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Abstract: - A new model for a random graph is proposed that can be constructed from empirical data and has 
some desirable properties compared to scale-free graphs [1, 2, 3] for certain applications.  The newly proposed 
random graph maintains the same “small-world” properties [3, 4, 5] of the scale-free graph, while allowing 
mathematical modeling of the relationships that make up the random graph. E-mail communication data was 
collected on a group of 24 mid-career Army officers in a one-year graduate program [6] to validate necessary 
assumptions for this new class of random graphs.  Statistical distributions on graph level measures are then 
approximated using Monte Carlo simulation and used to detect change in a graph over time. 
 
Key-Words: - Social networks, random graph, change detection, small-world 
 
1   Introduction 
Social network analysis (SNA) examines 
relationships between social entities (i.e. people, 
groups, tasks, beliefs, knowledge, etc.).  These 
entities are modeled with nodes or vertices and their 
connections or relationships are modeled with edges.  
Not all nodes are connected and some nodes may 
have multiple connections.  This mathematical 
model is applicable in many content areas such as 
communications, information flow, and group or 
organizational affiliation [7, 8].  SNA thus relies 
heavily on graph theory to make predictions about 
network structure. 
     Nodes are defined in terms of a set of n verticies, 
V = v1, v2,…, vn. The nodes are related to each other 
with a set of edges E, where eij is a relationship 
between node vi and vj.  A social network is often 
shown as an adjacency matrix, where the rows and 
columns correspond to the nodes and each cell aij 
can take on any numerical value corresponding to 
the edge eij. In an unweighted network, cells are 
Boolean and are represented as 0/1: the presence or 
absence of an edge or relationship between nodes i 
and j. Networks where relationships between nodes 

are always mutual are called undirected networks,  
and their adjacency matrices will always be 
symmetric. Directed networks, on the other hand, 
can model both mutual and directional relationships.  
A value of 1 in cell aij represents a directed relation 
from node i to node j. In application, the diagonal of 
the adjacency matrix is rarely populated with 
anything but zeros, since interactions from an entity 
to itself are not generally interesting. 
     The potential complexity of interactions within 
even a small network, while discrete, grows 
exponentially with the number of entities. For this 
reason, algorithmic approaches to exploring 
distributions within constrained networks quickly 
become computationally challenging. In a directed 
network, the number of possible relationships among 
nodes can be found by the following expression, 
where n represents the number of nodes in the 
network: 
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The number of possible configurations of a network 
with a specified number of nodes (n) and edges (�) 



can be thought of as the number of unique 
combinations of � nodes within the network: 
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It follows that the total number of possible network 
configurations with n nodes can be represented by 
the following: 
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A network of 30 nodes, for example, can be 
uniquely configured roughly 7.87 x 10261 different 
ways. 
     To understand the probability of network 
structures occurring, the degree of the nodes is often 
investigated [3, 6, 8, 9, 10].  The degree of a node, 
ki, is a simple network measure counting the number 
of edges going into/coming out of a particular node. 
It is often powerful and accurate at determining who 
holds the power and influence within a network [8, 
9, 11, 12]. If we accept the notion that a random 
network is one in which nodes have an equal and 
unchanging probability to have a relationship with 
all other nodes in the network, random networks 
have a nice underlying distribution of degree 
measures.  Both the degree of a node and the number 
of edges in a network both will follow a binomial 
distribution. As the network gets arbitrarily large, 
the distribution converges to a Poisson distribution. 
     There is no shortage of alternative views on what 
constitutes a random network; nevertheless, 
empirical work has shown that social networks do 
not construct themselves in the image of a Binomial 
random graph [3, 6, 11].  Travers [13] studied social 
connections in the United States and discovered 
surprisingly short path lengths, where many 
strangers were connected by mutual acquaintances.  
This was termed a small-world network.  A network 
is a small world network if its average path length is 
much smaller than the number of nodes in the 
network.  This phenomenon in real-world networks 
is popularly known as “six degrees of separation” 
[14].  Watts and Strogatz [4] proposed the clustering 
coefficient as a graph level measure to indicate 
whether a graph is a small-world network. The 
clustering coefficient for a directed graph is defined 
as, 
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where Ni the neighborhood for a vertex vi and is 
defined as it’s immediately connected neighbors, 
 

