
 1

Collaboration in Global Software Projects at Siemens:
An Experience Report

Matthew Bass James D. Herbsleb Christian Lescher

Siemens Corporate Research,
Inc

Princeton, NJ

Institute for Software
Research International

Carnegie Mellon University
Pittsburgh, PA

Siemens AG,
Corporate Technology

Munich, Germany

matthew.bass@siemens.com herbsleb@andrew.cmu.edu christian.lescher@siemens.com

Abstract

As a globally operating company with about 30,000

software engineers worldwide, Siemens has accumu-
lated a wide variety of experiences in global develop-
ment. Many individuals and organizations have ad-
justed their practices to deal with the challenges re-
lated to the geographic distribution of the development
effort. From a corporate perspective, Siemens has ac-
cumulated a rich base of knowledge about global de-
velopment and how to approach it successfully. The
Siemens Software Initiative - a company-wide im-
provement program for software development at Sie-
mens - has worked on collecting this widely-distributed
knowledge and synthesizing it in a form accessible to
the wider software development community. In this
paper, the approach as well as key learnings in people
and communication-related aspects of collaboration
are summarized.

1. Introduction

Software development at Siemens is increasingly a

globally-distributed undertaking. A variety of motiva-
tions, including cost competitiveness, ability to use the
most appropriate resources regardless of location, and
co-location with important markets and customers are
driving this move. Competitiveness now and in the
future requires a world-class competence in this new
global development paradigm. Global software devel-
opment (GSD) also introduces big challenges in soft-
ware development. Communication and coordination
are significantly harder to manage when a project is
distributed over multiple geographic sites sometimes
spanning multiple countries or even continents
[2][3][4].

Siemens is a globally operating company with about

30,000 software engineers and spends ca. 3 billion Eu-
ros annually on software development costs for our

software-based systems, plants, and services. The
range of these products is very broad and have a
worldwide market, including e.g. automotive systems,
building technologies, communication systems, just to
name a few.

To meet the needs of the Siemens Business Groups,
the Siemens Software Initiative – a company-wide
improvement program for software development at
Siemens, with an international network, including rep-
resentatives in the various regions – has started a pro-
ject to continuously improve collaboration in global
software development Siemens-wide and to promote
best practice sharing within Siemens. The Siemens
Software Initiative addresses multiple aspects of col-
laboration (see Figure 1). Collaboration in this sense
involves people aspects such as communication, team-
building and competency management as well as engi-
neering aspects like architectures, development proc-
esses and tools.

People

Training
Competency
Management
Communication
Teambuilding

Engineering
Architecture
Project
management
Development
processes
Test

Infrastructure & Tools
Communication Infrastructure
Tools (Development environment, configuration management, etc.)

Collaboration in
Global Software

Projects

Collaboration in
Global Software

Projects

Figure 1. Aspects of Collaboration in Global Software
Projects

Because of its size and diversity, Siemens has ac-

cumulated a wide variety of experiences in global de-
velopment. Many individuals and organizations have
adjusted their practices to deal with the challenges re-
lated to the geographic distribution of the development
effort. From a corporate perspective, Siemens has ac-

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

 2

cumulated a rich base of knowledge about global de-
velopment and how to approach it successfully, and
wanted to take advantage of it in a way that would be
useful to others in the community.

In a joint cooperation with Siemens Corporate Re-

search, and Carnegie Mellon University, the Siemens
Software Initiative has been working on collecting this
widely-distributed knowledge and synthesizing it in a
form accessible to the wider software development
community. This knowledge has been captured in the
form of specific “best practices” (see Figure 2). To
date, 18 best practices have been identified across 4
Siemens Business Groups, 8 of these practices are pre-
sented in this paper.

This experience report will summarize selected

practices identified by the Siemens Software Initiative,
focusing mainly on people- and communication-related
aspects of collaboration.

