 
entities and behaviors as genes, ignoring the major raison 
d'être of the multi-agent simulations: emergence of high-level 
behaviors and entities from low-level primitives. This is 
relevant to the ability to examine micro- and emergent meso- 
and macro-behaviors of agents crucial to the effective response 
against a bioterrorism attack. Non-binary and non-Markovian 
input and output values are not modeled. The complexity and 
nuance of social interactions, including the co-evolution of 
cognition and structure – a factor in disease spread – are 
overlooked. Measured Response applies population-based 
mathematical models as determinants on agents, instead of 
allowing for emergence. It models individual attack diseases 
alone without concurrently simulating normally occurring 
diseases, and does not properly model disease progression, 
disease confounding, symptoms, diagnosis, treatment, or 
individual response to symptoms and diseases. The Measured 
Response model and its model assumptions and variables have 
not been validated; in particular, its disease model has not 
been validated against empirical data of past outbreaks. Its 
hypothetical simulations of a stylized city are inadequate in 
fidelity, partially because it does not have proper 
spatiotemporal coordinates, spatial regions, and spatial 
operations such as proximity and adjacency. To meet the 
requirement to simulate at varying scales (e.g. local, state, and 
national), Measured Response imposes these levels onto its 
agent model by using small numbers of agents to represent 
large populations but does not provide adequate scientific 
justifications as to what level of abstraction and how much 
aggregation and layering are feasible without reducing its 
agents into simple homogeneous sample populations, forgoing 
the benefits of agent-based simulations. 

Los Alamos National Labs’ Episims applies graph-based 
methods to a transportation networks simulation based on 
population-mobility, land-use, and census data to estimate 
contact graphs that are assumed to be social networks [17]-
[18]. Episims is better than other methods in that it does not 
assume homogeneous population mixing. But it lets normal, 
non-attack day transportation patterns drive social networks 
and agent behaviors, while the reverse is true in reality: agent 
behaviors drive social networks and social networks drive, 
even while being constrained by them, transportation patterns. 
Transportation networks may constrain but do not define 
social networks, as transportation networks and other 
infrastructures provide a large number of choices for agents. 
Episims also models disease spread by disease load, which 
may lead to incorrect results. 
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III. BIOWAR OVERVIEW  

BioWar is a city-scale spatial multi-agent network model 
capable of simulating the effects of weaponized biological and 
chemical attacks [19]. It integrates principles of epidemiology, 
health science, geography, demographics, sociology, social 
networks, behavioral science, organization science, and 
aerosol transport. While BioWar incorporates elements from 
previous models, it also addresses many of their shortcomings. 
Recent work has demonstrated that the failure to take the 
social network and the physical locations of people into 
account leads to incorrect estimates of disease spread and of 
response policies because spatial, temporal, and demographic 
dimensions affect disease spread [5], [20]-[22]. For example, 
concurrent partnerships affect syphilis persistence [20], bridge 
populations have influence on the spread of HIV in Thailand 
[23], concurrent partnerships affect disease transmission 
dynamics in networks [21], [24], sexual networks affect HIV 
spread [25], and networks intertwine with epidemiology [22]. 
BioWar is socially (with social, knowledge, and task networks) 
and spatio-temporally more realistic than previous 
bioterrorism attack models. 

Major advantages of BioWar’s spatial multi-agent network 
approach include: 

• Heterogeneous population mixing, defined by agent 
and social network characteristics.  

• Simultaneous modeling at multiple levels (pathogen, 
dispersion, first responders, local government 
officials, knowledge evolution, etc.) without explicit 
aggregation but with emergence [26]. 

• Detailed modeling and simulation of individuals and 
their social networks. 

• Locally accurate agent and social network models 
with good disease and infrastructure models which 
facilitates high-precision detailed investigation of 
first-responder plans for bioterrorism response, and 
fast, detailed, and effective responses in general. 

A simulation is only as good as its fidelity to the aspects of 
the real world it tries to emulate. In BioWar, real data from 
census, school districts, general social surveys, etc., are used 
as input. BioWar also generates simulated output that is 
validated against real data: drug purchases, school and work 
absenteeism, medical phone calls, doctor visits, ER visits, 
social network statistics, work patterns, epidemiological (EPI) 
curves, chief complaints, discharge diagnosis, etc. Major 
components of BioWar are illustrated below (Figure 1).  

The agent model takes as input the social, disease, and 
environmental data streams. It integrates various models of 
disease, geography, attack, weather, and communication 
technology (e.g., health-related website visits and 911 calls). 
The agent model itself is a finite state machine describing how 
agents interact, move, are exposed to bioagents, contract 
disease, manifest symptoms, and seek and receive treatment. 
The arrows between “privacy” and “output & system 
compliance” in Figure 1 denote the use of privacy algorithms 
to ensure the security and anonymity of individuals. The BSS 
and NEDSS compliant privacy module is being implemented 
with the cooperation with CMU Data Privacy Lab.  

 

 
Fig. 1.  The design of BioWar. Individual characteristics of the agents, 
diseases, geography, and general information on communication technology, 
social, disease, and environmental conditions are used by the agent model to 
change behavior. Outputs are used to test early detection algorithms and 
hypothetical what-if scenarios are used to analyze policy. Note that the agent 
model diagram only represents a small part of the complexity of agent 
behavior: the complex social networks are not shown. 

Agent, disease, geographic, weather, attack and 
communication technology models have been implemented 
and used extensively. What-if scenario and impact analysis 
modules have also been encoded and used to validated 
BioWar against the SIR (Susceptible-Infected-Recovered) a 
conventional epidemiological model, for smallpox [27] and 
against a variant of SIR [28] for non-infectious diseases (in 
this case anthrax). The detection module uses detection 
algorithms created by outside groups attempting to detect a 
bioattack one or more days earlier. 
 

IV. AGENT-LEVEL DISEASE MODEL 

The current version of BioWar simulates 62 diseases – 4 
weaponized diseases and 58 naturally-occurring diseases – 
simultaneously in a population. Adding a new disease (e.g. 
emerging infectious diseases like SARS) is relatively easy: it 
takes approximately one programmer day. Validating a new 
disease is harder: it may take days or weeks depending on the 
disease and the quality of empirical data. We use a symptom-
based general disease model. Each disease has its own set of 
symptoms, timing for disease phases, variations in presentation 
based on age, gender, and race, and contagiousness. Each 
instance of a disease infecting an agent is individually 
represented and progresses through time as the agent goes 
about his or her daily business.  Diseases can propagate 
through a population, based on probabilistically determined 
agent risk factors, the transmissibility of the disease, and the 
spatial and temporal proximity of uninfected agents to infected 
agents. 

