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Abstract— Decision makers need capabilities to 

quickly model and effectively assess consequences of 
actions and reactions in crisis de-escalation 
environments. The creation and what-if exercising of 
such models has traditionally had onerous resource 
requirements. This research demonstrates fast and 
viable ways to build such models in operational 
environments. Through social network extraction from 
texts, network analytics to identify key actors, and then 
simulation to assess alternative interventions, advisors 
can support practicing and execution of crisis de-
escalation activities. We describe how we used this 
approach as part of a scenario-driven modeling effort. 
We demonstrate the strength of moving from data to 
models and the advantages of data-driven simulation, 
which allow for iterative refinement. We conclude with 
a discussion of the limitations of this approach and 
anticipated future work. 
 

Index Terms—Computer simulation, Social Network 
Analysis, information diffusion, text mining 

I. INTRODUCTION 
ffective crisis response requires thinking through 
the implications and interactions of complex sets 

of events, an error-prone process for humans with 
high-stakes in the deterrence domain. War games, 
and modeling and simulations (M&S) in support of 
war games, can mitigate lack of experience and 
support forward thinking by providing safe venues 
for assessing alternatives. Simulation efforts intended 
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to support forward thinking, however, often have 
long time-cycles to develop; the need for the tool is 
overtaken by events before the tool is ready. This 
paper presents a rapid meta-network (multi-mode, 
multi-link) modeling approach using concept 
extraction techniques to develop models for 
examining scenarios within a useful time-span. 

We present and discuss our process for rapidly 
developing useful meta-network and information 
diffusion models through semi-automated analyses of 
text corpora; how we applied the approach to 
deterrence and crisis de-escalation scenarios, and our 
lessons learned. We discuss how our method’s 
outcomes were triangulated using a multi-modeling 
approach and offer caveats and potential future work.  

II.  RELATED WORKS 
Conflict reduction is an often-researched area of 

human knowledge. Indeed there are entire journals 
dedicated to the study of international conflict: The 
Journal of Conflict Resolution; The Journal of 
Conflict & Security Law; Peace, Conflict, and 
Development; The International Journal of Conflict 
Management among others. Assessment of conflict 
reduction and de-escalation efforts can be as simple 
as “is there no longer a shooting war” to much more 
nuanced sets of measures of effectiveness and 
measures of performance. Use of computer-aided 
M&S has ranged from human-based experiments [1] 
to efforts to include environmental and cultural 
framing to contextualize information [2] as well as 
correlation models [3]. Richardson introduced a 
purely mathematical set of models in [4] while Ruloff 
used system dynamics to model international 
relations scenarios in [5]. Yilmaz presents a summary 
of modeling efforts of the past 30 years from game 
theory to early social phenomena models in [6].  

Building models from unstructured data also has a 
wide-ranging application history, from cell tower 
data for social network inference [7] to developing 
emergent ontologies [8].  Indeed, a grand vision of 
the “Semantic Web” was to bring structure and 
computable meaning to the World Wide Web [9, 10]. 
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Social network construction from web-based sources 
has been done from the mid-90’s to the current day 
through the use of web search tools’ APIs [11, 12]. 
We differ from these methods because the 
constructed networks are both analyzed and serve as 
inputs into M&S environments. Like [13, 14], we 
need to rapidly build M&S capable models, but we 
use socio-linguistics theory and machine-learning-
based topic modeling as introduced in [15] to provide 
a model construction mechanism. 

Belief modeling plays a key role in the effort 
though we are not using a belief-desire-intention 
(BDI) modeling paradigm [16]. Modelers have used 
beliefs to support individual goal-oriented behaviors 
[17] as well as simulating threshold-based behaviors 
[18]. Beliefs, by which we mean attitudes, 
convictions, and opinions, do not require exposure to 
or awareness of knowledge and facts for people to 
sustain them. 