2. The Approach

For the purposes of this effort a “best practice” is a

practice that was successful in the context of one or
more multi-site projects in dealing with specific GSD
related issues. Below we describe the approach we
used in collecting these practices. The resulting best
practices were presented and discussed in Siemens-
internal workshops with participants of many different
business groups and confirmed to be useful.

The data for each best practice was collected using

semi-structured interviews. During the interview we
collected the information summarized in the template
shown in Figure 2. Even though in this paper we are
using brief and informal descriptions of best practices,
this template represents the underlying structure of
results. The best practice template was adapted from a
widely-used template for design patterns [6].

We established a set of criteria to help identify ap-

propriate best practices. First, we needed to interview
at least two people for each candidate practices. Typi-
cally we interviewed the originator of the practice, and
at least one additional “user” of the practice that was
not the originator. Second, there needed to be “ade-
quate” experience with the practice. While we had no
concrete definition of “adequate” we considered prac-
tices that either had a long history with a larger project
or a practice that had been used on multiple projects.
Additionally, we selected practices that carried a sub-
stantial benefit, addressed a common problem of global

development, and could reasonably be applied by a
significant range of Siemens development teams.

Best Practices Template

Practice Name and Classification: Every practice should
have a descriptive and unique name that helps in identifying
and referring to it. Additionally, the practice should be classi-
fied according to a classification such as the one described
below. This classification helps in identifying the use of the
practice.

Intent: This section should describe the goal behind the prac-
tice and the reason for using it. It resembles the problem part
of the practice.

Motivation: This section provides a scenario consisting of a
problem and a context in which this practice can be used. By
relating the problem and the context, this section shows when
this practice is used.

Prerequisites and limitations: This section describes situa-
tions in which this practice is usable, describing the prerequi-
sites that must be in place in order for the practice to be use-
ful, and any limitations that have been observed. It represents
the context part of the practice.

Benefits and other consequences: This section describes
the benefits, side effects, and trade offs caused by using this
practice.

Implementation: This section describes the implementation of
the practice, and represents the solution part of the practice. It
provides the techniques used in implementing this practice,
and suggests ways for this implementation.

Experiences: This section includes a description of the ex-
periences that Siemens has had with this practice as well as
experience-based comments about similar or related prac-
tices. It also provides contact information for projects and
people who have made use of this practice.

Related Practices: This section includes other practices that
have some relation with this practice, so that they can be used
along with this practice, or instead of this practice. It also in-
cludes the differences this practice has with similar practices.

Sample Artifacts: A collection of relevant examples, such as
templates, plans, processes, minutes, tools, and anything else
that would be helpful for allowing someone else to understand
and adopt the practice.

Figure 2. Best Practice Template.

Potential best practices were identified in several

ways, including presentations at company-wide global
software development workshops, internal reputation
for having effective practices for addressing specific
problems, and nominations by managers and execu-
tives. There were several candidate practices that were
anticipated to be useful, but lacked the experience cur-

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

 3

rently to be included in the first round of best practice
collection.

The following three sections contain a description of
people and communication related practices that have
been identified at Siemens in the areas of maintaining
cross-site relationship, selecting the right communica-
tion media, as well as training and teambuilding.

3. Maintaining Cross-Site Relationship

The establishment of relationships amongst mem-

bers of teams from different geographic locations
greatly aids in the coordination. There are many ways
to establish these relationships, however, each poten-
tially having different costs and are effective in differ-
ent ways. Below we summarize three such practices
used within the projects interviewed.

Practices that have shown their effectiveness at

Siemens include:
• Onsite management visits
• Cross-site delegation
• Unfiltered communication

Onsite management visits are used to monitor the

status of the project, ensure progress and address issues
for remote project sites. Starting with the project start
up the project manager visits the remote sites once
every 6 - 8 weeks. They have detailed status meeting
during these visits as well as meetings to address other
topics (e.g. budget or schedule issues, risk manage-
ment, planning for the next release, or logistical issues
such as sending test equipment or dealing with cus-
tomers). During these visits sub-project leaders also
visit with various team members and have technical
exchanges and presentations. In addition to the project
manager, the line manager visits the sites a couple of
times a year. The frequency is about every 6 weeks at
the beginning of the project and changes to every 8
weeks as the project progresses. During these status
meetings every feature coordinator1 presents the de-
tailed status on their feature. In between these onsite
visits each feature coordinator gets a weekly status
report from the relevant team members. This is usually
done via a teleconference in the case where people are
geographically distributed. Onsite management visits
allow for exchanges that would not otherwise be able
to take place: A major portion of the exchange occurs
outside of the meetings and needs to be allowed for.