Each disease progresses through up to five phases: 
1. Incubation: the period of time before the agent begins 

presenting symptoms. 
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2. Early symptomatic (prodromal): the period of time 
during which an infected agent may experience mild 
or non-descriptive symptoms.  Many diseases have no 
known or identifiable early symptomatic period. 

3. Late symptomatic (manifestation): the period of time 
during which an infected agent may experience severe 
and/or disease-specific symptoms. In many diseases, 
this phase may not be distinct from the early 
symptomatic phase. 

4. Communicable: the period of time during which an 
infected agent may infect other agents. This phase 
may overlap with the above phases. Noncontagious 
diseases do not have this phase. 

5. Recovery/death: a period of time during which a 
disease resolves or causes death.   

In the current version of BioWar, the length of each phase, 
except recovery/death, is generally determined using a uniform 
random distribution with a range provided by expert analysis 
for background diseases (better distributions may be added 
when the need arises). Weaponized diseases, however, are 
treated as a special case and the phase durations are calculated 
differently [27]-[28]. Recovery and death of an agent, when 
not affected by treatment, is determined by a Bernoulli process 
with p equal to the death rate of the disease among untreated 
victims (again, determined by expert analysis).  The duration 
before death or recovery is likewise stochastically determined. 

In constructing our disease model, we used historical 
accounts of known anthrax releases [29], documents from the 
October, 2001 bioterrorism attack [30], and disease knowledge 
bases [31]-[33]. We have also drawn on the experience of 
other medical expert systems developed to assist in diagnosis 
to ground our disease model in well-founded medical 
knowledge representations [34]. 

A. Risk Factors 
Certain demographic groups are more likely to be 

susceptible to particular diseases than other. These risk factors 
increase a person’s susceptibility to diseases through either 
host factors or environmental factors to which that person is 
exposed. In BioWar, risk factors are distributed a priori to 
individuals in the population according to demographic 
characteristics such as age, sex, race, occupation, and disease 
prevalence. 

B. Symptoms 
Symptoms are important in BioWar on two levels. They 

motivate agent behavior and determine the initial diagnosis of 
agents entering the medical system. Agents with symptoms 
self-diagnose, stay home from work, visit their doctor or 
pharmacist, and change their patterns of interacting with other 
agents, depending on the severity of symptoms. This symptom-
based disease model permits the representation of outliers and 
stochastic flux (not everyone with the same disease presents 
the same symptoms). Symptoms are assigned two different 
measures that influence which symptoms agents feel and how 
that changes their behavior [34]. The first, frequency, is a 
qualitative measure of how frequently people with a particular 
disease will manifest a particular symptom. Frequency is 

denoted by a number between 1 and 5 that answers the 
question: “In patients with disease x, how often does one see 
symptom y?” For example, patients with the diagnosis of 
anthrax will have a fever frequency of 5 – nearly all patients 
with anthrax will have fevers at some point in the course of 
their disease. The second, evoking strength, is a qualitative 
measure of how frequently a doctor will associate a particular 
symptom with a particular disease. Evoking strength is coded 
as a number between 0 and 5. It answers the question: “When 
you see symptom y, how often would a doctor think the cause 
is disease x?” For example, fever symptoms are not specific to 
any one disease – in our disease profile of anthrax, fever is 
given an evoking strength of 1. However, a widened 
mediastinum is a more specific symptom of anthrax – in 
patients who have a widened mediastinum, the possibility of 
anthrax should be routinely considered thus the evoking 
strength for this symptom is 5.  

C. Agent Behavior-Symptom Relationship 
Although individuals get symptoms based on the symptom 

frequency for the disease that they have, they will actually alter 
their behavior based on the evoking strength of that symptom. 
When a symptom is added to a disease, its severity is 
initialized to the symptom's evoking strength. Then, as the 
disease progresses, the severity of each symptom is increased 
randomly each four hour tick by a user-defined value. If an 
agent is in treatment, the severity is reduced each tick 
randomly by an amount depending on the type of treatment. 
Thus, the total severity is determined quasi-randomly based on 
evoking strengths [34], time, and treatment. 

Once an agent is infected, the infection progresses through 
time via a simple state machine which can be interrupted or 
altered by external events, such as successful treatment of an 
agent at a medical facility. 

A set of user-specified symptom severity thresholds guides 
an agent's initial decision to visit a medical facility and the 
visit outcome is probabilistically determined based upon an 
agent's demographic profile.  The thresholds are limits of the 
sum of the severities of observable symptoms over all diseases 
infecting an agent. Hence the true nature of the agent's health 
status is opaque to the decision model, and the agent only 
responds to symptoms that can be monitored by the normal 
human senses. Before the decision model chooses an agent’s 
next care-seeking behavior, the total symptom severity is 
calculated and measured against each threshold in the 
following order: 

1. Low severity - no effect 
2. Mild severity - go to the pharmacy, self medicate 

(Table I) 
3. High severity - go to the doctor 
4. Extreme severity - go to the emergency room 

These behavior thresholds for going places are currently 
estimated from empirical visit statistics – say, to doctor offices 
– and compared to the simulated visit statistics that BioWar 
produces.  

In the future versions of BioWar, we will incorporate 
detailed rule-based systems for specific symptoms based 
behavior changes.  
 



SMCA03-11-0274 5 

 
 

D. Dose-Response Relationship for Weaponized Pathogens 
Currently information about human response modeling for 

weaponized diseases is scarce. The relationship between the 
infection probability, illness duration, and onset-of-illness 
versus inhaled dose were recently published for anthrax, 
botulism, pneumonic plague and Venezuelan equine 
encephalitis [35]. At this stage, BioWar takes into account 
dose and age-of-agent for infection probability for inhalational 
anthrax following formulas developed by Webb, Blazer, and 
Buckeridge [36]-[37] while for the other weaponized diseases 
it uses an exponential model for infection probability. 

