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Abstract. Multi-agent dynamic-network ssimulations are emerging as a powerful technique 
for reasoning about complex socio-cultural systems at sufficient fidelity that they can 
support policy development.  Within these models the way in which the agents are modeled 
and the fidelity of the system are critical.  Basic principles guiding the development and use 
of these models to support policy development are described. 

1  Introduction 

Understanding and predicting human behavior, particularly group behavior, 
requires understanding and reasoning about complex systems.  Examples of such 
systems are nation state stability, belief formation and change within societies, and 
the spread of infectious diseases.  There are many reasons why socio-cultural systems 
and the behaviors that emerge from them are complex; e.g., heterogeneous 
populations, multiple networks connecting the members of these populations, and 
learning and adaptation at both the individual level and the network level. 

Historically, the types of models have been applied to these complex systems have 
not been adequate to capture and so reason about the core sources of complexity.  For 
example, large heterogeneous populations have been represented using deterministic 
macroscopic models or very simple agent based simulations with sparse 
representations of their information state and correspondingly simple decision logics 
for the agents.  Information diffusion in these types of models tends to be represented 
using epidemiological kinds of models and either random or very simple social 
structures.  While these models have served the community well in the preceding 
decade or so, recent improvements in both the social and the simulation sciences 
provide the ability to meaningfully improve the fidelity of information diffusion and 
decision making behavior in simulated populations. 

Complex systems, particularly socio-cultural systems, can be most usefully 
understood through modeling.  Multi-agent (or agent based) simulations are rapidly 
emerging as an extremely popular tool in this area.  Applications range from 
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simulations of colonies of ants, to networks of computers, to abstract and relatively 
high fidelity human populations.   The types of human populations that are often 
represented in multi-agent simulations include commercial and social organizations, 
geographic neighborhoods, cities and regions of countries (Batty, 2005).  Now even 
large geographically dispersed virtual groups or organizations that stay connected 
using modern communications and computing capabilities are important to consider 
and can be simulated. 

The rapidly growing popularity of agent-based simulation is due, in part, to 
advances in the computer and computational sciences that make simulating large 
numbers of agents possible, the development of simulation scenarios easier, and 
visualization of simulation results more intuitive (Samuelson & Macal, 2006).  
Additionally, the “fit” these simulations have with the social and organizational 
science theories that are also being modeled are contributing to the growing 
popularity (Carley, 2001).  While the technical advances make this type of simulation 
more accessible and salable, they do not necessarily consider adequately the 
underlying social, psychological, and analytical sciences that are essential to 
producing truly credible and defensible results. This knowledge gap presents a risk for 
some customers of the results of these simulations because the results, while either 
intuitive or able to be explained by some plausible story, are not well grounded 
theoretically.   In the case of policy analyses these plausible stories could lead 
decision makers to choose ill-advised courses of action with potentially catastrophic 
consequences in terms of life and national or organizational treasure.   As a very 
simple example of how this can occur consider an Army analysis supported by one of 
the authors that was trying to identify the number of trucks that the U.S. Army needed 
to buy.  Some simulations were applied that represented a set of trucks moving 
supplies around a virtual theater of operations.  The cargo on each of the trucks was 
limited by weight.  Later it was learned that most truck cargo fills out the cargo space 
long before it reaches the weight limit.  Consequently, using only one variable 
(weight) instead of two (weight and cube) the analysts underestimated the number of 
trucks required by a few hundred.  Fortunately, the discrepancy was identified and the 
estimates were redone before the Army experienced a real truck shortage. 

One type of agent-based models that are very usable for policy development is 
multi-agent dynamic-network models.  Multi-agent models enable group, social and 
cultural behavior to emerge as a result of the morass of actions by social agents.  
Dynamic network models embedded in the simulations enable the pattern of 
interactions among social agents to influence and be influenced by the actions of these 
social agents.  Together, in a multi-agent dynamic-network model the social agents 
act, interact, and learn.  This is accomplished in a world where their behavior is 
constrained and enabled not just by their physical position, but by their social and 
cultural position in the set of networks.  These networks connect individuals and 
groups and through which information, resources, and disease spread. 

In contrast to earlier models, in the new multi-agent dynamic-network simulations 
not only are agents and their logic more realistic, these agents act within a social and 
geographical landscape that bears a higher correspondence to the real world.  
Information and beliefs diffuse through social networks embedded in demographic, 
geographical, and technical realities and these social networks change and evolve as 
the diffusion of information and beliefs results in changes in agent behavior. 



Consequently, this new class of model, the multi-agent dynamic-network model, can 
be used to make more accurate predictions about the range of possible futures and 
consequently to study a wider range of policy issues and social activities. 

Our goal in this paper is to lay out a set of principles that are grounded in the 
underlying social and modeling sciences that will help analysts and simulation 
developers to implement simulations of predominantly human populations that are 
well suited to their intended purpose.   First, we present a set of observations from 
recent research by the authors in multi-agent and multi-agent dynamic-network 
simulation, followed by a set of principles that should be considered when designing 
agents to represent a large heterogeneous population in these simulations.  How these 
agents are designed is of critical importance because agent design impacts a variety of 
factors including: the tradeoff between model fidelity and run time, the level and type 
of validation possible, and the type of virtual experiments needed to assess model 
outputs.  In particular we will be emphasizing the representation of knowledge and 
beliefs in the agents, how the population of agents is described, how they interact, 
how information flows, and how they make decisions.  To accomplish our goals we 
will first discuss some of the reasons we model populations and why simulation is 
important to understanding their behavior.  We will then explore the sources of 
complexity in populations, followed by some examples of the current state-of-the 
practice in agent based simulation.  We will then present a set of recommended 
considerations that analysts and simulation builders can use when designing multi-
agent simulations or conducting analyses that apply these simulations.  And, finally, 
we will offer a set of conclusions and some recommendations for continued research. 

2  Why Use Computer Simulation 

Human populations are “complex adaptive systems” (CAS).  Some key 
characteristics of Complex Adaptive Systems that have been identified in the 
literature are (Dooley, 1997; Morel et al, 1998): 
• Order is emergent as opposed to predetermined. 
• System history is irreversible. 
• System futures are often unpredictable. 
• Large number of interacting parts 
• Nonlinear behavior (Individually and collectively) 

 
Human populations clearly possess all five of the characteristics identified above.   

This becomes even clearer when one considers how dynamic the environment in 
which we live has become.  Complex adaptive systems cannot be understood by “just 
thinking about it.”  Rather, formal modeling techniques are needed, particularly, 
computer simulation models. 

There are many reasons to simulate populations.  Three reasons we will discuss in 
this paper are training, scientific inquiry, and policy support.  Each of these reasons 
has some special purpose for investing the energy necessary to build a simulation.  
For example, a policy development simulation is built and applied to gain insight into 
some set of questions we have about how a population is likely to behave or change 



over time for the purpose of evaluating some set of possible interventions to identify 
the best course of action. Computer based simulation is an appropriate, ethical, and 
cost effective way of understanding the space of possibilities that are likely to emerge 
when various critical events occur or policies are enacted.  For example, imagine that 
we wanted to understand whether school closures would be effective in inhibiting the 
spread of a pandemic influenza.  Simulation actually let’s us examine, in a virtual 
world, the probable response of populations and the spread of the influenza to 
interventions like school closures given flu’s with different mortality and infectivity 
characteristics.   

The overall reason that it is important to understand the underlying reasons for 
developing a simulation is that this knowledge is absolutely critical to identifying the 
fidelity that is required for achieving the desired goals. (Maxwell & Loerch, 2007)  For 
example, in the case of a training application of a simulation the goal is to improve 
the proficiency of the training subjects.   In most cases where multi-agent simulations 
are applied the target audience is a staff or response team and the specific goal is to 
help them work more effectively as a team.  Consequently, a reasonably realistic set 
of results that provide a context for their interaction are sufficient for their purposes.   
In the case of social science research multi-agent models can be used generate 
hypotheses and extend social science theory (Carley & Newell, 1994; Davis, J., et al., 
2007).  In some instances, very simple models can be used effectively to explore a 
hypothesis.  For example, Schelling (1971) used a simple grid model with green and 
red agents and just the concept of tolerance to explore how segregation occurs.  Even 
without a concrete connection to time on the calendar, or explicit representation of 
agent interactions Schelling was able to explore how segregation occurs in cities.  
Social science research that emphasizes the diffusion of information and innovation as 
a central issue has been shown to require additional fidelity in the representation of 
peoples’ (agents’) knowledge to achieve meaningful results.  Carley (1999) 
demonstrates that the social network (who talks to whom) is intertwined with the 
individuals cognitive picture (what they know and how they think) as well as an 
individuals transactive memory (perception about who knows what).  This complexity 
implies that in order to meaningfully develop and explore hypotheses relating to 
information diffusion all of these concepts must be represented explicitly to gain 
insight into the friction those inconsistencies in these different pictures and ground 
truth might cause.  