 
{ } .: EevN ijji ∈=

 
The degree ki of a vertex is the number of vertices, 
|Ni| in it’s neighborhood |Ni|.  Albert and Barabasi [3] 
review current methods of constructing random 
graphs throughout the field of Network Science and 
compare the degree distribution, clustering 
coefficient, and average path length of multiple real-
world networks with various types of random 
networks.  They find that real-world networks have a 
higher average clustering coefficient and a shorter 
average path length than randomly generated 
networks with the same number of nodes and edges.  
Furthermore, they show that several networks have 
degree distributions that follow a power-law 
distribution, which means that very few nodes have 
a large degree, and many nodes have a small degree. 
     Barabasi [1] proposed the scale-free graph which 
creates a condition on the random graph that the 
degree distribution must follow a power law 
distribution.  These networks were shown to 
resemble real-world networks [3].  While scale-free 
networks may appear to be similar to real-world 
networks in terms of structure, they are not a 
sufficient framework to truly understand the 
stochastic nature of networks. 
     A new framework for random networks is 
proposed, based upon empirical data collected on 
real-world networks.  This new approach produces 
networks that have equivalent properties to the 
scale-free networks outlined by Albert and Barabasi 
[3], however, it is constructed in such a manner as to 
describe the close relationships between some nodes 
and distant relationships between others.  This 
framework holds the promise of a new line of 
research to explore the stochastic behavior of 
networks. 
 
 
2   Problem Formulation 
Individuals in a social network are not connected to 
other individuals with uniform random probability.  
The probability structure is much more complex.  
Intuitively, there are some people whom a person 
will communicate with or be connected more closely 
than others.  In a study of email communication 
conducted at the U.S. Military Academy [6], one 
subject emailed his wife more than ten times per day 
on average, while other people that he worked with 
received an email from him once or twice per month.  
For this reason, real-world networks tend to have 



clusters or cliques of nodes that are more closely 
related than others [3, 15, 16, 17].  This can be 
simulated by varying the probabilities that certain 
nodes will communicate. 
     Consider a group consisting of 15 individuals, 
organized into three subgroups.  Individuals within 
each subgroup work closely together and 
communicate more frequently than they do with 

people in the larger group.  Each day individuals 
may communicate with others in the group, but 
probably not everyone.  If we let the probability that 
an individual will communicate with someone in 
their subgroup with probability 0.8 and 
communicate with someone outside their subgroup 
with probability 0.2, we have a network probability 
matrix (NPM) shown in Figure 1. 

 
 

  A B C D E F G H I J K L M N O 
A   0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
B 0.8   0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
C 0.8 0.8   0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
D 0.8 0.8 0.8   0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
E 0.8 0.8 0.8 0.8   0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
F 0.2 0.2 0.2 0.2 0.2   0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 
G 0.2 0.2 0.2 0.2 0.2 0.8   0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 
H 0.2 0.2 0.2 0.2 0.2 0.8 0.8   0.8 0.8 0.2 0.2 0.2 0.2 0.2 
I 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8   0.8 0.2 0.2 0.2 0.2 0.2 
J 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.8   0.2 0.2 0.2 0.2 0.2 
K 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2   0.8 0.8 0.8 0.8 
L 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8   0.8 0.8 0.8 
M 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8   0.8 0.8 
N 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8   0.8 
O 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.8   

Figure 1. Network Probability Matrix. 
   

     Using this NPM, Monte Carlo simulation was 
used to generate 5000 instances of the network.  The 
average clustering coefficient was 0.463 ± 0.0014 
compared with a clustering coefficient of 0.329 ± 
0.0024 in a random graph of uniform probability.  
The graph generated with the NPM has a clustering 
coefficient that is comparable to a small world graph 
[4] with the same number of nodes and edges.  It can 
be conjectured that the clustering coefficient will 
become greater as the within group edge probability 
increases.  Furthermore, as the probability of certain 
key nodes being connected to others increases, the 
degree distribution will more closely follow a power 
law distribution.  The newly proposed random 
network, therefore, achieves equivalent performance 
as the small world graph in modeling real-world 
networks, and can be extended to model scale-free 
graphs, yet preserves the flexibility to model dyadic 
relationships between nodes. 
     The edge probabilities can be derived from 
empirical data in several ways.  Given network data 
collected over multiple time periods on a group of 
subjects, the edge probabilities can be estimated by 
the proportion of edge occurrences, eij, for each cell 
in the adjacency matrix, aij.  In the case of 
communication networks, statistical distributions 

can be fit to the time between messages for each 
potential edge in the network.  For a specified 
period of time, t, the edge probability p for each set 
of entities i and j can be found. Let xij be the time 
between messages in a communication network.  
The probability density function for any x can then 
be defined as fij ( x | �ij ), where �ij  is the set of 
parameters for the distribution.  Then, the 
probability, p, of an edge occurring within some 
time period t is the probability that x < t, which can 
be expressed as,  