 

E. Noncontagious Disease Submodel 
Our disease model tracks non-contagious diseases. Non-

contagious diseases do not have a communicable phase, 
though some non-contagious diseases can be spread by contact 
(e.g., anthrax spread by US Mail). Intervention affects disease 
outcome. If anthrax infection is suspected to be present, this 
triggers the intervention such as distribution of the antibiotic 
Cipro. Giving Cipro, in turn, ameliorates the symptoms and 
possibly cures the disease. For short-duration non-contagious 
diseases such as food poisoning, outbreaks are randomly 
generated based on prevalence data. For chronic non-
contagious diseases such as angina and diabetes, the initial 
agent population is afflicted based on known race, gender, and 
age distributions according to prevalence information. If an 
agent dies, another agent in the same demographic cohort 
chosen at random is afflicted. 

 

F. Contagious Disease Submodel 
Our disease model also allows the representation of 

contagious diseases. Transmission can occur via contact or air 
dispersal. When a person comes into contact with the 
transmission medium, disease transmission occurs with some 
specified probability.  

Agents experiencing disease state transitions are modeled as 
nondeterministic automata. As past medical history affects 
these transitions, this is a non-Markovian model. At any time 
within the duration of a state, a medical intervention can occur 
and the state can be changed. The state of the disease also 
affects the medical intervention. 
 

V. DIAGNOSIS MODEL 

As previously mentioned, we use a symptom-based 
differential diagnosis model to obtain information on the 
diseases infecting an agent who visits a medical facility.  Our 
goal was not to build an error-free diagnosis model. Rather, we 
use differential diagnosis, as do medical doctors, which allows 
for the possibility of initial misdiagnosis and the revision of 
diagnoses with additional information (e.g., lab results). We 
have based the model on the Internist1/QMR diagnosis model 
[34], but have augmented the results with probabilistic 
"switches". As such, our model is not a true computational 
diagnostic tool, but serves to control the simulator's response 
to diseases in a simulated population. 

Agents self-diagnose on the basis of visible or palpable 
symptoms. Medical personnel diagnose on the basis of visible 
symptoms and other information, which can include laboratory 
tests of varying accuracy (type 1 and 2 errors are possible) and 
report time. Moreover, doctors and ER personnel take time to 
file a disease report (up to 8.74 days according to a claim 
delay data gathered by IBM [38]), delaying institutional 
realization of a bioattack.  

Initial medical diagnosis is simulated based on the apparent 
symptoms and their evoking strengths. To determine which 
disease a person has, the groups of evoking strengths of 
symptoms associated with potential diseases are compared and 
the highest one is chosen as the diagnosed disease. In other 
words, the disease most strongly associated with the most 
severe set of symptoms is chosen. Subsequent diagnosis can 
update the primary diagnoses based on the appearance of new 
symptoms and on the results of diagnostic testing. Chief 
complaints are not necessarily the same as discharge diagnosis, 
which is consistent with observed hospital performance [39]. 

 

VI. TREATMENT MODEL 

 Diagnosis at a doctor’s office results in treatment or 
ordering of additional tests. If an agent reports directly to a 
hospital’s emergency department, diagnosis results in 
treatment, tests, or an admission to the hospital. Treatment 
may not be immediately effective and symptoms vary in 
visibility and type of testing required for their detection. In the 
current version of BioWar, recovery after treatment is modeled 
as a lognormal distribution with a mean of 3 days with a range 
of 0-10 days for all diseases except anthrax and smallpox. The 
recovery distribution for anthrax is described in [28], the one 
for smallpox in [27]. Future versions will have more realistic 
treatment models for more diseases. 

 

VII. SOCIAL NETWORKS 

Epidemiologists have long recognized that groups, 
organizations, institutions, and the societies in which they are 
embedded, are complex systems that affect the propagation of 
diseases through a population. It is only recently that we have 
had the tools for modeling these systems. These tools include 
multi-agent computer models and the body of statistical tools 
and measures that have arisen in social networks [40].  
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The significance of social networks to contagious disease 
transmission is obvious. Social networks are also important in 
delimiting bioattacks using non-contagious microorganisms. 
While non-contagious bioagents such as anthrax do not spread 
through social networks, social networks define the exposed 
subpopulation through co-location of agents at the time and 
place of an attack.  

A. Representation of Social Networks in BioWar 
In BioWar, each agent is linked to other agents in the 

simulated population by a set of links (relationships) modeling 
a social network. Each link is a descriptor of a pair of agents 
and their relationship type. Agents may be linked 
unidirectionally or bidirectionally. Relationship types currently 
implemented are: 

• Family (spouse, parent, child, sibling, other family) 
• Proximity based (co-worker, schoolmate, group 

member, neighbor) 
• Voluntary (friend, advisor, other) 

 The relationship types were drawn from the University of 
Chicago General Social Services (GSS) survey data with the 
addition of “schoolmate” for younger agents, a population not 
covered by the GSS [41]. The overall network size and 
distribution were drawn from Klovdahl’s study along with 
some target numbers for individual relationship counts [2], [3], 
[42]-[43]. 

The construction of social networks begins by defining the 
ego net for each agent based on empirical data on the size and 
constitution of networks. An ego net is a set of agents with 
whom an agent primarily interacts. Factors considered during 
the construction of social networks include target network size 
for an agent, frequency of relationship type, agent 
demographics, the agent’s customary locations, and agent’s 
state of health. 

Table II, drawn from the results of “Challenge 3” version of 
BioWar, shows the size of constructed social networks for 
three simulated cities compared to empirical data. 

 

B. Agent Interaction 
Agents interact with each other based on BioWar’s 

CONSTRUCT model [44] and on spatial and social network 
proximities. The core of the CONSTRUCT model 
encapsulates the co-evolution and emergence of 
communication and knowledge networks, driven by homophily 
and expertise-seeking. CONSTRUCT has been validated 
multiple times using social and organizational data [44]-[45].  

The principle of homophily states that people are more 
likely to communicate with others who are similar to them.  
Similarity in CONSTRUCT is assessed by attributes such as 
age, sex, race, prestige, occupation, educational level, social 
class, belief, culture, interests, and attitudes.  The principle of 
expertise-seeking states that the information-poor are more 

likely to initiate communication with the information-rich to 
fulfill their information needs. Moreover, the interaction is 
mediated by social, family, professional and other networks. 
BioWar implements multiple agent interactions based on 
common knowledge and knowledge difference, social network, 
and random chance. 