But why use multi-agent dynamic network simulations? Historically, the 
representation of population changes was accomplished using deterministic equation 
based computational models.  For example Helbig (1992) applies an equation based 
fluid dynamics model to represent the movement of pedestrians around a city.   
Systems Dynamics models, such as Forrester’s (1971) WorldII model representing 
global economic activity and population change, use differential equations to effect 
the changes in model variables over time.   Mathematical models have been used by 
epidemiologists for decades to help researchers understand how diseases spread 
around populations (Bailey, 1975).   These epidemiological models have even been 
extended and applied represent to other phenomenon like the spread of computer 
viruses (Kephart & White, 2001).  All of these models have two properties that limit 
their usefulness for understanding information dependent complex adaptive systems.  
First, they assert a top down structure that is either static or changes using a set of 



centrally identified and controlled rules.  Population changes occur within the 
constraints of the specified structure, completely limiting the ability of lower level 
organizations and individual entities to adapt and evolve.  Consequently, the emergent 
responses of diverse agents resulting from adaptations in their behavior do not occur.  
And second, these historical approaches either lack or have a very limited 
representation of individual agents, the information flows among members of the 
population, and the effects the information has on agent behavior.  This limitation 
relates especially to the effects multiple sources of conflicting information can have 
on the population.  Because of this, it is difficult, if not impossible, to investigate the 
impact of diverse technologies and message content on the diffusion of information 
and the consequent change in knowledge and beliefs around the population. These 
characteristics limit the model’s ability to sufficiently represent and explore more 
complex phenomenon that are based on the diffusion of knowledge and beliefs. 

Policy analysis and decision support applications present perhaps the most 
demanding requirements for simulation fidelity and validity. (Harrison, J., et al., 2007)   
One reason for this is that the consumers of simulation results are often neither 
scientists nor analysts.  Rather the consumers are operational staff and decision 
makers who want to know what the simulations’ results tell them about their 
operational challenges and what they should do about them. So, there is a need for 
interpretability of the simulation results and a need to provide simple causal 
explanations of the results.  This is not transparency in the sense that the exact 
workings and all nuances of the model need to be explained; rather what is needed are 
simplified explanations that get the core concepts right and communicate them 
clearly.  Additionally, policy analysis and decision support are accomplished to 
support real dynamic situations.  Concepts like geographic position, time, and agent 
behavior need to be connected to a real map, a real calendar, and real behaviors by the 
people implementing the policy decision.  Moreover, accountability for results often 
occurs along very tightly constrained timelines as well as from multiple sets of 
stakeholders with different perspectives on the situation under study.   

Multi-agent dynamic-network models afford yet another level of realism.  The key 
limitation of standard multi-agent models is that the agent’s behavior is constrained 
by their physical position in a grid and/or ability to move in this grid.  The agents are 
acting in a pseudo physical space.  In contrast, in a dynamic-network model the 
agents are positioned in a socio-cultural space that evolves as they learn and interact. 

Multi-agent simulation systems make three key contributions to scientists, analysts, 
and decision makers.  First, the development of the model helps the participants 
understand the relationships which come together to effect complex behavior.  The 
disciplined process that simply building the model requires often lays bare 
relationships that may not have been evident before. (Sterman, 2000).  Second, the 
model itself supports detailed analysis and enables more systematic evaluation of 
effects in a way that supports both explanation and forecasting.  Because the patterns 
of behavior that emerge as a result of second and higher order interactions are 
grounded in a well specified set of first order relationships and behaviors it is often 
much easier to see and understand causal chains of reasoning that one might not have 
otherwise been visible.  Epstein and Axtell’s (1996) work using the very simple model 
Sugarscape stimulated a whole collection of more detailed experiments.  And, the 
United States Marine Corps Project Albert simulations (Horne, 2001) provided simple 



insights that were the genesis for more detailed that the Marine Corps used to develop 
military doctrine.  Third, because multi-agent simulations can be used to conduct 
virtual experiments, it is easier examine a broad range of interventions under diverse 
socio-demographic conditions.   Gilbert (2008) points out that when one experiments 
on social systems “isolation is generally impossible, and treating one system while not 
treating the control is often ethically undesirable”.  Simulation allows researchers to 
virtually experiment on the social system without facing these design and ethical 
issues.  Policy analyses also have the same types of issues.  We have already 
identified that complex systems are history dependent.  This means that there are no 
“do-overs”.  Once one intervenes into a social population; a multi-agent simulation 
can be used to engage in a series of virtual experiments for the purpose of exploring 
hypotheses or to conduct “what-if” analysis across a series of possible interventions 
that are being considered and thereby support planning. 

3  The Sources of Complexity 

Every journalist, and every 
author, is taught that to describe a 
scenario they need to describe the 
who, what, where, why, and how 
and when (Figure 1).  Each of 
these factors is a source of 
complexity.  But from a systems 
perspective, it is not just these 
entities, but also the networks of 
relations within and among each 
of these areas that contributes to 
complexity.    Complex socio-
cultural systems can be usefully 
represented as the set of specific 
nodes that populate the who, 
what, how, where why, the 
relations among them, and the 
changes in these relationships 
over time (the when).  This representation scheme is known as the meta-network 
(Carley, 1999).  At a practical level the ideas underlying meta networks are seen 
elsewhere.  For example a similar concept, under the rubric “Generalized Network 
model” (Clark, 2006), appears in the intelligence analysis literature. 

“To Do”
“To Do”

“To Do”
“To Do”

“To Do”
“To Do”

 
Fig. 1.  The Sources of Complexity 

All behavior can be described in terms of this meta-network.  People interact with 
each other and their environment every day to work, play, and socialize.  These 
interactions can be thought of as a combination of decisions that are based on 
information, beliefs, and behaviors that require and use resources.  These interactions 
may be done to accomplish some task or take part in some event that requires certain 
resources or knowledge. A systematic look at people, their knowledge, beliefs, access 
to resources, tasks and events in which they engage, the locations at which those 



interactions take place, and the relationships with other agents in the environment, 
and the networks that form as a result of their interactions begins to reveal the true 
complexity of the system and consequently the modeling and analysis challenge. 

In designing and building a simulation model, each of the who, how, what, where, 
why and when need to be addressed.  The level of specificity in each of these 
dimensions affects the fidelity of the model.  The key is to be specific enough to 
address the question of concern and NO MORE so as to avoid unwarranted 
computation, storage and analysis costs. As Einstein said, “Everything should be 
made as simple as possible, but not one bit simpler.” 

3.1  First source of complexity:  The Who!   

Answering the “who” question begins to develop insight into people and their 
behavior.  It is known that the decision-making behavior of individual humans is 
relatively simple.  Simon (1998) points out that “Human beings viewed as behaving 
systems, are quite simple”.  In fact humans make decisions using heuristics, moral 
and social norms, specified protocols, and conventions.   Even though individual 
humans are relatively simple, human populations are complex.  Simon goes on to say 
that “the apparent complexity of our behavior is largely a reflection of the 
environment.”  There are many centuries of descriptive data, and libraries full of 
studies verbally describing this complexity.  Unfortunately, this verbal information is 
neither complete enough, nor consistent enough to provide the detail needed for 
constructing a computer simulation.  Given that our goal is to help practitioners build 
simulations, we will discuss this complexity with an eye toward identifying a set of 
variables that can provide a sufficient foundation for a credible simulation. 