1 Project member, who takes over the responsibility for a feature
during the whole development lifecycle

Therefore it is important to build free and social time
into the agenda.

Cross-site delegation is another way to establish

personal relationships and to achieve a better integra-
tion of multiple geographically distributed teams. It is
basically the delegation of individuals from a central
site to a remote site (or vice versa) and helps to estab-
lish communication across sites that can be useful if
cross-site information is needed at any point in the
project (e.g. finding particular expertise).

Cross-site delegation could happen in many differ-
ent ways for different reasons. A member of a remote
site could come to a central site, or a member of a cen-
tral site could go to a remote site for a defined period
of time. The delegate to a remote site could take any
number of roles (e.g. developer, feature coordinator,
sub-project lead, or site manager) depending on the
need. This is often a career step for the delegate (typi-
cally a high-potential candidate). The delegate to the
remote sites is involved in all meetings at the remote
site and becomes a contact person for the project lead
as well as for the line manager. Typical length of a
delegation is 1 – 2 years. On return, the delegate usu-
ally becomes a key person for cross-site collaboration.

Unfiltered communication is similar to the Onsite

management visits.
Specific about this practice is that the line manager

meets directly with the developers from the remote
sites to become aware of and help solve the issues that
the developers are experiencing. The line manager vis-
its the sites once or twice a month and meets with the
developers there. There are no explicit arrangements
with the local managers regarding the agenda. The
developers set the agenda and discuss any issue that is
hampering their work. Topics can range from issues
such as slow LAN connection, too much work, or hin-
drance to effective working. The line manager views
his job as the person who deals with these issues so the
developer can continue to be productive. The line man-
ager typically brings 1 – 4 people with him depending
on the needs of the project. These might be feature
coordinators, sub-project leads, or technical people.
The main benefit of this practice is that the line man-
ager has overall product visibility and so can keep the
needs of the product (across projects) in mind. The
manager is in a position to understand what the issues
are and to rectify these issues. It also becomes possible
to identify and make connections across sites. If there
is a need on one site the manager is in a position to
identify the appropriate person from another site to
help out. This creates a sense of team and improves
morale with the developers. Furthermore, this makes it

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

 4

clear that they are important and their opinion and
needs matter.

A common practice in case of a supplier-
relationship to the remote site is also to establish a
Supplier Manager to manage the relationship with the
remote site: The customer provides a supplier manager,
who is primarily located at the customer site, to man-
age the relationship with the offshore partner. The sup-
plier manager is not directly involved in the technical
decisions (except for oversight and review), but serves
as an information conduit and keeps track of progress
at the remote site.

4. Selecting the Right Communication

Media

Awareness across sites is often an issue [2]. Know-

ing who is working on what, knowing who to contact
in case of a question, or finding the status of tasks
across sites can be difficult. A couple of the best prac-
tices collected made effective use of technology such
as wikis to help overcome these difficulties. In this
section we summarize two such practices.