BioWar implements disease exchange as the result of agent 
interaction as follows: for each partner of an agent (computed 
during the interaction step), throw a random die against the 
transmissibility of each communicable disease affecting the 
agent. If the die roll succeeds and the partner does not already 
have the same disease, infect the partner with the disease. Do 
the same check for the agent for each communicable disease, 
infecting the partner, and vice versa. 
 

C. Representation of an Agent 
An agent is represented as a probabilistic finite state machine 

that has roles such as father, schoolmate, doctor, nurse, 
teacher, etc. Additionally, an agent has socio-demographic and 
economic status. An agent is located at specific spatio-
temporal coordinates and exhibits behaviors. These behaviors 
include interaction (communicate, get infected, infect), 
recreation, going to school, going to work, seeking treatment, 
purchasing over-the-counter medicines and cold supplies, 
getting medical information, and moving to other places. Each 
agent has an ego net and natural biological rhythm (for 
example, sleeping 8 hours a day). Moreover, an agent can 
exhibit symptoms and has mental model of diseases. The 
propensity of an agent to seek treatment is affected by socio-
demographic position (age, race, gender, class, etc.), economic 
status, and severity of perceived symptoms. Note that even if 
an agent seeks treatment, treatment is not always available, 
such as when doctor’s offices are closed. 

 

D. Recreational Activities 
The recreation code simulates some of the additional 

activities people engage in beyond their normal routine (time 
spent at home, work or school) and medical concerns (time 
spent with doctors, at pharmacies, or in hospitals). An agent's 
routine activity is mapped to a number of set locations. The 
recreation code adds several additional types of recreation 
venues where agents gather and potentially interact on a more 
random basis (Table III). 

 
Recreation rates were derived from the 1994 EPA Time Use 

Survey by grouping activity categories to determine the 
percentage of the day normally spent in recreation and using 
the time-at-location data to make a determination as to how 
much time is spent in each recreation location [46].  Consistent 
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with the data, much recreation is assumed to occur at the 
agent's home. 

The EPA Time Use data set is sufficiently large to allow 
some seasonal, weekly and demographic resolution. For the 
current BioWar implementation, recreation tables were 
constructed for the four seasons. Each seasonal table contains 
separate entries for each day of the week, for young versus old 
agents and for male versus female. Paired tables were 
employed: one holding the overall recreational probability and 
the second determining recreational location. Additionally, 
there are tables for minor and major holidays. Since the Time 
Use database excluded holidays, the information was derived 
from annual averages for Saturday. 

Because the simulator divides each day into smaller time 
units (four-hour "ticks"), an adjustment table was also 
introduced. The adjustment table allows recreational rates to 
be adjusted to match the normal day cycle: little recreation 
occurs during hours of sleep and work and more occurs when 
the agent would logically have free time (for example in the 
evenings during the week). In order to reflect the empirical 
data, these tables are set to preserve overall rates: recreation 
that is deferred is taken later and recreation taken early reduces 
the chance of recreation later in the day. These tables were 
derived for stereotypical patterns and are not empirically 
based. 

The recreation code's role is advisory: it indicates that an 
agent "wants" to recreate, but does not place the agent at a 
recreational location, that is, recreation is subservient to other 
more important activities. 
 

VIII. ENVIRONMENTAL MODELS 

A. Representation of Weather 
The Weather Model determines atmospheric temperature, 

pressure, and precipitation for the period of simulation.  
Generated temperature, pressure, and precipitation yearly 
distributions closely match the historical data published by the 
National Oceanic and Atmospheric Administration for the 
simulated regions (San Diego, CA, Pittsburgh, PA, Norfolk, 
VA, etc.) [47]. 

1) Wind Representation 
The wind model generates wind speed and direction for the 

period of simulation. Wind is important at and after the 
moment of the attack, especially when the attack occurs 
outdoors and the biomaterial is dispersed though wind puff 
movement.  We use a modified Gaussian Puff model of wind 
dispersion.  The assumptions of the model are: 

• The dispersed biomaterial is chemically stable and is 
not deposited to the ground.  

• The lateral and vertical variations of the material 
concentration can both be described by Gaussian 
distributions, which are functions of downwind 
distance only. 

• Although in the simplest Gaussian model the wind 
speed is constant with height, our wind model 
calculates the dependence of wind speed on height. 

An essential function of the wind model is to assess the 
Pasquill atmosphere stability category for the period of an 
attack.  In the absence of detailed meteorological data, we 
assign a Pasquill atmosphere stability category based on the 
wind speed and time of the attack but not the sky condition, 
which is considered to be a reasonable approximation [48]. 

2) Bioagent Delivered Dose 
The dosage inhaled by the agent is calculated using the 

following equation [49]-[50]: 
 

Dose = [QB][πuσyσz]-1exp[-(1/2)(y/σy)
2]exp[-(1/2)(H/σz)

2] 
 
where Q is the source strength (e.g., number of anthrax 
spores); B is breathing rate (usually for light work  B = 5 *10-4 
m3/sec); u is wind speed in m/sec; σy and σz are dispersion 
parameters that are functions of downwind distance x; and H is 
height of the release in meters. When multiple ground or 
airborne releases are simulated the total effect on the agent 
(the summary dosage) is calculated as a sum of dosages from 
individual releases. 

The wind model also includes methods for determining 
whether the agent is located in the downwind zone and how far 
the agent is from the point of the release. 

Buildings provide some measures of protection to 
inhabitants from outside spores, so BioWar has a dose 
reduction factor to describe the building protection for 
different kinds of building, based on [51]. Building layouts 
could be used in future versions of BioWar to improve the 
estimation of delivered dose of both outside and inside attacks 
by applying more complex calculations. 

The generated wind speed and direction distributions 
closely match the empirical data for the simulated regions 
published by the EPA and averaged over three years [52]. A 
comparison between the simulated wind direction data for San 
Diego and historical 1990–1992 average data is shown in 
Figure 2. The relative difference between simulated and 
average historical frequency distribution values is less than 
30%. 