People are social animals.  They are embedded in all different types of social 
networks: they belong to families, live in neighborhoods, have jobs, and are members 
of organizations.  These networks affect who a person interacts with, how they 
interact, what they discuss and exchange, and how an interaction affects the 
knowledge, beliefs, and behavior of the person.   It is well known that people tend to 
interact more frequently with similar people.  In fact, McPherson, Smith-Lovin and 
Cook (2001) cite over one hundred studies that have observed homophily in some 
form or another. These factors include age, gender, class, organizational membership 
and role, family ties, and so forth.  Consequently, a large source of complexity is that 
interactions among people are neither smoothly nor randomly distributed across the 
population.  The interactions and the networks change over time, just based on who 
they are and how they were influenced by prior interactions.  Further complicating 
this issue is that it is known that people will extend their social networks when they 
require expertise they do not possess; this is especially true if that expertise is needed 
to achieve some goal.  In such cases, people will most often seek out the person 
possessing the knowledge (or resource) who is most similar to them. 

In addition to people, formal and informal organizations also serve as a form of a 
“who” in a social system.  This is because organizations have a unique identity that is 
more than just the sum of the interactions of its members.  Organizations make 
decisions, have behaviors, communicate information, and have resources that are 
often only loosely coupled to their members. This means that there will be often be 



differences between the behavior, knowledge and beliefs of an organization and its 
members.  Membership in a political party is an excellent example of how these 
differences emerge. (Axelrod, 1984) A political party may endorse a specific position 
on an issue.  The party communications machinery will advertise that position widely.  
A member of the party may not agree with that position but choose to remain a 
member of the party because of agreement on other issues. 

The key from a modeling perspective is that when developing a model it is critical 
to define who the “whos” in the model will be.  Are they people, organizations, 
media-sources, animals, or other?  Each class of who and the information-processing, 
cognitive and emotional capabilities they are given will impact the model results 
(Carley-Newell,1984). 

3.2  Second source of complexity: the How!   

A second source of complexity is how things get done in this network of networks.  
Most behaviors require resources and knowledge to be executed successfully.  
Resources are typically physical objects such as money, vehicles, or computers.  
Whereas knowledge includes specialties, expertise, ideas, key concerns, and skills.  
Sometimes behaviors or tasks are more complicated and may require multiple types 
of resources and knowledge from multiple sources to accomplish.  These (often 
complicated) dependencies influence the likelihood which tasks will be accomplished, 
what communications will occur, and ultimately how the system will behave and 
evolve over time. (Moon and Carley, 2006)   

As an example, consider the knowledge and resources required to conduct 
insurgent bombing activities. There is a list of possible parts.  There are skills 
necessary to assemble, place, and detonate the device.  Countering these devices also 
requires resources for detecting activities, interdicting supply chains, and responding 
to immediate threats.   Depending on ones analysis goal, it could be necessary to 
represent explicitly most of these resources on both “sides” of the model.     

One special type of resource that is especially relevant in multi-agent simulations 
that are concerned with information flows and decision making is information and 
communication technology ; i.e., the set of technical resources that allows people to 
obtain and share information without face to face contact.  This is critical because 
people have differential access to information and communication technology based 
on a host of demographic characteristics like age, location, and socio economic status.   
We also know that this technology is changing all of the time.  These technology 
based networks evolve very quickly, and in fact are not “engineered”.  Rather their 
structure evolves and their effect on the population emerges based on what segments 
of the population have access to and adopt the technology and for what purpose.  The 
use of cellular telephones and text messaging in particular are wonderful examples of 
how this pattern plays out.  Over the past few years the use of text messaging has 
become prevalent in younger age groups; much more so than older segments of the 
population.  This technology effect is extremely important as we do research and 
policy analysis. 

The key from a modeling perspective is that when developing a model it is critical 
to define the how.  In a sense this is populating the agent with knowledge and 



providing access to resources.  At another level, this means creating processes in the 
model for controlling the creation, maintenance, and depreciation of knowledge and 
resources, tradeoffs among resources and rules for transferring these among the 
agents.  This includes the creation of interaction and communication protocols. 

 

3.3  Third source of complexity: the what!   

The next source of complexity is the “what”; i.e., the activities, tasks, and events in 
which people engage.  People and other actors in the environment engage in all sorts 
of behaviors.  In some cases the behavior involves the receipt or communication of 
information.  In others it is the execution of a specific task to achieve some specified 
goal.  Some tasks are simple, like making a telephone call, or paying one’s tax bill.  
Others are significantly more complicated and may require the execution of multiple 
tasks that have complicated dependencies among them.  For example, successfully 
conducting a bombing involves procuring the required materials, assembling the 
device, transporting it to the target’s location, finally detonating the device.  A failure 
on any of the tasks will result in a failure to achieve the overall task goal (Moon and 
Carley, 2006).   

In agent based models these “whats” appear in many forms.  In some models these 
appear as the set of actions that agents can take such as passing information, filing tax 
returns, going to the doctor’s office.  Other agent based models take a more event 
based approach and define whats as a series of external interventions or events such 
as a speech by a local opinion leader or the closure of schools. 

3.4  Fourth source of complexity: the Where!   

“Where” things occur also introduces complexity into a multi-agent simulation.  
People, resources, events are not randomly spread around the environment.  Neither 
are they uniformly distributed around the environment.  Spatial orientation is both 
influenced by and influences social networks, resource networks, and task networks.  
People with cars and money can and do travel much further than groups without those 
resources.  Certain kinds of activities occur in urban areas and others are more likely 
in rural areas.  (Diseases spread faster in crowded environments.)  Ponds, lakes, rivers 
and other geo-spatial features impact where homes and businesses are built.  Location 
also impacts the formation and dissolution of relations.  For example, two people in 
the same location are more likely to interact or start interacting; whereas, the tendency 
to interact may atrophy as they move far apart or at least the communication 
technology used for interaction may change. 

In agent based models these “where” can appear in many forms:  In many models, 
the where is a location on a grid and movement is dictated by this grid.  In other 
models, locations may be defined in terms of a set of places such as home, office, or 
school that may or may not have specific latitude-longitude coordinates. Agent 
actions and use of resources may depend on location.  For example, a student-agent 
may not be able to get information from a teacher-agent unless both are at a school.  



Agents may move to locations based on their beliefs, knowledge, resources or tasks.  
For example, agents who are ill may go to a hospital. 

 

3.5  Fifth source of complexity: the Why!   

Another factor that influences the complexity of the social landscape is “why”   
things occur.  The why can be thought of as beliefs, attitudes, goals, or motives.  What 
beliefs agents hold may depend on the beliefs held by others they interact with, or 
their knowledge or task experience.  The agent’s goals may impact where the go, 
whom they interact with, what information they share, what tasks they engage in, and 
so on. 

In agent based models, the why can be implemented in many ways.  Some models 
take a very goal oriented optimization approach.  The problem here is that in many 
situations people can not articulate their goals (e.g., as in the case of traumatic life 
events), or the stated goals are not the true underlying goals (e.g., as when modeling 
tax compliance), or there is no way of knowing the goals of the agents modeled (e.g., 
as in the case of terrorists).  In other models, beliefs are represented using social 
influence models and knowledge assessment.  In this case, beliefs, like knowledge 
and resources can flow through the social networks and transform those networks. 

3.6  Sixth source of complexity: the When!   

The final source of complexity is time.  The order in which things occur, lags in 
information flows, dictated times at which key events must occur, the length of time 
actions take, and so on influence the behavior of the model over time. 

 
Complex behavior in populations is very real and has many sources.  We can see 

that one very useful way to organize our thinking about that complexity is to look at 
the world as is we were a journalist.  Answering the key questions of who, what, 
when, where, why, and how go a long way toward helping us shape our thinking 
about complex systems. And, we will see a little later also can help us think through 
the design of a simulation. 

4  Illustrative Agent Based Simulation Applications 

There is a growing body of multi-agent simulation work.  These examples 
highlight what the state of the art can support, what the limits of different simulations 
are, and provide examples of issues practitioners should consider when undertaking a 
simulation development project.  We will describe four different simulations, each 
with different characteristics.  Specifically, we will look at two different simulations 
that address the spread of an epidemic, we will look at one simulation that supports 
the analysis of political and military scenarios, and the fourth describes the behavior 
of US taxpayers in response to different interventions by the US Government’s 



Internal Revenue Service (IRS).  All of these simulations are flexible enough to be 
used for representing scenarios other than the ones discussed in the paper.  The 
specific scenarios help flesh out the discussion of why one is simulating as well as the 
specifics of implementation. 