Two specific practices that have demonstrated their
effectiveness at Siemens are:

• Distributed pair programming
• Urgent request

Distributed pair programming is an application
sharing-based approach, where pairs of geographically
distributed developers practice virtual pair program-
ming using NetMeeting or other collaboration software
[7]. This practice is particularly helpful in case of com-
ponent code with important dependencies on code de-
veloped at another site. In order to avoid delay, the
developer asks for an instant review by a developer at
the other site who understands the relevant code in
depth. The two developers jointly review the code,
perhaps making a few changes, and both are satisfied
that the code is free of problems. The benefit of using
distributed pair programming is that potential conflicts
can be eliminated very quickly, saving test and fix time
later. It appears to enable development of a single
component across sites, which is ordinarily extremely
difficult given the density of interdependencies in in-
tra-component technical work. As a prerequisite, the
distributed pair programming practice depends on per-
sonal and reciprocal relationships among the develop-
ers. It may not be appropriate early in a project before
these relationships have had a chance to develop. The
“collaboration maturity” of a team must be very high
[10]. Furthermore, developers must be willing to un-
dertake the pair programming work either as an un-
scheduled interruption of their ongoing work, or agree-

ing to schedule a session with very little lead time. The
technique is likely to work only for developers who
perceive benefit for themselves – either because they
won’t have to fix the code later, or because they want
to receive as well as give technical assistance.

While not precisely pair programming, the tools and
practices can be useful in other circumstances. For
example, they have proven useful where a tester wants
to show a developer the execution of a test case, espe-
cially when the developer has been unable to reproduce
the bug. Developers can share the application being
developed with each other, show them how it works,
what the interface looks like.

Urgent request is a broadcast mechanism for re-
questing urgent information for a project from a volun-
teer group with specific knowledge. This practice aims
at promoting unplanned communication in case that a
member of a project has an urgent need for information
or advice about a particular technology, tool, or prod-
uct, and would benefit from quick response.

The primary prerequisite for the urgent request
practice is that some distribution mechanism must exist
or be created. It is necessary to have in place a network
of motivated volunteers with a wide variety of techni-
cal expertise from around the company. Various busi-
ness units may be able to meet this prerequisite in a
variety of ways. Some organizations may have net-
works of internal consultants who could form the core
of the expertise network. Others may have wikis or
distribution lists that are directed towards groups with
expertise in particular technologies, markets, products,
standards, and so forth. It is important that this mecha-
nism is used for urgent requests only, since the broad-
cast mechanism necessarily goes to a fairly large num-
ber of people. Receiving a significant number of non-
urgent requests would be substantially demotivating to
the volunteers. Volunteers also find it demotivating if
they only receive requests for which they do not have
the correct expertise to provide assistance. Some
mechanism for targeting requests is therefore advis-
able.

One convenient implementation is a web form that
is readily accessed. It relieves the user from having to
remember the correct distribution list name, and pro-
vides appropriate cautions that it is for urgent requests
only, and will be sent to many people and will be visi-
ble on the web. If question topic is readily identifiable
as belonging to a particular category of information, it
will be sent to the appropriate people. If it is not clear
that it matches any of the categories, it will be sent to
all members of all categories.

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

 5

The difficult part of the implementation is not set-
ting up the tools, but rather recruiting a suitable set of
volunteers. This has been accomplished in the original
organization by recruiting volunteers willing to receive
e-mail in a number of specific topic areas. E-mail re-
quests stressing the value of this service, the need to
make expertise widely available, and encouraging vol-
untary participation may be successful in many organi-
zations. Management in the existing organization urged
participation early on, finds that this is no longer nec-
essary, as the practice has become self-sustaining.

The urgent request functionality requires a culture
in which people are willing to share information, and
help each other out. The typical urgent request reply
takes only a few minutes, and therefore has very little
cost for the person providing help. As long as the
number of requests is not too large (say, 5 a week or
less), it does not impose a significant burden on volun-
teers. It takes only a few seconds to determine if one
has the expertise to help when receiving a message.
Experience has been that requests are used judiciously,
and volunteers have generally not withdrawn from the
lists. Everyone with experience with the Urgent Re-
quest systems agrees that archiving the replies would
not be helpful. The requests are so different that it is
extremely rare for the same request to arise twice.
There is too much chance of old, outdated information
surviving in the archive, and too small a likelihood that
the archive would be useful. In fact, time spent search-
ing the archive would be likely to be wasted and de-
motivating. In the organization in which the urgent
request mechanism has been implemented, they report
that they get an average of 7 offers of help in the first 3
hours, half of which are helpful. One side effect is that
questions asked and answered sometimes extend the
internal social network. People with related expertise
identify each other, and continued fruitful interaction
about technical issues is sometimes a very useful by-
product.

