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ABSTRACT: We conducted a validation study for Construct, a multi-agent network model of socio-cultural co-
evolution. Our particular focus is on the ability of Construct to produce an initial state of agent interactions which have 
reasonable equivalence to the communication network of a real-world organization. We used the calibrated grounding 
technique to perform the validation. Results of the study show that Construct can produce a valid state of initial 
interactions. In addition, we were able to gain some insight into the nature of the organization. 
 
 
1. Introduction 
 
Computational models are intended to represent real-
world systems of behavior (Law & Kelton, 2000; Turnley, 
1995).  We often use a computational approach as a way 
to represent the complexities that contribute to system 
functioning (Carley & Gasser, 1999).  These complexities 
are often not amenable to analytic reduction (Lee, 
Schreiber, & Carley, forthcoming).  Computational 
models provide a means to various useful ends such as 
normative analysis, predictive emulation and theory 
development (Burton, 2003). 
 
But this approach also brings up the issue of validation. 
The validation process determines the level of 
equivalence between the real-world system and the model 
(Balci, 1998). We need validation in order to build 
credibility for the model and have confidence in the ends 
that are obtained. In addition, the validation process can 
provide other benefits such as phenomenal understanding, 
application guidance and future research directions. 
 
We performed an external validation of the computational 
model Construct. Construct is a multi-agent network 
model of socio-cultural co-evolution. Our particular goal 
is to validate the ability of Construct to represent the 
person-to-person communication network of a small 
organization. We used the calibrated grounding technique 
to perform the validation. This process also provided 
some phenomenal understanding by allowing us to draw 
some insights about the drivers of communication for this 
particular organization. 
 

The paper is organized as follows. First, we describe 
Construct and the part of the model which is the focus of 
this validation. Then we discuss the methodological 
approach. This section includes a description of the 
dataset and an explanation of the calibrated grounding 
technique. Lastly, we present and discuss the results. 
 
2. Construct 
 
Construct is a multi-agent network model of socio-
cultural co-evolution (Carley, 1990; Schreiber, Singh, & 
Carley, 2004).  Construct agents perform an action cycle 
each timeperiod. This action cycle is the basis of the 
socio-cultural co-evolution. In an action cycle, the agents 
first choose interaction partners. Then, they communicate 
and learn knowledge. They subsequently change their 
beliefs based upon their updated knowledge.  Lastly, the 
agents perform tasks and make decisions using their 
current knowledge. Outcome measures that are collected 
include performance accuracy, consensus and knowledge 
diffusion. 
                                                
The outcome measures depend upon agent interactions as 
agent interactions prominently figure into agent learning. 
Therefore, the first step in validating Construct is to test 
the degree of equivalence between agent interactions and 
real-world communication networks. If the interactions of 
Construct agents reasonably represent the organizational 
communication network then we can have enough 
confidence to suggest that outcomes from the model could 
reasonable reflect outcomes of the real-world system. 
 



 

 

There are two core variables that determine agent 
interactions in Construct. These two variables are 
organizational representation and interaction process.  
Organizational representations are network 
characterizations of the organization. There were two 
network representations collected in the dataset used for 
this study: knowledge network and task network. These 
networks are of interest because it is assumed that they 
influence organizational communications.  In other words, 
the people in the organization will communicate with 
each other based upon their task assignments and their 
possession of knowledge.   
 
The task network is a reflection of ‘who does what’ and is 
based on the tasks that people are assigned. The task 
network is represented as matrix. Figure 1, presents an 
example of a task network. A 1 reflects the assignment of 
a task to an agent. 
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0 0 0 1 
 

Figure 1:  Example task network 
 
 
The knowledge network is a reflection of ‘who knows 
what’.  Knowledge categories that are relevant to the 
context are defined as the ‘what’.  For example, the 
context of the organization used in this study was 
software engineering context. Knowledge categories 
included are object-oriented programming expertise, web 
development expertise, interface design expertise and 
project management expertise.  The knowledge network is 
the level of expertise that each person possesses within 
each category. Figure 2 presents an example of a 
knowledge network. A 1 reflects that the agent has the 
expertise. 
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0 0 1 0 
 

Figure 2:  Example knowledge network 
 
 
There are two basic interaction processes in Construct: 
relative similarity and relative expertise. They are based 
upon well-known human interaction processes. 
Homophily (Lazarsfeld & Merton, 1978) forms the basis 

of relative similarity. Homophily is the tendency of 
similar people to interact with each other. For example, 
those of the same age or in the same field of work tend to 
interact. Communicative ease, trust, comfort and access 
are arguments supporting homophily based interaction. 
 