4.1  BioWar (spread of infectious disease) 

A multi-university team of researchers applied a Carnegie Mellon University 
developed simulation called BioWar (Carley, et al. 2006) to examine the impact of life 
threatening events on populations at the city level.  For this model, 62 diseases, 
including all biological warfare agents and a chemical attack for diverse cities have 
been modeled. This model has been used to examine the spread of anthrax, smallpox, 
and influenza.  For example, it was used to understand the relative effectiveness of 
different intervention strategies, given that an influenza epidemic occurred in Norfolk 
(Lee, et al 2008).  The simulation scenario was Norfolk Virginia and contained 
approximately 1.6 million agents, representing explicitly the population of that 
metropolitan region.  The virtual environment represented homes, schools, places for 
entertainment, and health care facilities.  Agents located themselves at one of these 
facilities for one or more time steps, making a decision to either change location or 
stay with every time step.  Facilities have operational schedules and the agents have 
behavioral rules that preclude agents from going to closed facilities.  Each time step 
represents four hours of real time and the scenario ran for a one year period.  This 
particular scenario and level of fidelity required a Cray XD1 super computer to 
execute.  Each replication of the simulation took fourteen hours to complete. 

The “who” in this simulation are the people that make up the population of the 
Norfolk metropolitan region.  Each agent was given a set of socio demographic 
characteristics such that the demography the virtual population was consistent with 
the 2000 census data.  Then based on socio-demographics including occupation social 
networks were built among the agents to reflect human networks.  Additionally, 200 
agents were “infected” and spread randomly around the city.  This was a proxy for a 
planeload of people infected with influenza arriving at the airport and disbursing. 

The “what” consists of a set of actions that the agents can take.  Agents relocate (or 
stay) every four hours and choose to interact (or not) with others while they are at that 
location.  Also, depending on the location they may engage in other activities such as 
buy over-the-counter medication, get diagnosed by a doctor, become infected, spread 
the disease, die or become well. The choice of interaction partner is probabilistically 
determined, based on an agent’s demographic characteristics; the more characteristics 
two agents share, the greater the likelihood they will interact if they are in a position 
to do so.  When the agents interact if one of them is infected and contagious there is a 
chance that the influenza will be passed from one to the other.  The likelihood of this 
occurring is based on the transmission rate of the virus. At the same time that 
influenza is spreading, other diseases may as well.    And, though not used in this 
study, the simulation also allows for airborne, waterborne, and food borne infection. 

Only some of the obvious  “how’s” are represented explicitly.  Agent’s do have a 
set of knowledge, including knowledge about their visible symptoms and they use that 
knowledge to make decisions. Agents do get drugs, over-the-counter and prescription, 



and those may impact symptoms and diseases.  Other general resources such as 
transportation vehicles are not modeled as the four hour time tick was of greater 
granularity than travel time.  There is even a facility in the program whereby the 
agents know that a medical alert has been called, or the schools are closed and the 
agents change their behavior based on that knowledge. 

The “where” in the simulated city consisted of a number of specific locations 
found in Norfolk including homes, workplaces, schools, pharmacies, doctor’s offices, 
emergency rooms, stadiums, theaters, stores, restaurants, universities, and military 
facilities.  Locations could be open or closed, depending on the day, time of day, and 
weather.  Additionally, inclement weather or interventions could lead to school 
closures.  The geographic, location, and weather data came from U.S. Census Bureau 
reports on cartographic boundaries for schools, Metropolitan Statistical Area (MSA) 
boundaries and business patterns, and National Oceanic and Atmospheric 
Administration (NOAA) Climate Data. (Carley, et al., 2004) 

As indicated earlier, “why” people interact is influenced most heavily by 
homophily, their visible medical symptoms, and their location, and the “when” is 
every four hours, giving agents six possible opportunities to interact in a 24 hour 
period. 

4.2  EpiSims (Smallpox diffusion)   

Episims was originally developed at Los Alamos National Laboratory, and is now 
from Virginia Polytechnica Institute, for the purpose of exploring the diffusion of 
disease around a city or other geographical region.  In the application discussed here 
the specific interest is the spread of smallpox around a virtual Portland Oregon.  
Similar to the Norfolk example researchers are interested in evaluating the differential 
effects of different intervention strategies and scenario assumptions, given an 
outbreak of Smallpox in the region. (Eubank, et al., 2004)   The virtual Portland was 
represented using approximately 1.5 million agents and 180,000 specific locations 
and used the minute by minute movement around an underlying transportation 
network for a simulated period of 100 days to stimulate the contact that caused 
diffusion of the disease. The underlying simulation engine called TransSim runs on a 
bank of 128 networked personal computer class machines. (Los Alamos, 2008). 

The “who” in this scenario consists of approximately 1.5 million agents living, 
working, or transiting the city of Portland Oregon.  Each agent possesses a set of 
socio-demographic characteristics derived from the census that are used to provide the 
agents with differential location and mobility.  The networks of connections among 
these people are very stylized and canonical “small world” networks. 

The “how” people interact is based on the underlying transportation simulation.  
An agent’s underlying socio-demographic characteristics are assumed to provide them 
with differential mobility on the network.  Additionally, some agents have randomly 
assigned characteristics that give them even greater mobility on the network to 
simulate those people whose employment or lifestyle cause them to move around 
more broadly. 

The “where” are 180,000 specific locations.  The locations do not have their 
purpose represented explicitly.  But they do have a maximum capacity which is 



distributed in a “scale free” fashion across all possible locations, causing agents to 
gravitate toward high capacity locations, like shopping malls.  The belief is that this 
distribution is similar to how people actually behave, moving from home to public 
locations and back. 

The “what” in this simulation is largely movement, with possible contact and 
infection based on co-location for periods of time.  If people are at the same location 
for more than one hour of simulated time with an infected and contagious person, then 
there is some probability that the agent will contract the virus.  In the scenarios 
aerosolized smallpox was introduced at indoors busy locations over several hours, 
infecting approximately 1,000 people to seed the epidemic. 

The “why” for interaction is implicit in this gravitation to dense locations.  The 
when is very highly resolved (second by second) movement data, with possible 
contacts occurring when two agents are in the same location for more than one hour. 

4.3  Construct (Taxpayer behavior)    

This simulation effort applies a Carnegie Mellon University developed multi-agent 
simulation called CONSTRUCT (Carley, 1991; Schrieber & Carley, 2004) to the 
challenge of helping the US Internal Revenue Service (IRS) identify cost effective 
portfolios of services, advertisements, and interventions  that will encourage the US 
population to voluntarily meet their tax obligations.  To accomplish this, the research 
team developed agent populations of a few thousand agents that are representative 
samples of the population demographics in multiple US cities.  Additionally, the team 
developed explicit representations of tax filing knowledge, tax payer beliefs, and IRS 
communications programs that are designed to educate and assist the tax paying 
population.   Simulated scenarios were run for a virtual year (sometimes two) with 
each time step on the simulation representing one week of calendar time.  The 
simulation was run on a 64 bit multi-processor machine, requiring approximately 
three hours to complete. 

The “who” in this simulation consists of approximately 3,000 or more agents 
representing taxpayers in a US city?   These agents are imbued with a set of socio-
demographic characteristics, including income and their income tax filing status.  
Additionally, there are “Smart Agents” (Carley& Newell, 1994) that provide taxpayers 
information (or misinformation) serving as proxies for newspapers, radio and TV, IRS 
Tax Assistance Centers, and internet access points.  All of the agents have some level 
of knowledge about taxpaying behavior, as well as, general knowledge and some 
transactive memory about where to go for additional knowledge on tax related topics.  
Additionally, taxpaying agents have beliefs about how they feel about their obligation 
to pay taxes and a level of risk tolerance that is independent of their beliefs. 

The “how” consists of an ability (or inability) of a taxpaying agent to engage in 
some taxpaying related behavior both legal and illegal.  This ability is determined by 
the degree that the tax payer matches the target audience for the behavior.  For 
example, the US Earned Income Tax Credit (EITC) targets lower income taxpayers to 
provide them with a measure of tax relief.  If an individual is in the qualifying income 
range, they have the resources in the simulation to take the credit.  Other tax related 



behaviors may involve  other factors, like number of children or geographic location.  
These are also thought of resources in the simulation. 

The “what” consists of two behaviors.  The first is a decision to interact with 
another agent at every time step.  The decision to exchange information and beliefs 
with another agent is eighty percent homophily based and twenty percent based on 
differential expertise.  When two agents interact, they exchange a subset of their 
knowledge and beliefs with the other agent.  In some cases the knowledge is accurate, 
in other cases it could be misinformation.   The second behavior is an annual decision 
to file (or not) income taxes and if the agent chooses to file an accompanying set of 
decisions concerning what deductions and credits to take.   This decision is based on a 
vector of factors, including the knowledge that the agent has acquired through 
interaction with other agents. 