5. Training and Teambuilding

Kicking off a project using geographically distrib-

uted teams can be problematic. It can take a long time
to transfer technical or domain knowledge, knowledge
about the processes or infrastructure to be used on the
project, or knowledge about the individuals involved in
the project across sites. Several practices identified are
aimed at speeding up that process. Three of these prac-
tices are:

• Tailored training
• Co-located analysis phase
• Goal implementation planning workshop

Tailored training is used to train the project in

technologies that they are not sufficiently familiar
with, and develop a common understanding for how to
apply these technologies to this project, while bringing
project members from various sites together in one
place for the duration of the training. This is particu-
larly helpful, when new technologies are being intro-
duced in a globally distributed project.

During the analysis phase the team takes part in sev-
eral training courses. The training program includes
standard trainings (e.g. UML training), specific train-
ings (e.g. technology background for the project) as
well as tailored trainings. The tailored trainings are
designed to teach the application of the standard train-
ing contents to the specific project, e.g. UML as it per-
tains to this particular system. This can be designed for
example using a simplified version of the target sys-
tem, using the real tool infrastructure of the project.
This enables the attendees to begin to think about ap-
plying these approaches to the problems that they focus
on. As experience has shown, discussions occur about
how to do X or Y in their project, and to some extent
the design process already begins during the class time.

As a major benefit out of this practice, team mem-
bers develop a common understanding how they are
going to apply particular technologies to the project. In
this way, the team members are able to begin to discuss
particular design decisions during these courses be-
cause the training used the system to be built as a con-
text for the training. This practice also develops per-
sonal relationships between individuals across sites.

Co-located analysis phase is a practice in which

team leads from both the remote and the central site are
co-located during the analysis phase to jointly develop
the functional specifications. It is a well-proven prac-
tice to bring together teams that have not previously
worked together, develop adequate working relation-
ships, familiarity with the system to be developed, and
an understanding of the specific areas of responsibility.
This is particularly helpful, if the teams on the project
are located in various development sites around the
world and they have never worked together before, or
partly are not familiar with the system, or in case of
significant changes in the system, e.g. a new architec-
ture. For the co-located analysis phase of the project,
key members come together at one site (e.g. for a dura-
tion of 3-4 months). During this time the team takes
the high level architecture and requirements (defined
prior to this phase) and develops functional specifica-
tions for their respective functional areas in mixed
teams of functional experts from multiple sites. The
primary prerequisite for this practice is that the high-
level architecture has been defined and is fairly stable.

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

 6

As the activities focus on developing a functional
specification for the functional areas of the architecture
these areas need to be fairly well defined. This practice
helps to build personal relationships, develop a com-
mon understanding, and achieve a high acceptance of
the architecture within the team, since they built it to-
gether.

Goal implementation planning workshop is a prac-

tice that has successfully been used for establishing a
cross-site team and plan to achieve objectives that are
given to the project. If management gives a product
objectives such as “lower defect density” that requires
cross site cooperation to execute, cross site teams will
be established to develop a plan for how they would
achieve these goals. During a semi annual meeting
goals are given to the project. Teams are formed for
each set of goals. These teams are staffed with at least
one person from each site. These teams are responsible
for developing a plan for how the goals are going to be
achieved. As part of this plan they define site goals and
measures. These teams typically meet face to face dur-
ing the workshop and then interact periodically via
teleconference as needed. Each team member is re-
sponsible for developing the plan for their site. They
are not responsible for execution only for the plan de-
velopment. This practice creates communication across
sites, and may be useful if particular expertise is
needed down the road.