An example in Construct would be the following. Agents 
acting with relative similarity will tend to interact more 
with those who have similar tasks than those who have 
dissimilar tasks. In the model, this tendency is calculated 
as a probability of interaction among agent pairs. The 
probability that agent i and j will interact based on relative 
similarity is calculated by the following equation. This is 
computed for every pair of agents.  
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Expertise seeking (Cross, Rice, & Parker, 2001) forms the 
basis of relative expertise.  Expertise seeking is 
interaction based on the search for knowledge. For 
example, people who are in need of specialized task 
knowledge will seek out others who have it. Knowledge 
integration and a need for novel or specialized knowledge 
are arguments supporting expertise seeking.  
 
An example in Construct is the following. Agents who are 
acting with relative expertise are inclined to look for and 
interact with those who possess diverse knowledge rather 
than those who possess overlapping knowledge as 
compared to the ego agent. Like relative similarity, the 
relative expertise tendency is reflected in the modal as a 
probability of interaction among agent pairs. The 
probability that agent i and j will interact based on relative 
expertise is calculated by the following equation. This is 
computed for every pair of agents.  
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Figure 3 shows an example of a probability of interaction 
matrix. The probabilities between agent pairs are non-
symmetric because of the relative asymmetries. In other 
words, communication can be initiated from one pairwise 
direction more often than another. 
 
 
 



 

 

Organizational 
Representation

Knowledge Network

Task Network

Interaction
Process

Relative Similarity

Relative Expertise

Agent Interactions
Agent X Agent

.00  .12  .04  .05

.08  .00  .05  .04

.01  .03  .00  .11

.10  .01  .07  .00

Communication Network
People X People

0   1   1   1
1   0   0   1
1   1   0   1
1   0   1   0

QAP
Correlation

Initialization

Calibration

Calibration

Construct

Real World 

Organization

 Agent 
.00 .12 .04 .05 
.08 .00 .05 .04 
.01 .03 .00 .11 A

ge
nt

 
.10 .01 .07 .00 

 
Figure 3:  Example probability of interaction matrix 

 
 
3. Method 
 
3.1 Datasets 
 
We tested Construct using a dataset collected from a 
software development company1. This data was collected 
by an outside source and we had no direct contact with 
the company. The organization consisted of 16 people. 
The task and knowledge networks were collected on this 
organization and were used as input into Construct. The 
task network consisted of 24 task nodes. Therefore, the 
task network was 16 people by 24 tasks. The knowledge 
network consisted of 19 knowledge categories. Therefore, 
the knowledge network was 16 people by 19 knowledge 
categories. 
 
In addition, the communication network was collected 
and used to validate the agent interactions in Construct.  
The communication networks are similar in format to the 
task and knowledge networks. Figure 4 shows an example 
communication network. The values correspond to 
communication frequency. A higher value reflects an 
increase in communication frequency. 
 
 

 Person 
0 1 1 1 
1 0 0 1 
1 1 0 1 Pe
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1 0 1 0 
 

Figure 4:  Example communication network 
 
 
3.2 Calibrated Grounding 
 
We use calibrated grounding to test the validity of the 
Construct agent interactions. This technique combines the 
approaches of initialization grounding and internal 
calibration. Figure 2 shows an overview of the calibrated 
ground technique.  
 
Initialization grounding is the use of empirical data as 
initial input into the model. This grounds the model with a 

                                                 
1 The software company dataset courtesy of Ashworth (2006). 

representation of the real-world organization. Two 
different organizational representations were used in this 
study, task network and knowledge network. Internal 
calibration, as used in this study, is the selection of an 
organizational representation and an interaction process. 
Two distinct interaction processes are used in this study, 
relative similarity and relative expertise. Agent 
interactions are calibrated by calculating the probabilities 
of interaction using one of the interaction process 
equations on one of the organizational representations. 
 
 

 

 
 

 
 

Figure 2:  The calibrated grounding technique 
 
 
The focus of this study is on a valid state of initial agent 
interactions. The probabilities of interaction are not 
averaged over timeperiods.  Also, there were not any 
stochastic processes from Construct involved in 
computing the probabilities for this particular study. 
Additionally, there were not any adjustments made to the 
internal mechanisms of Construct in order to fit the model 
to the data.  
 
We define reasonable equivalence as a significant 
correlation between the initial state of agent interactions 
and the real-world network.  Correlation is tested using 
the Quadratic Assignment Procedure (QAP). QAP uses a 
non-parametric permutation test to determine 
significance. This procedure is used because relational 
data violate the assumption of independence and 
traditional parametric methods are inappropriate. 
 