The “where” in the taxpayer simulation is only treated explicitly when it is relevant 
for a tax related factor.  For example one study, (National Taxpayer Advocate, 2007) 
represented explicitly the residents of the city of Hartford in an effort to replicate an 
experience the IRS had with taxpayers and the local government in 2004. 

The “why” agents do things in this simulation is based on an explicit representation 
of their beliefs about tax compliance.  This set of beliefs has two components.  First, 
the agent can believe that what they’re doing is either right or wrong, or some shade 
in between.  This is important because in many cases taxpayers engage in 
noncompliant behavior but have been advised either unintentionally or intentionally 
that the behavior is legal.  The other belief is that it is either OK, or not, to cheat on 
one’s taxes.  An agent will engage in a non compliant activity if and only if one of 
these two beliefs is consistent with noncompliance. 

4.4  SEAS – (Military Operations) 

Another application of agent based simulation is in support of the US Military’s 
effort to migrate to a new operational concept called “Effects Based Operations 
(EBO)”.  In this concept the military hopes to represent and consider explicitly the 
broader possible set of implications of a military operation.  To do this they are 
describing operational inputs along four dimensions Diplomatic, Information, 
Military, and Economic (DIME) and outcomes along six key dimensions; Political, 
Military, Economic, Social, Information, and Infrastructure (PMESII). 

Purdue’s Synthetic Environment for Analysis Simulation (SEAS) which was 
originally designed as an agent simulation in support of market forecasting was 
adapted in three ways to analyze EBO.  First, it was adapted to allow for human in the 
loop interaction during a simulation run, second it was federated with a simulation of 
military operations called the Joint Warfare System (JWARS), and finally 
functionality was added that was more focused on DIME and PMESII concepts. 
(Chaturvedi, et al., 2004) 

The “who” in the simulation consists of over 100,000 simulated agents that operate 
in the SEAS simulation environment.  The agents are given properties such that the 
differences among agents are consistent with the areas demographics and culture.  
The analysis environment also includes exogenous inputs from human players 
representing key government leadership roles, key neutral parties (like unbiased 



press), and enemy organizations.  There are also data exchanged with the JWARS 
simulation that informs SEAS about the status of military entities that are perceived to 
be relevant to the PMESII variables. 

The “what” in the simulation is an abstract representation of ports being opened 
and closed, diplomatic activities at varying levels, movement of the military and 
population around the environment.  Agents choose to interact with each other and 
move about in the simulation consistent with a rule set that is based on over 15 
attributes consisting of features like culture, religion, and education. Human decision 
makers in the key roles make higher level policy decisions and then the agents 
interact with each other in response the changing environment. 

The “when”, is relatively close to a near real-time environment, allowing for 
visualization of agent movement in the SEAS environment, with user selectable 
ability to run forward in time.  This keeps the simulation timing consistent with the 
other simulation and allows for human interaction with the simulation.  A 
consequence of this is normally scenarios represent days, to months of simulated time 
from end to end. 

The “where” is normally in a geographic region of variable size and resolution.  In 
the case of the scenario described the literature it was the city Jakarta. (Chaturvedi, et 
al., 2004)  The environmental representation includes roads, structures, ports, and 
traffic loads on the infrastructure. 

The “how” is based on differential resources provided to the different classes of 
agents, and human players.  Types of resources include budgets, information, 
humanitarian assistance and supplies. 

The “why” is based on a combination of attributes of the simulated agents, 
including religion, Culture, and an attribute called motivation.  All of these attributes 
are considered as part of a rule based decision engine for determining agent behavior.  



 

5  Multi-Agent Simulation Principles 

 The technical foundations of Multi-agent simulation and more generally 
multi-agent systems are largely based on the achievements of the computational 
organization theory, artificial intelligence and object oriented programming 
communities.  Volumes have been written that describe good overall technical design 
and programming practices for multi-agent systems (Woolridge,  2002; Gilbert & Trisch, 
2005), and simulation more generally (Law and Kelton, 2000).  These practices are 
extremely important for good overall system design, implementation, and analysis but 
addressing them sufficiently is beyond our scope.  Rather, we are focusing on the 
principle considerations that are relatively unique to development and applications of 
simulations to complex 
socio-technical systems.  
We highlight important 
considerations for six 
parts of the development 
and application process 
for such systems.  These 
six parts are organized in 
roughly a sequential order, 
but practitioners should be 
prepared to iterate as 
activity in one area 
indicates a need for 
adjustments in another. 

5.1  Use Good Modeling 
Practices 

All simulation (and 
software) development 
projects have a common 
set of decisions that must 
be made at the outset of 
the project.  What 
language to use?  How to 
structure the development 
team?  What development 
process to follow?  These 
are extremely important 
initial considerations that 
are discussed for the 
interested reader in more 

• Understand the tradeoffs 
• Clearly define simulation purpose 

o If you change the purpose revisit 
the assumptions 

o Decide whether the model will be 
validated 

• Use good modeling practices 
o Refine the research or analysis 

question 
o If the model is to be validated then 

identify the mapping between 
measurable data and simulated 
variables 

o Clearly specify desired output 
measures 

o Think explicitly about uncertainty 
o Clearly document assumptions 
o Clearly document modeling risks 

• Clearly specify the variables 
o Agents 
o Environment 

• Clearly specify agent behaviors 
o Use Network thinking 
o Understand how change occurs 

• Conduct sufficient verification and 
validation testing 

• Conduct well structured virtual experiments 
o Good design 
o Rigorous analysis 

• Clearly present results 
o Consider the audience



detail in Hoover & Perry (1990) and Maxwell & Loerch (2007).   
One general consideration that warrants explicit treatment for our purposes is the 

need to refine the research or analysis question at the beginning of the effort.  We 
have previously discussed the need to understand the underlying reasons for 
developing the simulation.  That addresses the first part of this challenge.  

The second general consideration is to identify the key sources of uncertainty and 
the planned procedures for dealing with that uncertainty.  Multi-agent systems are 
often unpredictable due to the complexity of the system.  This implies a critical need 
for dealing with uncertainty throughout the model development and application.  
Uncertainty in modeling exists at two levels.  The first is the uncertainty associated 
with a model variable being in a specific state.  These uncertainties are often 
addressed using probability distributions over the state space.  The second kind of 
uncertainty, often called deep uncertainty, addresses uncertainty about the structure of 
the model itself.  (Laskey & Lehner, 1993)    One way to address effectively these 
uncertainties is to as exhaustively as possible describe low level behaviors, and use 
this knowledge as means to guide further development, experimental designs, and 
analysis of outcomes from the simulation.  Another way to address these uncertainties 
is to scope the model’s use to the areas where there is greater certainty.  A third way 
is to do a series of sensitivity analyses of the critical  uncertainties. 

5.2  Key Simulation Design Tradeoffs 

Once the decision to build or use a simulation is made, there is a series of decisions 
that need to be made that provide context for the rest of the model development effort.   
In general there are two top level design decisions.  First is the level of realism, or 
fidelity, the agents and the environment should possess.  And second, is the number of 
agents that will be in the simulated population.  Depending on the reason for 
developing a model and the data that is available to support the development, the 
practitioner can vary these two dimensions. 

In general, the higher the fidelity of the simulation system the wider the range of 
policy issues and social activities that can be addressed by the simulation and the 
more detailed the policy recommendations.  However, the higher the fidelity of the 
simulation system the longer it takes to develop, set up, and run.  The higher the 
fidelity the greater data requirements, and the more types and quantities of data that 
will be generated.   Thus the tradeoff is, improved fidelity (realism) can lead to 
improved support for the policy analyst and decision makers.  There are costs 
associated with this increased fidelity.   The simulation will cost more and take longer 
to develop.  The simulation will require more powerful and more expensive 
computational resources. 

In general the higher the fidelity of the simulation system the more data that can be 
used to validate it and the more reasonable it is to engage in validation.  That said, the 
higher the fidelity of the simulation, the more resources that are required to do 
validate the model.  Time, people, and money are needed to run representative 
scenarios, collect data and to engage in validation relevant analyses.  As these costs 
increase, the less likely it is that the entire system will ever be validated. 