 
Fig. 2. Comparison between simulated wind direction frequency 
distribution and average historical data 1990-1992 for San Diego, CA. 
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IX. ATTACK MODEL 

BioWar has a flexible attack model for both contagious and 
non-contagious pathogen release. The model lets attacks be 
varied by location, date, time of day, agent carrier (airborne, 
food borne, waterborne, and others), containment (inside or 
outside of a building), means of attack (land or airborne), 
delivery type (spray or explosion), pathogen, biomaterial mass, 
release height and efficiency, and single point or multiple point 
attack. An example of the attack specification in BioWar: 

out large anthrax_inhalational 2002/7/4 
22:00 25kg .1 300m 1.5km 7; 

which generates an outside, large, inhalational anthrax attack 
on July 4, 2002 at 22:00 using 25kg of material for the attack 
at 10% efficiency, with airborne delivery at an altitude of 
300m, distributing 7 bombs along an attack line of 1.5 km. 
Note that the specification here is only for the attack or 
weaponized diseases. The BioWar disease model has different 
specifications for the naturally-occurring background or 
outbreak diseases. 

X. CURRENT IMPLEMENTATION 

BioWar is designed as a modular system.  A module in the 
system interacts with other modules via a published interface 
of methods.  A module conceptually corresponds to a BioWar 
simulation capability, like disease progression and diagnosis. 
This correspondence is not necessarily one-to-one. The agent 
model, for example, consists of both an agent behavior module 
and an agent social network module. This flexibility, which is 
not possible with a non-modular design, facilitates the rapid 
development of reliable and more realistic simulation models.  

 
Table IV shows some of the cartographic and other input 

sources used [34], [41], [53]-[61]. We currently have access to 

additional data streams which we could not describe here due 
to confidentiality agreements. Higher fidelity data variants of 
BioWar are available to health and government authorities 
with appropriate access privileges. 

BioWar is designed to be reasonably portable, and currently 
runs under Linux, Windows 2000 and XP, and Tru64 UNIX.  
Most experiments were performed using the Pittsburgh 
Supercomputing Center (PSC) TCS1 system, which comprises 
64 4-way Alpha SMP processing elements (PEs), each with 
4GB of RAM and 4 667MHz Alpha 21264A (EV6.7) 
processors. BioWar’s run time scales linearly with the number 
of agents. A simulation with about 500,000 agents can take 5 
or more hours to complete.  

BioWar simulator utilizes a tick as the smallest time unit. In 
the current implementation, one tick equals four hours. The 
state machines used during a tick of the BioWar simulator are 
shown in Figure 3. 

 
Fig. 3.  BioWar State Machines 

   
Integration of multiple models is greatly facilitated by the 

nature of multi-agent systems. Features and parameters of 
these agents and modules are defined based on empirical data 
and knowledge. 

XI. BIOWAR OUTPUT STREAMS 

BioWar can be used to present results in the following 
ways: 

• As an additional data layer added to existing 
background data (injection) 

• As a data layer for some outputs (such as ER) and the 
full data source for other variables (such as drug 
purchases).  

• As a scaled city simulation 
• As a complete and full-scale city simulation (for all 

data not just bioattacks) 
BioWar produces output streams including insurance claim 

data, ER registration data, school absenteeism data, work 
absenteeism data, and drug purchase at pharmacies data.  

BioWar output is generated to conform to NEDSS (National 
Electronic Disease Surveillance System) which is a set of 
standards to facilitate the exchange of data for the collection, 
management, transmission, processing, and analysis of disease 
surveillance data developed by the Centers for Disease 
Control. BioWar also generates BSS (Behavioral Surveillance 
Surveys) compliant outputs. BSS is a set of codified 
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surveillance guidelines created by WHO and UNAIDS for 
tracking agent behaviors relevant to the transmission of HIV. 

XII. MODEL VALIDATION 

We have validated BioWar outputs against empirical data 
on school absenteeism, work absenteeism, pharmacy visits, 
drug purchases, doctor visits, and emergency room visits [19]. 
Comprehensive validation of a model such as BioWar is, 
however, difficult to do manually or semi-manually due to 
model complexity, the significant number of input parameters, 
model parameters, and output variables, and continuous model 
augmentation, refinement and development, making 
automation helpful.  

 
Fig. 4.  WIZER Dataflow Diagram 

An automated tool – named WIZER for What-If Analyzer – 
has been designed and partially implemented [62]. WIZER is 
an integrated inference and simulation engine to do validation 
and provide explanations. It extends the response surface 
methodology [63] by performing knowledge-intensive data-
driven search steps via an inference engine constrained by 
simulation, instead of just doing statistical and mathematical 
calculations. As shown in Figure 4, WIZER checks the outputs 
of simulation and adjusts the simulation parameters and meta-
models based on empirical data to validate the simulator. 

In addition, we have validated BioWar against the SIR 
model (Susceptible-Infected-Recovered), a conventional 
epidemiological box model, for smallpox [27] and against a 
variant of SIR [28] for anthrax. In these validation studies, we 
aligned BioWar and the corresponding SIR model based on 
their assumptions, model parameters, and simulation results.  
Empirical data was used to tune model parameters. 

Comparison of BioWar against SIR for smallpox outbreaks 
[27] shows that BioWar and the SIR model produce similar 
outcomes when model parameters are aligned to the same 
scenario. For example, for the “base (no quarantine or 
vaccination)” scenario, shown in Figure 5, BioWar aligns with 
SIR for cumulative number of infections. 

 
Fig. 5. Cumulative number of infections comparison between BioWar and 
SIR. 
 

Comparison of BioWar against the IPF (Incubation-
Prodromal-Fulminant) model, a variant of the SIR model used 
for non-infectious diseases like anthrax [28] shows that 
BioWar produces outcomes comparable to IPF. Figure 6 
shows that BioWar generates outcomes comparable to IPF and 
the Sverdlovsk empirical data for the over-time mortality rate 
among an anthrax infected population. 

 
Fig. 6. Mortality comparison between IPF, BioWar and the Sverdlovsk 
empirical data. 

 

XIII. SAMPLE RUNS 

We have run simulations for several geographical areas (San 
Diego MSA, Pittsburgh MSA, Norfolk MSA, San Francisco 
MSA, Washington DC, and the city of Hampton VA). Many 
other scenarios can be simulated by BioWar, but we describe 
just a few examples in this section. 