Friedkin developed a belief modeling method with 
his social influence theory in [19] that brought four 
innovative concepts to social theory and modeling. 
One, he relaxed previous assumptions where 
previously agents had to either conform or deviate 
from a fixed consensus (the public choice model). 
Two, his method did not have to lead to consensus, 
and could support stable patterns of disagreement. 
Three, he provided a multi-level theory where micro-
level cognitive processes could influence and 
constrain macro-level changes. Fourth, his methods 
supported quantitative analysis of the systematic 
consequences of social structures.  

The agent-based modeling performed in this effort 
makes direct use of the Construct information 
diffusion simulation developed at CMU’s Center for 
Computational Analysis of Social and Organizational 
Systems (CASOS). Construct has its roots in 
constructuralism and combines structuralism with 
social influence theory [20, 21]. Constructuralism, in 
brief, asserts that agents’ actions, perceptions of 
selves and others, learning and forgetting knowledge 
and beliefs are all constantly influenced by the 
agents’ surrounding environment, particularly their 
surrounding social environment.  

We use Construct to demonstrate a fast method for 
building simulation models.  These models enable 
practicing crisis de-escalation and deterrence.  They 
also allow policy analysts to evaluate multiple 
counter-factual scenarios. We use Construct as a 
belief diffusion model, arguing that if policy makers 
believe they “should” go to war, then the deterrence 
calculus has failed. Construct is a validated model of 
belief and knowledge diffusion [22-24] shown to fit a 

wider range of data than reinforcement theory and 
information processing theory [25]. 

The multi-modeling component of this article is 
limited to a discussion of the simultaneous 
development and use of three different modeling 
tools, each with very different origins and theories of 
function to arrive at congruent results.  

III. THE DATA TO MODEL PROCESS 
The data to model process (D2M) we use is a 

systematic, computer-assisted, repeatable approach 
with these steps [26, 27]: 

1. Collect data 
2. Clean the text corpus 
3. Ontological cross classification 
4. Generate static data for analysis 

Collecting data is the first step. The D2M process 
focuses on the challenges associated with 
unstructured data, although other forms of data can 
contribute to later analysis. We convert large 
amounts of unstructured texts into rich multi-mode, 
multiplex and multi-level relational networks (i.e., 
meta-networks) for use in dynamic simulations. The 
second step in our process is cleaning the text corpus. 
Text data, like all language, is rife with ambiguity. 
Data cleaning removes and/or clarifies redundant or 
ambiguous references, removes noise words, 
performs pronoun resolution, and acronym 
disambiguation. Step three is ontological cross 
classification; this step classifies phrases, for 
example “President” is classified as an agent, and 
also resolves ambiguities when words have two 
meanings such as “battery”, which can be either a 
resource or an agent. Illustrative classes are Agents, 
Knowledge and Tasks [28, 29]. Typical semantics of 
the networks between them are shown in Table I. An 
analyst or planner iterates through steps two to four 
as many times as is appropriate to the demands of 
their leadership. Ideally, she would maintain up-to-
date models through periodic additions to her corpora 
with new information and sources. The data-to-model 
process creates intermediate artifacts, allowing the 
process to be run without modification on new data 
or tweaked to improve the resulting model(s). 
Improvements can be subjective in the eyes of 
subject matter experts (SMEs), objective with respect 
to leader-specified network analytics and metrics or a 
combination of the two. 
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The final step in the process, generate static data 
for analysis, identifies linkages among the nodes 
through windowing, i.e., through proximity of the 
cleaned nodes in the text.  These linkages are across 
multiple modes, creating a meta-network such as that 
seen in Fig. 1. The analyst can then use this meta-
network for point-in-time analysis as well as input to 
simulations—in our case, a diffusion simulation. An 
important difference between these networks, and 
traditional network science’s focus on agent-by-agent 
interactions, is the inclusion of the non-agent node 
classes in the networks and in the analysis [30]. 