In general, the higher the fidelity of the simulation system the more types of virtual 
experiments that can be done to explore diverse issues and the more sensitivity 
analyses need to be done.  What this means is the higher the fidelity the more 
analytically relevant data of different types that is generated.  This output requires 
more computer storage space, advanced designs of experiments, and more statistical 
analysis to harvest the meaningful analytic insights.  In fact, the emerging high 
fidelity simulation systems generally generate so much output data that standard 
statistical packages cannot be used to analyze the results.  To meet this challenge  
specialized search tools and data farming environments are being developed and 
applied. (Horne, 2001) 

In general, similar to higher fidelity representations, the greater the number of 
agents in the virtual population, the slower the simulation will run, and the more 
computing power that will be required. Matching the number of agents in the virtual 
population with the real population significantly increases the “realism” of the 
simulated scenario and simplifies many issues in the design of the virtual 
experiments.   There are, however, sampling and experimental design techniques that 
allow one to conduct analyses with a smaller population of agents. 

5.3  Why is the Model Being Built? 

In trying to decide on the appropriate level of fidelity the practitioner needs to 
consider not just these tradeoffs, but also the purpose for which the model is being 
built.  Because these are descriptive models that can not and should not represent the 
entirety of reality one must ensure that the explicitly represented behaviors of the 
agents are consistent with the key parts of the system of interest and that simulated 
results inform the relevant research, analysis, or policy questions.  The second part is 
to take a small step back and do some disciplined thinking about the essential reasons 
one cares about developing the simulation or doing the analysis in the first place.  Too 
often, we have seen this step in the process either overlooked because everyone on a 
development team “knows” the goals or timelines are too short to allow for this 
luxury; only to find out later this shortcut was a very costly mistake.  Keeney (1992) 
and Edwards, et al. (2007) provide some very useful thoughts on the details of how this 
is accomplished effectively.   Developing a clear understanding of the overall goals of 
the process naturally leads to an improved understanding of one’s specific objectives.  
These objectives need to be quantified and then identified as desired outputs of the 
simulation.  That is, from the beginning, simulation design (or simulation selection if 
there are existing choices) should consider explicitly output measures.  Again 
accomplishing this exercise early brings clarity to the development process that 
increases the likelihood of project success.   

As we stated earlier, in some cases the purpose of the model may be to explain and 
predict social behavior with the intention of advancing sociological theory (Carley, 
2001).  In other cases the simulation may be informing policy level decisions in a 
national government or other large organization.  For example, the United States 
Government’s Internal Revenue Service (IRS) is conducting research using multi-
agent simulation in an attempt to better understand the behavior of US taxpayers so 
they can identify a mix of messages, services, and interventions that will help US 



Taxpayers to comply with their legitimate taxpaying obligations (Carley & Maxwell, 
2006; National Taxpayer Advocate, 2007).  Other examples of policy decision support 
applications are the use of multi-agent simulation to inform planning processes in 
support of military operations, counterterrorism operations or strategic 
communication efforts around the world (See Chaturverdi, et.al. (2000) and Carley, et. al. 
(2003) for detailed examples).   Additionally, multi-agent simulations are being used in 
support of training activities, particularly to generate crowd behavior emergency 
personnel can then interact with to practice their response to different kinds of crises. 
(Chiva, E & Delorme, J. 2004). 

5.4  Clearly Specify the Variables 

There are two overall types of variables that require specification in our virtual 
world:  those relating to the agents and those relating to the environment in which 
they will function.   At the very top level there are two goals for these variables.  First, 
they must be clearly defined.  That is there should be no ambiguity about what the 
variable represents (or doesn’t).  And second, they must exhaustively describe the 
space of entities and behaviors that are critical to the topic being studied.  These 
concepts must be defined at a level of representational resolution that is semantically 
consistent both internally, and with the relevant research and study questions. (Davis & 
Tolk, 2007)  In general, if the model is to be validated, each variable in the simulation 
should have a real world analog and be “measurable” in the real world.  Use of 
variables that are impossible to measure in the real world is generally a sign that the 
model is to be used only for illustrative purposes.  

5.4.1 Specifying Agents. The fundamental building block of an agent based 
simulation is an agent.  Agents are most often thought of as representing people.  But 
as we saw in the example applications, such as Construct, agents can also represent 
organizations, companies, nation states, computer programs, news articles and other 
intelligent or information processing actors.  Formally, an agent is a discrete entity in 
the simulation that has the following characteristics: 

 
• Autonomy – It possesses the ability to function without someone or something else 

having direct and complete control over its behavior.  These behaviors include the 
ability to interact with other agents, make decisions, and to accomplish some task.  
This does not mean that the agent can initiate interaction merely that it can engage 
in some information processing operation on its own. 

• Knowledge – It has information.  This information may be about itself, the 
environment, and/or other agents.  In some cases this information is both accurate 
and sufficient to enough to enable constructive behavior.  In other cases, the 
knowledge is incomplete, inaccurately perceived, or incorrectly processed.  This 
knowledge may include historical, current, or mythical information.  For 
knowledge, the agent either knows it or does not, and for some class of knowledge 
may have some level of expertise. 

• Beliefs – In some cases agents, especially human and organizational ones, posses a 
special type of knowledge called beliefs.  These beliefs are usually stable and focus 



on fundamental concepts like right and wrong, religious conceptions, etc.  Agents 
can hold opposing beliefs and these beliefs can be held with some degree of 
intensity. 

• Resources – An agent can possess or have access to resources that empower them 
to execute some behavior or set of behaviors.  Examples of resources might be 
money or raw materials.  Agents can hold multiple instances of resources or levels 
of the same resource. 

• Information processing capabilities – Agents may have some ability to initiate 
interaction, locate information, acquire, perceive, give, process, forget information.  
This includes sensory ability, social skills, and adaptivity based on learning.  

• Sensory ability – An agent possesses the ability to collect and perceive facts about 
its environment.  In some cases this may be the result of direct observation, in 
others it could be the result of communication that is received from another agent. 
Social skill – Agents have the ability to communicate with other agents.  In this 
communication they can either initiate or reciprocate and share and receive 
knowledge the other agent(s) in the interaction. Adaptivity – Some agents have the 
ability to learn and modify their behavior based on what they learn or think they 
learn. 

• Physical capability – Agents may have some ability to move themselves or objects 
and so put themselves in positions to acquire or provide resources, information or 
beliefs, or to engage in particular actions. 

• Decision criteria – Agent may have some ability to make decisions.  This may be 
the result of clearly articulated goals and plans or simple stochastic reactions as 
constrained by their environment, knowledge, beliefs, and capabilities. 
 
Not all agents possess the same level of capability along any or all of these 

attributes.  In fact these differences among these properties are a key part of what 
causes the population in the simulation to be heterogeneous.   Systematically mapping 
these properties to be aligned with the task at hand is an important early task in model 
development.  For example, when describing an agent for use in a simulation of 
taxpaying behavior it is unlikely that religious affiliation and beliefs are directly 
relevant to the analysis, so they can be set aside.  On the other hand, if the simulation 
is trying to explore the behavior of a population as part of a counterinsurgency 
analysis effort, religious belief is likely a very relevant belief.  The simulation design 
goal is to identify a minimally sufficient set of different dimensions for describing the 
population. 

 
5.4.2 Representing the Environment  Finding a suitable level of fidelity for the 

representation of the environment is another critical part of the simulation design.  In  
modeling the principle of Occam’s Razor applies.  (Jefferys, W. & Berger, J., 1992).  We 
want to use the simplest abstraction with the fewest number of variables possible.  
That said, the number of variables need to be sufficient to capture the characteristics 
of the environment that might have major influences on the simulation’s outcome.  A 
wonderful example of this is found in the extensions of Helbig’s work.  The initial 
work simulation environment consisted of a simple grid around which agents could 
move.  Later work demonstrated that even the introduction of simple obstacles 
(perhaps proxies for geographical constraints or affordability constraints) significantly 



changed the reults (Miyao, 1978).  These differences in results caused by such a small 
change in the environment have stimulated significant discussion about the 
generalizability of Helbig’s results.   
 