The following describes the functioning of QAP. First, the 
corresponding cells of the agent interaction matrix and the 
real-world communication matrix are compared.  This 
results in a Pearson correlation coefficient value. Then 
corresponding rows and columns of one matrix are 
randomly permuted and the correlation coefficient is 
recalculated. In other words, if rows 1 and 3 are permuted 
then so are columns 1 and 3. This maintains the 
dependency that exists among the relationships in the 



 

 

matrix. The permutation step is repeated thousands of 
times which results in a distribution of correlation 
coefficients. In our study, the permutation step was run 
2,500 times. 
 
Significant correlation is determined by the placement of 
the original, non-permuted coefficient within the overall 
distribution. We tested for significance at the standard 
0.05 level. The QAP test was run for every organizational 
representation and interaction process combination. 
 
We need to note that the correlation coefficient cannot be 
interpreted to indicate a degree of correlation. In this 
regard QAP is non-linear. For example, a higher 
correlation coefficient does not necessarily mean that it is 
stronger. We are only interpreting significance by the 
correlation passing the test at the 0.05 level. But we can 
interpret significance levels greater than 0.05 as being 
stronger results. 
 
3.3 Subject-Matter Expert Verification 
 
We conducted an additional step in verifying the results 
and interpretations of this study. We showed the results 
and our interpretations to a subject-matter expert who had 
knowledge of this specific organization. We asked this 
expert to provide their opinion.  
 
4. Results and Discussion 
 
Table 1 presents the QAP correlation results. The task 
network and relative expertise settings produced valid 
agent interactions. This gives credibility to the model and 
provides confidence that model outcomes could 
reasonably reflect real-world outcomes. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1:  QAP Pearson correlation coefficients 
* - 0.05 level of significance 

 

These results also provide us with some phenomenal 
understanding. First, only the task network organizational 
representation validated. What this suggests is that the 
task structure of the organization is the predominant 
driver of communication. Second, the relative expertise 
interaction process validated when using the task network 
representation. This suggests that there are high 
interdependencies among the tasks. The agents were 
seeking to interact with others who had different tasks 
than their own. The interpretation that these task 
interdependencies are high is supported by the result of 
only relative expertise validating. 
 
As an additional validation step, we asked a subject-
matter expert whether these validation results and 
phenomenal interpretations made sense. This person had 
first-hand knowledge of this particular organization. The 
subject-matter expert verified that the quantitative results 
and interpretations made perfect sense for this 
organization and its context. 
 
5. Conclusion 
 
This validation study provided credibility to the Construct 
model. We can now start a simulation with an agent 
interaction pattern that reasonably matches the real-world 
organization. This provides confidence in running what-if 
analyses and projecting outcomes. 
 
We also gained phenomenal understanding of the 
organization through this analysis. Task-driven 
communications and high task interdependencies describe 
the nature of this organization. Although this information 
can be garnered through other means - such observation, 
interviews, etc. - we were able to draw these conclusions 
at a distance and without having direct contact with the 
organization. 
 
There are several future research directions for validating 
Construct. First, Construct should be validated using data 
representing various organizational sizes and contexts. It 
may be the case that Construct is better suited for 
representing certain types of organizations. We need to 
understand how robust the model in order to apply it 
appropriately. 
 
Second, Construct should be validated using various 
organizational representations. There are other 
representations that may influence communications. For 
instance, cognitive networks represent people perceptions. 
People will interact and make decisions based on their 
perceptions. How well does Construct validate using 
various organizational representations? Are certain 
representations more robust in validating across various 
group sizes and contexts? Answers to these questions may 
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help focus future data collection efforts and provide a 
general understanding of organizational communications. 
 
Third, predictive results verification is needed. This 
should be done for outcome measures as well as network 
change. Validation of outcome measures would require 
running Construct overtime and comparing the model 
output to real-world outcomes. This comparison can be 
accomplished through a variety of statistical regression 
and correlation techniques. 
 
Validation of network change also requires the running of 
Construct overtime but instead compares changes in agent 
interactions to longitudinal datasets of the communication 
network. This comparison can be made using QAP as 
described in this paper. 
 
The concurrent validation of outcome measures and 
network change would be the most stringent test. There is 
a potential for deriving considerable gains in terms of 
phenomenal understanding and theory production in 
performing a validation of this sort. It also would 
establish Construct as a fully applied model. 
 
As a final note, any model validation is a matter of degree 
(Law et al., 2000), including the one in this paper. There 
is no objective proof, only confidence in a reasonable 
representation of the phenomenon (Forrester, 1961). 
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