�=
t

ijij dxxfp
0

)|( θ  

In practice, the function fij ( x | �ij ) must be estimated 
using techniques such as maximum likelihood 
estimation from empirical data collected on the 
group being studied. It may be desirable to construct 
a network based on a restriction such as, “two emails 
within a time period demonstrate a relationship, but 
one does not.” In this case, it is necessary to 
compose a function of random variables. If 

),|2( ijij th θ  represents the probability density 

function of time between two sets of two emails and 
)|( ijij xf θ  represents the probability density 

function of time between one set of two emails, then 



the following is true under certain assumptions: 
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It is possible to generalize this idea; if ),|( txh ijij θ  

is the probability that x or more communications 
occur within time t, then the following is true: 
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This newly proposed framework for viewing the 
probability space of a social network preserves the 
same flexibility for modeling dyadic relationships, 
however, it provides researchers with a means to 
understand the probability space of the network and 
thus devise more robust and appropriate statistical 
tests for social network analysis.   
 
 
3   Example Problem Solution 
Researchers at the U.S. Military Academy monitored 
the e-mail traffic of 24 mid-grade Army officers for 
24 weeks as they were in a one year graduate 
program at Columbia University [6].  The group had 
been organized with a formal leadership structure 
among the 24 officers, they all lived on the West 
Point Military Installation, and they had regular 
social events for the officers and their families.  The 
degree distribution followed a power law 
distribution like the social networks analyzed by 
Barabasi and Albert [1, 2, 3], and Newman [11, 15].  
The time between emails for each possible pair of 
nodes was calculated.  There were only 65 directed 
pairs of nodes that had greater than 30 messages 
over the course of 24 weeks.  Statistical distributions 
were fit to the time between email for the 65 pairs of 
nodes.  All of them followed a lognormal 
distribution.  Figure 2 shows the empirical 
distribution of one directed pair and four 
distributions fit to the data: exponential, lognormal, 
pareto, and zipf.   
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Figure 2.  Distributions Fit to Time  
Between E-mails in Army Officer Study. 

One could conjecture that the parameters of the 
lognormal distributions may be dependent upon 
various social factors, such as formal position in the 
network, friendship, common interest, etc.  Unlike 
traditional social network analysis, using the NPM, 
an analyst can use the edge probabilities as 
dependent variables to study the causes of 
relationships, communication frequency, and 
ultimately network structure. 
 
 
4   Conclusion 
A new approach to modeling a random network has 
been proposed that resembles real-world networks, 
preserves dyadic relationships, and can be estimated 
from empirical data.  While the approach is 
surprisingly simple, it opens the door for many new 
analysis opportunities in social network analysis.  
The cell entries in the NPM can be treated as 
dependent variables, while various properties 
describing the dyadic relationships between nodal 
pairs can be used as independent variables.  This will 
reduce variance in the model and increase the 
coefficient of determination, thereby explaining the 
complex behavior of a social network much better 
than existing methods. 
     Other research building from this new approach 
to modeling a random network can include building 
empirical distributions of social network measures.  
This newly proposed framework allows analysts to 
randomly generate instances of social networks 
under investigation.  Parameters of distributions for 
social network measures can then be estimated using 
Monte Carlo simulation. 
     Consideration of the probability space of entity 
level communications is imperative for many studies 
of social networks. Many considerations for 
designing social experiments rely on conventions 
within the field. When constructing interaction 
matrices, for example, experimenters must choose 
many parameters which may change the conclusion 
of the study. The experimenters of the U.S. Military 
Academy e-mail study, for example, had to choose 
how many emails between two entities demonstrate a 
relationship to create an unweighted, directional 
network. To study the dynamics of the network, the 
experimenters further needed to determine regular 
intervals to sample, which allowed for a temporal 
analysis. By instead fitting distributions to the 
empirical data, experimenters could use statistical 
techniques to manipulate random variables and 
sidestep the selection of the potentially influential 
aforementioned parameters. 
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