5.4.3 Specifying Behavior  The next task in building a multi-agent simulation is to 
specify the set of actions or behaviors that the agent can engage in, conditions for the 
behavior and response to that behavior both by that agent, the environment, and other 
agents.  We have previously 
discussed the sources of 
complexity that make this a 
challenging task using a 
journalist’s perspective.  We can 
use these dimensions to help us 
organize our thinking about 
behavior.   Figure 2 organizes 
those same concepts into a 
multidimensional network that 
specifies the set of possible 
factors that might influence 
agent behavior and subsequently 
simulation results.   Combining 
an inspection of this network 
with what we have learned 
previously about multi-agent simulations, we can see that the “who”, “how”, and 
“why” make up the set of agents and the attributes those agent possess that influence 
their behavior in the environment.  The “what” are the things the agents do in the 
simulation.  And the “where” is the (physical and/or virtual) location of those actions.  
In fact one thinks about this in object oriented programming terms, the agents and 
locations are objects, with the how and the why as attributes of the object or 
constraints on what that object allows,  the behaviors are methods in the software that 
represent the behavior of the agents.  For each agent, its environment is the collection 
of other agents, and the set of possible how, what, where, and whys that exist at a 
specific when.   Each agent’s perception of this meta-network is that agent’s 
transactive memory.   

 
Fig. 2.  The meta-network as it evolves through time 

This meta-network specifies a matrix of relations, often referred to as the 
meta-matrix. Specifying the meta-matrix is a helpful way to specify key aspects of the 
design of the multi-agent simulation system.  Adding another level of detail to our 
thinking is even more helpful for actually designing and developing a specific model.   
Table 2. lays out a matrix that identifies the types of networks that should be 
considered as part of the design.  For example, the simulation requires some 
abstraction for “who knows who”.  In BioWar and Construct the agent has a set of 
alters that are in its sphere of influence that it normally interacts with, but based on 
where the agent is when or what events are ongoing the agent my engage in 
potentially random interactions with others outside this sphere.  These networks may 
reflect known socio-demographic constraints as in BioWar or be specified using very 
stylized hypothetical structures such as the scale-free networks in EpiSims.  
Specifying all the relevant relationships among all of the agents in the agent 



population a priori would be a daunting task with many thousands of agents.  A 
possibility is to specify a set of attributes that allow one to adjust the probability that 
two agents will interact based on their similarity.  In the IRS example above the 
authors used a vector of attributes, including age, gender, race, income, marital status, 
and education as indicators of similarity.  The more attributes the agents held in 
common, the higher the likelihood that they would interact and exchange information.  
More generally, we need to have some representation of the fact that people are 
embedded in different social networks, and that those networks influence who 
interacts.   

Table 2. Network view of illustrative relationships in a multi-agent simulation at a particular 
point in time  

 Agents Knowledge Resources Actions Events Locations Beliefs 
Agents Social 

Network 
Knowledge 
Network 

Capa-
bilities 
Network 

Activities 
Network 

Partic-
ipation 
Network 

Physical  
Presence 

Belief 
Network 

Know-
ledge 

 Information 
Network 

Skills  
Network 

Know-
ledge  
Needs 

 

  Factual 
basis 

Resources   Substi-
tution 
Network 

Resource 
Needs 

 Availability  

Actions    Workflow  
Network 

   

Events     Prece- 
dence  
Network 

  

Locations      Borders  
Beliefs        

 
The concept of differential access to information (knowledge) is further 

complicated when we introduce the ideas behind the knowledge network and the 
capabilities network.  For example, there is some type of information available 
through internet sources.  To represent this effectively in research or analysis we 
would likely need to create a “smart agent” that has that knowledge available for an 
agent to find.  Then the searching agent would have to be able to access the internet (a 
resource) and either have knowledge that the information was available (transactive 
memory) or have some behavior that allowed it to search the internet.   Again, one 
could randomly indicate that agents have access to the internet, but as we saw earlier 
technology use is very different depending on age, and other demographic features.  
This means that in cases where understanding information flows is central to the 
research or analysis question then a more detailed model is warranted. 

In designing and developing a multi-agent simulation, the types of thought 
experiments and considerations described above should be conducted for all relevant 
networks described in Table 2.  A useful technique for conducting these thought 
experiments is to think about what is (or might be) flowing through the network.  In 
some cases we are looking at the transfer of material goods and services to satisfy and 
economic demand (Chaturvedi, A et al., 2008). In the case of material goods and 
services it is important to specify the set of attributes and relationships that prevent 



very unrealistic things from occurring. (e.g. infinite supplies of goods)  In other cases 
we are exploring the propagation of knowledge and beliefs throughout a population.  
Again, in some cases randomization or cursory treatment of these concepts may be 
sufficient, but others will require explicit treatment.   Our experience is that this 
requirement is especially prevalent in the representation of an agent’s knowledge, 
beliefs, and decision making processes.   This is because not all messages are created 
equal.  As a simple example, think about a message that addresses the belief about a 
behavior being “right or wrong”.  A website, radio message, or news article will have 
a different impact than a parent or a cleric communicating a message.  Think about 
situations where the messages are different, depending on the goals of the agents.  
One example of this might be a simulation of strategic communications in a 
counterinsurgency environment.  Just asserting the effectiveness of some positive 
messages, or even positive behavior, with out simultaneously considering the effects 
of conflicting messages will more often than not lead a researcher or analyst to 
become overly optimistic about how the system will respond to stimulus. 

It is true that one can not always predict what the overall changes in a complex 
adaptive system will look like.  This does not imply that one does not need to 
understand the processes that produce those changes.  In fact, it is absolutely essential 
that the basic processes be both understood, and clearly described as functions 
(software methods) in the simulation software.  There are three facets to achieving an 
understanding of change processes.  The first is developing an understanding about 
the nature of change.  For example, providing a person with money will certainly 
increase the amount of money they have immediately available.  And, the additional 
money makes it more likely that they will save some of it.   In the simulation, the first 
change, receiving money, is likely best represented just by adding financial resources 
to the agent.  In the second case, we probably want to represent the action “saving” as 
a decision that is a function of the additional money, but also considers other goals, 
knowledge, and beliefs held by the agent.  This ability to locally consider multiple 
factors is an essential part of the power of multi-agent simulation.  The second facet is 
to understand the rate of change. In the case of money transferring from agent to 
agent, the effect immediate.  But it says nothing about how frequently the transfer 
occurs.  Is it weekly or monthly, like a paycheck?  Or is it annually, like a tax refund?  
Other types of changes occur along different timelines.  For example prejudicial 
beliefs will likely change very slowly.  Years to decades could go by before any 
meaningful change is seen in deeply held beliefs and engrained attitudes.  
Consequently, practitioners should be careful not to be overly optimistic or specific 
about the rates at which change happens.  The final facet of change that must be 
understood is the mechanism that executes change.  Using our financial example 
again, moving money from one agent to another changes their resource position.  That 
is the nature of the change.  The mechanism describes how the transfer takes place.  Is 
it a cash transaction in person; is it a check in the mail, or an electronic fund transfer?   
Different mechanisms for change will have implications on what can and should be 
represented explicitly, or left out as peripheral to the question under study.  



6  Model Verification, Validation and Testing 

Depending on why the model was built, verification and validation (or V&V) 
activities may be an important aspect of project success with multi-agent simulations 
of complex socio-technical systems.  If the model was built to simply illustrate a 
process (as in training) V&V is not warranted.  In principle, the level and type of 
V&V depends on the maturity of the model and the uses to which it will get put 
(Zacharias, et al. 2008).  In practice, the level and type of V&V depends heavily on 
available empirical data, which may not exist in sufficient quantity for statistical 
validation, and the resources available for validation.  Verification activities answer 
the question “Did I build the model right?” and validation addresses the question “Did 
I build the right model?”  There is a literature available that describes a wide range of 
techniques for conducting V&V (e.g. Balci, 1994;  Windrum, et al. 2007). 

On the verification side, good software engineering practice, version control and 
testing are needed.  Even relatively simple multi-agent simulations, with simple local 
interactions can quickly become rather complicated pieces of software, with 
significant amounts of data.  So, the entire system needs to be methodically and 
comprehensively checked for errors in implementation, design, and data. 