Figures 7-8 contain graphic displays of model output of 
doctor visits and the number of deaths for an anthrax attack 
within flu season and a smallpox attack outside flu season in 
the city of Hampton, Virginia simulated at 100% scale.  

When an anthrax attack occurs during a flu season, as 
shown in Figure 7, it increases the doctor visit rate 
significantly for a short period of time after the attack. The 
number of deaths by anthrax is also tightly clustered. 
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Fig. 7.  The number of doctor visits and deaths occurring after an anthrax 
attack during a sports event at a stadium in the city of Hampton at 4 p.m. of 
January 25, 2003. 2.5 kg of spores were released with an efficiency of 0.05, 
infecting 2122 people. This attack happened during flu season.  

Figure 8 illustrates a simulated aerosolized smallpox attack 
on Hampton, VA. Weapons-grade smallpox was released 
infecting 2%-2.5% of the agents in a locality. The smallpox 
attack left a much longer footprint compared to the anthrax 
attack, due to the contagious nature of smallpox. The fraction 
of infected people who died of the smallpox is also larger. 

 
Fig. 8.  The number of doctor visits and deaths occurring after a smallpox 
attack at 4 p.m. on May 26, 2003, in the city of Hampton with a 2%-2.5% 
initial infection rate. This attack occurred outside the flu season. 

For anthrax, which person gets infected critically depends 
on the release location, the mass of the release and the wind 
direction. In another experiment, we tried an anthrax attack at 
a stadium with three different mass of release scenarios: small 
(150 grams of spores), medium (300g), and large (3,000g). 
The height of release was 5 meters with an efficiency of 0.05. 
The attack happens at 4 p.m. in a stadium with the wind 
blowing at 4.617 m/sec. The simulated population of the city 
was 148,000. Both the exposed population and infected 
population vary, as shown in Table V. These are mostly people 
at the stadium (during a stadium recreational activity) in large 
measure because anthrax is non-contagious so secondary 
infections do not occur. For other diseases,  such as SARS, 
secondary infections, particularly in first responders such as 
doctors and nurses, may occur through the social contacts. The 
nature of the disease, demographics, available treatment, etc. 

determines the social contact(s) most likely to spread the 
disease 

 
The reproductive rate for smallpox was estimated using yet 

another BioWar experiment as shown in Table VI. 

 

We found that R0 (the average number of secondary cases in 
a totally susceptible population infected by one primary case), 
a value commonly used in SIR model, is not comparable to R0 
in BioWar.  In BioWar, R0 changes for each run. R (the 
reproduction rate over the entire simulation) is different from 
R0 and is calculated as an average reproduction rate over all 
relevant time steps in a simulation.  However, no distinction 
between R and R0 is made in the SIR model and R is constant 
for each run and at each simulation step. This finding implies 
that, when comparing an agent-based model and the SIR 
model, modelers should align R0 (or R) in the SIR with R in 
the agent-based model since only the average cases are 
comparable. Aligning R0 in SIR with R0 in an agent-based 
model will provide a misleading comparison. 

BioWar can estimate windows of opportunity for attack 
detection, as shown in Table VII. Our scenarios simulated 
biological attacks over the town of Hampton, Virginia. The 
population was about 144,000.  Each simulation ran for a year 
of simulation time starting at September 1, 2002.  The 
simulated attack occurred on October 4, 2002. We conducted 
20 runs for each scenario and calculated the mode, mean and 
standard deviation of W1 and W2. The first window of 
opportunity (W1) is defined as the time from the occurrence of 
the attack to the time when the first person shows first non-
specific symptoms. The second window of opportunity (W2) is 
defined as the time from the attack to the time that the first 
person is confirmed by diagnosis as having the attack disease. 
The scenario name denotes the attack disease followed by the 
number of initial infected agents. For example, Smallpox50 
means the smallpox attack scenario with 50 agents infected. 
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The average reproduction rate is around 3.9 for the 
smallpox cases.  In both anthrax and smallpox scenarios, W1 
decreases with the number of initial infections increases and so 
does W2.  This result is intuitively comprehensible.  Since the 
incubation period of the anthrax is proportional to a lognormal 
distribution, the earliest time for an agent to show the first 
symptoms would decrease on average when the sample size 
(the number of initial infections) increases.  Similarly, the 
earliest time that an infected agent is diagnosed also decreased 
when the size of the sampling pool increased. 

We compared the average doctor/emergency room (ER) 
visits per person per year with the estimates from empirical 
data, as shown in Table VIII. The empirical values are 
estimated from CDC statistics when no known attacks occur.  

 

For anthrax simulations, the average number of doctor visits 
per year is around the midpoint of the empirical bounds and 
the average number of ER visits is slightly higher than the 
upper bound.  This result is reasonable because most agents 
with severe symptoms would rush to the ER. However, since 
the number of infected is relatively small comparing to the 
total population, the average ER visit per person does not 
exceed the upper bound by a large amount. For smallpox 
simulations, the average doctor visits are close to the upper 
bound and the average ER visits are much higher than the 
empirical range. Since smallpox is infectious, not only those 
initially infected need to go to doctors/ER but also agents who 
are infected over time. It is reasonable that the doctor/ER visits 
increases more than they do for the anthrax cases. 

XIV. DISCUSSION 

Several upgrades for BioWar are planned, including: 
• Adding physical infrastructure such as road networks 

and air traffic networks 

• Adding organizational response and cost models 
• Connecting with real time data streams 

While there is much to enhance in the future versions, the 
current version of BioWar represents a significant advance 
over other numerical disease models. This includes BioWar’s 
ability to model socially defined mixing and spatiotemporal 
effects, diverse outputs, multiple levels, emergent properties 
and unexpected outcomes based on local interactions, and 
ability to be configured to represent actual cities. 

 

REFERENCES 
[1] http://www.who.int/csr/sars/country/2003_07_11/en. 
[2] A. S. Klovdahl, “Social Network Analysis,” in J.P. Keeves (ed.) 

Educational research, methodology and measurement: an international 
handbook, Pergamon, 1997. 

[3] A. S. Klovdahl, E. A. Graviss, A. Yaganehdoost, M. W. Ross, A. 
Wanger, G. Adams, and J. M. Musser,  “Networks and Tuberculosis: An 
Undetected Community Outbreak Involving Public Places”,  Social 
Science and Medicine, vol. 52, no. 5, pp. 681-694, 2001. 