6. Next steps

This activity and the associated report are a good

first step at identifying and synthesizing the knowledge
throughout the company that has been gained over
more than 20 years of global software development
within Siemens. It is recognized that all of the prac-
tices that have been identified to date as well as the
practices that have not yet been documented work well
in a given context, and may not be appropriate for all
projects. While we have made an attempt to capture
the context and identified prerequisites, we feel that
this is not enough to determine the suitability of a
given practice for a particular GSD project. Further-
more, in several cases the practices are addressing
similar concerns, and some mechanism for choosing
amongst them is needed.

In order to do this a project must:

• Recognize specific areas where collaborat-
ing as needed is likely to be risky

• Identify the suite of practices that are likely
to address the specific areas of risk

• Understand the appropriate aspects of their
context that are going to influence the cost
or effectiveness of the available practices

• Have a means for selecting the most suit-
able practices and perhaps identifying con-
tingency practices case they are needed

• Have some mechanism to monitor the ef-
fectiveness of these practices during the
execution of the project

The Siemens Software Initiative and Carnegie Mel-

lon are currently involved in an activity aimed at iden-
tifying and piloting an approach to accomplish the
items listed above and more fully leverage the knowl-
edge gained from the best practice collection activities.
We hope to follow this report with additional reports
describing the experienced gained as we progress with
these activities.

7. References

[1] R. Sangwan, M. Bass, N. Mullick, D.J. Paulish, J.
Kazmeier. Global Software Development Handbook, Auer-
bach Publications, 2006.

 [2] J.D. Herbsleb, A. Mockus, T.A. Finholt, and R.E.
Grinter. An empirical study of global software development:
Distance and speed. In Proceedings, International Confer-
ence on Software Engineering, Toronto, Canada, May 15-18,
2001 pp. 81-90.

[3] R.E. Kraut, and L.A. Streeter, Coordination in Software
Development. Communications of the ACM, 1995. 38(3): p.
69-81.

[4] D.E. Damian, and D. Zowghi, Requirements Engineering
challenges in multi-site software development organizations.
Requirements Engineering Journal, 2003. 8: p. 149-160.

 [5] J.D. Herbsleb, D.J. Paulish, and M. Bass. Global soft-
ware development at Siemens: experience from nine projects.
In Proceedings of the International Conference in Software
Engineering (ICSE ’05), May 15-21, 2005, St. Louis, Mis-
souri, pp. 524-533.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

 [7] M. Kircher, P. Jain, A. Corsaro, and D. Levine. Distrib-
uted eXtreme Programming. In Proceedings of the Second
International Conference on Extreme Programming and
Flexible Processes in Software Engineering (XP2001), pp.
66-71, Cagliari, Italy, May 2001.

[8] H. Holmstrom, E.O. Conchuir, P.J. Agerfalk, B. Fitzger-
ald, Global Software Development Challenges: A Cast Study

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

 7

on Temporal, Geograhical and Socio-Cultural Distance. In
Processing of the 2006 IEEE International Conference on
Global Software Engineering (ICGSE ’06), Florianopolis,
Brazil, 16-19 October 2006, pp. 3-11.

[9] S. Zhang, M. Tremaine, J. Fjermestad, A. Milewski, P.
O’Sullivan, Delegation in Virtual Teams: the Moderating
Effects of Team Maturity and Team Distance. In Processing
of the 2006 IEEE International Conference on Global Soft-
ware Engineering (ICGSE ’06), Florianopolis, Brazil, 16-19
October 2006, pp. 62-66.

[10] M. Heiss, S. Lasser. Collaboration Maturity and the
Offshoring Cost Barrier: The Trade-Off between Flexibility
in Team Composition and Cross-Site Communication Effort
in Geographically Distributed Development Projects. In Pro-
ceedings of the IEEE, International Professional Communi-
cation Conference (IPCC 2005), Limerick, Ireland, 10-13
July 2005, Thread: Engineering Management (W10D).

[11] F. Lanubile, D. Damian, and H.L. Oppenheimer. Global
software development: Technical, organizational, and social
challenges. SIGSOFT Software Engineering Notes, 28(6):2–
2, 2003.

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