In terms of validation, there are a plethora of validation challenges that face multi-
agent simulations of complex socio-technical systems that simply do not arise for 
engineering level simulations. The range, level and types of validation techniques 
have exploded with the complexity of these systems.  Early researchers in artificial 
intelligence used the idea of a Turing Test (Turing, 1950) as a test for the quality of a 
computational model attempting to replicate human behavior.  The basic idea is that if 
you interact with a device and cannot tell whether the information is coming from a 
computer or a human then that computer model is an adequate model of the human.  
This is a test of the isolated individual.  In multi-agent simulations we have social 
agents.  Carley and Newell (1994) introduced the idea of a “social Turing test” that can 
be helpful for V&V purposes for social agents.  The social Turing test is “weaker than 
the Turing test because it does not require confusing a computer with a person.  It is 
stronger because it allows for plugging “in many values.”   The basic idea is that if 
you see results about a group or population generated by a device and cannot tell 
whether these results were gathered from a real group or population or generated by 
computer simulation, then the computer simulation model is an adequate model of the 
social milieu.  This type of test would allow a researcher to explore the range of   
possible behaviors for an agent under many different sets of conditions to assess its 
validity.  Moreover, if this is done systematically across the set of agents the test 
could also provide some insight into the reasonableness of the behavior of the 
population as a whole as well.  

At the time Carley and Newell introduced the idea of the “social Turing test” they 
indicated that “carrying out such a test is well beyond the current art,”  as no known 
simulation at that time had an adequate model social agent.  We note that even for the 
sophisticated models described here, the model social agent’s are nearer but still not 
completely consistent with the full range of behavior expected of the model social 
agent.  

Practitioners need to pay particular attention to the available data, not only during 
model development, but also during validation verification, and testing.  The quality 



of the available supporting data supporting simulation input speaks volumes about 
what simulation results might be useful for.   The data confirms what we know and 
guides what we can reasonably infer from the simulated results.  Therefore, the input 
data should be evaluated to ensure it is relevant to the variables that are being 
populated.  It should be reasonably available or relatively easily (and reliably) 
imputed from data that is available.  As an example, for a recent IRS study we had 
census data readily available for describing the overall population of a particular 
community.  But, the focus of the study was on a relatively small subset of the 
population.   In order to improve the emphasis on the study population we applied a 
matched sampling technique and imputed an agent population that emphasized the 
study population, but allowed us to statistically infer the population level statistics 
from the matched sample. (Rubin, 2006) Additionally, some data are uncertain.  These 
uncertainties should be clearly documented and explored using sensitivity analysis 
techniques to evaluate what the impact of that uncertainty might be on the 
simulation’s results.  

7  Conducting Virtual Experiments 

The execution of a virtual experiment, similar to all other types of experiments, 
requires serious thought and some planning to effectively execute.  The quality of the 
experiment’s design and analysis can have as much influence on the usefulness of the 
results as the entire development effort.  Moreover, the previously identified 
limitations on the ability to validate multi-agent simulations make it even more 
critical to think through carefully how the simulation is to be applied. 

A first step is to select a set of independent variables that are relevant to the policy 
alternatives or hypotheses that are under consideration.  Then for each variable a set 
of levels need to be chosen that are “representative” or critical for these alternatives.  
For example, if we are examining the impact of IRS interventions then the variables 
might be the presence of an intervention such as a newspaper add or letter to taxpayer.  
Whereas the level would be the number of days the add runs or the number of letters.  
These levels should cover the range of possibilities for the independent variables and 
so sample the entire space of feasible possibilities  (e.g. no intervention at all, 
maximum intervention possible). The sample should also include sufficient interim 
possibilities to allow for the possibility of identifying trends, especially points of 
inflection in response surfaces over the results. 

As we stated earlier dependent variables, or simulation results, in the experiment 
should inform the analysis of the overall effort.  In the case of training, it is likely that 
the dependent variables will be performance data collected through observation of the 
human participants and their supporting tools.  The simulation appropriately provides 
context for that interaction.  In the case of scientific research and decision support the 
dependent variables should relate directly to the key hypothesis or hypotheses, or the 
fundamental objectives of the decision makers.  In cases where the dependent 
variables are indirect proxies for the fundamental objectives the asserted relationships 
between the proxies and the fundamental objectives should be thought through and 



documented before the experiment is executed.  This disciplined step will help frame 
the results analysis effort and increase the quality and defensibility of the conclusions. 

In general, one might want to apply standard experimental design constructs such 
as Box-Behken.  However, it should be noted that the number of variables in these 
models is sufficiently large and the variables themselves may not be continuous that 
design constructs devised for physical device simulations may not be appropriate. 

Experimental designs need to consider the possibility of interaction effects across 
the set independent variables under study.  Too often in simulation studies of all sorts 
independence among the independent variables is just asserted and experiment 
designs are then built on that assumption.  It is more often the case, especially in 
multi-agent simulations that there are interactions among the independent variables.  
In some cases the interactions provide greater than additive returns (i.e. synergy) and 
in others the interactions can reduce the expected returns to something less than 
additive (destructive interaction).  A better approach is to develop design for 
experiments that test for independence rather than assert it.  Those dependencies that 
emerge can then be explored in some detail, either in search of an opportunity in the 
case of synergy or to mitigate downside risk in the case of destructive interactions. 

Once the virtual experiment is run the results need to be statistically analyzed and 
the local response surface estimated.  Often the desire to identify high coefficients of 
correlation and tight confidence intervals on the statistics can increase with the 
number of replications to infeasible levels.  This is further complicated because even 
you if you achieve tight confidence intervals and a high R2 by increasing the number 
of replications, one still may not have the kind of insight that is necessary for drawing 
meaningful conclusions.  Consequently simply judging the results using significance 
levels can be meaningless.      To deal with this reality experimenters should do 
considerable sensitivity analyses (Gilbert, 2008), and look to nonparametric statistical 
analysis techniques and the use of data farming environments to generate sufficient 
results for meaningful analysis.  When analyzing these results concentrate on the 
relative value of the beta (standardized) coefficients rather than just the significance 
levels. 

8  Presenting Results 

The use of multi-agent simulation in support of policy decision presents a special 
presentation challenge.  Decision makers and operational staffs are very focused on 
reducing and where possible eliminating uncertainty and then selecting and executing 
the “right” course of action.  Multi-agent simulation makes explicit uncertainties they 
have always faced, but may have necessarily assumed away to keep their planning 
and analysis challenges feasible.  The analysts challenge in presenting multi-agent 
simulation results is to quickly and effectively communicate what the simulation is 
saying and why it is important to them.   

The age old guidance “keep it simple” is extremely important in operational 
decision and policy analysis environments.  As we indicated earlier, the results need 
to be transparent, not at the level of describing the complicated inner workings of the 
simulation; rather they should make clearly visible the cumulative if-then result for 



that decision of policy context.  One rule of thumb is to structure the presentation to 
very quickly answer two questions; “So what?” and, why?”  Normally, the so what is 
a report on visible trends in the movement of the dependent variables in response to 
some of the different treatments.  The “why” can be much trickier in explanation 
because the trends, especially counterintuitive ones, emerge as a consequence of 
second and higher order interactions over time.   A very effective approach we have 
used to illuminate the results is to complement the aggregate results with a couple of 
anecdotal descriptions of how a few agents got to the state.  This can be especially 
helpful for counterintuitive cases. 

Another important thing to consider in presenting multi-agent simulation results is 
in the area of uncertainty.  Multi-agent simulations are stochastic, and often illuminate 
significant uncertainties that exist in the environment.  These uncertainties should be 
discussed explicitly with decision makers in terms that make their significance clear 
and actionable whenever possible.  Talk about the results as identifying the space of 
possibilities.  Highly replicated results are those that are more probably, but not 
guaranteed to occur.  Examples of cases in point are combinations of factors that 
might be seen that present a special opportunity for achieving exceptional results, or a 
set of circumstances that highlight a rising likelihood of bad outcomes that can be 
mitigated by some condition based operational action. 

9  Conclusions and Recommendations for Further Research  

We have seen that multi-agent simulation has been and can continue to be usefully 
applied for many applications.  We have identified a set of things that should be 
considered in each of the applications as well as a set of general principles to be 
followed for most effective simulation development.  Adherence to these principles 
can be a key contributor to the long run success of a multi-agent simulation 
development effort.   

As we have indicated, multi-agent simulation is a rapidly growing and rapidly 
changing field.  There are still a number of critical unanswered questions that will 
benefit from ongoing and future research.  Future simulation developers and users 
would benefit from looking at the current state-of-the-art when they read this paper.  
Some areas of particular interest are: 
• Validation and Verification practices for multi-agent simulations 
• Multi-resolution modeling in simulations 
• Statistical analysis techniques for simulation results to include data farming 

techniques 
• Presentation techniques for communicating multi-agent simulation results 
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