[4] H. Simon, Models of Bounded Rationality (Vols. 1 & 2). Cambridge, 
MA: MIT Press, 1982. 

[5] A. B. Lawson, Statistical Methods in Spatial Epidemiology. John Wiley 
& Sons Publisher, 2001. 

[6] H. R. Gimblett, Integrating Geographic Information Systems and 
Agent-based Modeling Techniques. Santa Fe Institute, Oxford 
University Press, 2002. 

[7] G.A. Kaminka, P.U. Lima, R. Rojas, (eds.), “RoboCup-2002: Robot 
Soccer World-Cup VI,” in Lecture Notes in Artificial Intelligence 
Volume 2752, Springer-Verlag, 2003. 

[8] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Swarm Intelligence: From 
Natural to Artificial Systems,” in Santa Fe Studies in the Sciences of 
Complexity. Oxford University Press, 1999. 

[9] K. Lerman and A. Galstyan, “Agent Memory and Adaptation in Multi-
Agent Systems”, in Proc. of International Conference on Autonomous 
Agents and Multi-Agent Systems (AAMAS-03), Melbourne, Australia, 
2003. 

[10] K. Lerman, A. Galstyan and T. Hogg. (2003). Mathematical Analysis of 
Multi-Agent Systems, Computer Science abstract, cs.RO/0404002. 
Available: http://xxx.lanl.gov/abs/cs.RO/0404002. 

[11] R. M. Anderson and R. M. May, Infectious Diseases of Humans: 
Dynamics and Control. New York, NY: Oxford University Press, 1991. 

[12] S. Wasserman and K. Faust, Social Network Analysis: Methods and 
Applications. Cambridge University Press, 1994. 

[13] J.M., Epstein, D.A.T. Cummings, S. Chakravarty, R.M. Singa, and D.S. 
Burke, Toward a Containment Strategy for Smallpox Bioterror: An 
Individual-Based Computational Approach. Brookings Institution 
Press, 2004. to be published. 

[14] http://www.cimerc.org/content/projects.html. 
[15] N. Hupert, A. I. Mushlin, and M. A. Callahan, “Modeling the Public 

Health Response to Bioterrorism: Using Discrete Event Simulation to 
Design Antibiotic Distribution Centers,” Medical Decision Making, vol. 
22, pp. 1-9, 2002. 

[16] A. R. Chaturvedi and S. R. Mehta, “Simulations in Economics and 
Management: Using the SEAS Simulation Environment,” 
Communications of the ACM, March 1999. 

[17] S. Eubank, “Scalable, Efficient Epidemiological Simulation”, ACM, 
2002. Available: http://www.ccs.lanl.gov/ccs5/documents/pdf/2001/LA-
UR-01-5513.pdf. 

[18] S. Eubank, H. Guclu, V.S.A. Kumar, M.V. Marathe, A. Srinivasan, Z. 
Toroczkal, and N. Wang, “Modeling Disease Outbreaks in Realistic 
Urban Social Networks”, in Letters to Nature, Nature vol. 429, 13 May 
2004. 

[19] K.M. Carley, N. Altman, B. Kaminsky, D. Nave, and A. Yahja, 
“BioWar:  A City-Scale Multi-Agent Network Model of Weaponized 
Biological Attacks,” CASOS, Carnegie Mellon University, Pittsburgh, 
PA, Technical Report CMU-ISRI-04-101, 2004. Available: 
http://reports-archive.adm.cs.cmu.edu/isri2004.html. 



SMCA03-11-0274 12 

[20] M. Morris, “Concurrent Partnerships and Syphilis Persistence: New 
Thoughts on an Old Puzzle”, invited editorial for Sexually Transmitted 
Diseases, vol. 28, no. 9, pp. 504-7, 2001. 

[21] M. Morris and M. Kretzschmar, “Concurrent partnerships and 
transmission dynamics in networks”, Social Networks, vol. 17, pp. 299-
318, 1995. 

[22] M. Morris, “Networks and epidemiology: Modeling structured 
diffusion”, Sociological Methods and Research, vol. 22, pp. 99-126, 
1993. 

[23] M. Morris, C. Podhisita, M. Wawer, and M. Handcock, “Bridge 
Populations in the Spread of HIV/AIDS in Thailand”, AIDS, vol. 10, pp. 
1265-71, 1996. 

[24] M. Morris and M. Kretzschmar, “A Micro-Simulation Study of the 
Effect of Concurrent Partnerships on HIV spread in Uganda”, 
Mathematical Population Studies, vol. 8, no. 2, 2000. 

[25] M. Morris, “Sexual Networks and HIV”, AIDS 97:  Year in Review. vol. 
11 (suppl. A), pp. S209-S216, 1997. 

[26] S. Rasmussen, and C. L. Barrett, “Elements of a Theory of Simulation”, 
ECAL 95, Lecture Notes in Computer Science, Springer Verlag, 1995. 

[27] L-C. Chen, B. Kaminsky, T. Tummino, K.M. Carley, E. Casman, D. 
Fridsma, and A. Yahja, “Aligning Simulation Models of Smallpox 
Outbreaks”, Proceedings of the Second Symposium on Intelligence and 
Security Informatics, Tucson, Arizona, June 10-11, 2004 (forthcoming). 
Also to appear in Springer-Verlag Lecture Notes in Computer Science 
as vol. 2665, 2004. 

[28] L-C. Chen, K.M. Carley, D. Fridsma, B. Kaminsky, and A. Yahja, 
“Model Alignment of Anthrax Attack Simulations”, Decision Support 
Systems, to be published. 

[29] T. V. Inglesby, et al., “Anthrax as a Biological Weapon,” Journal of 
American Medical Association, vol. 281, no. 18, May 1999. 

[30] http://www.cdc.gov/ncidod/EID/vol8no10/contents_v8n10.htm. 
[31] USAMRIID’s Medical Management of Biological Casualties 

Handbook. US Army Medical Research Institute for Infectious Diseases, 
2001. 

[32] K. H. West, Infectious Disease Handbook for Emergency Care 
Personnel, ACGIH, 2001. 

[33] C. M. Isada, B. L. Kasten, M. P. Goldman, L. D. Gray, and J. A. Aberg, 
Infectious Disease Handbook. AACC, 2003. 

[34] R. A. Miller, H. E. Pople, and J. D. Myers, “Interist-I, An Experimental 
Computer-based Diagnostic Consultant for General Internal Medicine,” 
N Engl J Med, vol. 307, pp. 468-76, 1982 

[35] G.L. Rickmeier, G.E. McClellan, and G.A. Anno, “Biological Warfare 
Human Response Modeling,” Military Operations Research, vol. 6, no. 
3, pp. 35-47, 2001. 

[36] G. F. Webb and M. J. Blaser, “Mailborne Transmission of Anthrax: 
Modeling and Implications”, Proceedings of the National Academy of 
Sciences of the United States of America, vol. 99 no. 10, pp. 7027-32, 
2002. 

[37] D. L. Buckeridge, private communication, 2003. 
[38] M. Campbell, private communication, 2002. 
[39] E. M. Begier, D. Sockwell, L. M. Branch, J. O. Davies-Cole, L. H. 

Jones, L. Edwards, J. A. Casani, and D. Blythe, “The National Capitol 
Region’s Emergency Department Syndromic Surveillance System: Do 
Chief Complaints and Discharge Diagnosis Yield Different Results?”, 
Emerging Infectious Diseases, vol. 9, no. 3, pp. 393-396, 2003. 

[40] K. M. Carley and L. Gasser, “Computational organization theory”, in 
Multiagent Systems: A Modern Approach to Distributed Artificial 
Intelligence, G. Weiss, Ed., Cambridge, MA: MIT Press, 1999, pp. 299-
330. 

[41] http://www.icpsr.umich.edu:8080/GSS/homepage.htm. 
[42] A. S. Klovdahl, “Social Networks in Contemporary Societies”, Dynamic 

Social Network Modeling and Analysis workshop, Washington DC, 
November 7-9, 2002, unpublished. 

[43] A. S. Klovdahl, “Social Networks and Infectious Disease:  HIV/AIDS.  
Guest Editor, Introduction, Special Issue”,  Social Networks, vol. 17, no. 
3-4, pp. 163-165, 1995 

[44] K. M. Carley, “A theory of group stability”, American Sociological 
Review, vol. 56, no. 3, pp. 331-354, 1991. 

[45] C. Schreiber and K. M. Carley, “Going Beyond the Data: Empirical 
Validation Leading to Grounded Theory”, 2003 NAACSOS conference 
proceedings, Pittsburgh, PA, 2003. 

[46] http://sda.berkeley.edu:7502/cgi-bin/hsda?harcUMD+time. 

[47] http://www.ncdc.noaa.gov/oa/ncdc.html. 
[48] R. Barrat, Atmospheric dispersion modeling: an introduction to 

practical applications. Earthscan, 2001. 
[49] D. B. Turner, Workbook of Atmospheric Dispersion Estimates: An 

Introduction to Dispersion Modelling, Lewis Publishers, 1994. 
[50] M. Meselson. (2001). “Note Regarding Source Strength”, ASA 

Newsletter, no. 01-6a. Available: http://www.asanltr.com/newsletter/01-
6/articles/016a.htm. 

[51] L. Yuan, “Sheltering Effects of Buildings from Biological Weapons”, 
Science and Global Security, vol. 8. pp. 287-313, 2000. 

[52] http://www.epa.gov. 
[53] http://geonames.usgs.gov. 
[54] http://factfinder.census.gov/home/en/sf1.html. 
[55] http://www.census.gov/econ/www/econ_cen.html. 
[56] http://www.census.gov/geo/www/cob. 
[57] http://nces.ed.gov/ccd. 
[58] http://nces.ed.gov/pubsearch. 
[59] http://www.ncdc.noaa.gov/oa/ncdc.html. 
[60] http://www.cdc.gov/nchs. 
[61] http://www.cdc.gov/publications.htm. 
[62] A. Yahja and K.M. Carley, “The Design of Automated Validation and 

Explanation of Large-Scale Social Agent Systems”, 2004 NAACSOS 
Conference, 2004. 

[63] R.H. Myers and D. C. Montgomery, Response Surface Methodology: 
Process and Product Optimization Using Designed Experiments, 2nd ed. 
John Wiley & Sons, Inc., 2002. 

 
 

Kathleen M. Carley received 
her PhD in Sociology from 
Harvard University in 
Cambridge, MA in 1984.  She 
received two S.B.’s, one in 
Political Science and one in 
Economics from the 
Massachusetts Institute of 
Technology, Cambridge, MA 
in 1978. 

She is a Professor of 
Computers, Organizations and 
Society in the Institute for 
Software Research 
International in the School of 
Computer Science at Carnegie 

Mellon University, Pittsburgh, PA.  She is the author or co-author of 5 books 
and over 100 articles in the area of computational social and organizational 
science and dynamic network analysis.  Recent publications include - 
Designing Stress Resistant Organizations:  Computational Theorizing and 
Crisis Applications with Zhiang Lin (Boston, MA: Kluwer, 2003); Dynamic 
Social Network Modeling and Analysis:  Workshop Summary and Papers 
with Ron Breiger and Pipp Pattison (Washington, DC: National Academy 
Press, 2003); Smart Agents and Organizations of the Future in The Handbook 
of New Media, edited by Leah Lievrouw & Sonia Livingstone (Thousand 
Oaks, CA, Sage, 2003). Her research combines cognitive science, social 
networks and computer science.  Her specific research areas are 
computational social and organization theory, group, organizational and 
social adaptation and evolution, dynamic network analysis, computational 
text analysis, and the impact of telecommunication technologies on 
communication and information diffusion within and among groups. Her 
computer simulation models meld multi-agent technology with network 
dynamics and are in areas such as BioWar – a city, scale model of 
weaponized biological attacks; OrgAhead – a model of strategic and natural 
organizational adaptation; and Construct – a model of the co-evolution of 
social and knowledge networks and personal/organizational identity and 
capability.   

Prof. Carley is a member of the Academy of Management, Informs, the 
International Network for Social Networks Analysis, American Sociological 
Society, the American Association for the Advancement of Science and 
Sigma XI.  In 2001 she received the Lifetime Achievement Award from the 
Sociology & Computers Section of the American Sociological Association.  