 
Fig. 1 A sample Multi-Mode network of Agents 
(circles, multi-colored by country) and Knowledge 
(hexagons, red), sized by Eigenvector Centrality 

These four steps are not, themselves, unique. What 
is unique, from searches of related literature, is the 
use of these four steps in an operational-environment-
friendly, low barrier-to-entry and low maintenance 
cost process of text mining to build multi-mode 
social networks that become the inputs into agent 
based simulations. Fig. 2 depicts this larger process 
in an abbreviated flow chart. 

 
Fig. 2 A flowchart of this paper’s process  

IV. BELIEF FORMATION IN CONSTRUCT 
Construct is a widely validated, agent-based 

model, with a focus on information diffusion and 
belief change [22-24, 31, 32]. Agents interact with 
those with whom they are similar (e.g., homophily) 
[33] which is a proven cross-cultural phenomenon 
[34]. Agents also interact with those from whom they 
seek information they do not have (e.g., expertise 
seeking) [32, 35]. Agents exchange and learn correct 
and incorrect information (implemented as vectors of 
0/1 bits that we refer to as knowledge bits) as well as 
exchange information about ego’s and alters’ beliefs 
[21, 25].  

In Construct, agents’ beliefs may be anchored to 
knowledge—sets of knowledge bits can contribute 
positive or negative valence for a belief and each 
agents’ belief values range [-1.0, 1.0]). For this effort, 
we used knowledge-anchored beliefs only. Belief 
formation, on a per-agent per-turn basis, is a 
summative function between an agent’s prior beliefs 
mitigated by their ability to be influenced by their 
alters (extended from Friedkin in [19]) and their 
similarity to their alters magnified by their ability to 
be influenced by their alters. We will build to this 
formal equation (12) in the following paragraphs as 
Construct implemented it in [36, 37]. 

Agents in Construct also have error-prone 
perception of who-knows-what and who-believes-
what. We use the term transactive memory for this 
perception. Construct implements transactive 
memory as a three dimensional binary matrix denoted 
Knowledge Transactive Memory (KTM) with indices 
i, j, and k where agent i (the ego) perceives agent j 
(the alter) is in possession of knowledge bit k. The 
same convention applies to the Belief Transactive 
Memory (BTM) for each belief, b, in the simulation. 
The expressions are shown below. 

∀𝑖, 𝑗   ∈ 𝐴𝑔𝑒𝑛𝑡𝑠   𝐴 ,   
∀𝑘   ∈ 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒  𝐵𝑖𝑡𝑠  (𝐾), 

∀𝑏   ∈ 𝐵𝑒𝑙𝑖𝑒𝑓𝑠   𝐵 , 
 𝐾𝑇𝑀!"#  𝑎𝑛𝑑  𝐵𝑇𝑀!"#   (1) 

As alluded to above, homophily preference is 
driven by a measure of knowledge similarity (SK) 
and belief similarity (SB). As shown below in (2) and 
(3), using the expressions in (1), it is the sum of self-
perception per-bit multiplied by the perception of 
each connected agent’s per-bit knowledge or belief.  
 𝑆𝐾!" = (𝐾𝑇𝑀!!!×𝐾𝑇𝑀!"#)!  (2) 
 𝑆𝐵!! = (𝐵𝑇𝑀!!"×𝐵𝑇𝑀!"#!  (3) 

The ability of an agent (ego) to affect its connected 
neighbors (alters) is called social influence. Social 
Influence (RS) is a function of connectedness 
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TABLE I  SIMPLE META-NETWORK COMPRISED OF SIX (6) 
NETWORKS FROM THREE (3) TYPES OF NODES 

 Agents Knowledge Tasks 
Agents Social Knowledge Assignment 

Knowledge  Information Needs 

Tasks   Precedence 
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between an ego i and its n alters as well as 
Knowledge and Belief Similarities. It is shown below 
in (4) and incorporating (2) and (3). α below is an 
exogenous parameter that is the weight an agent 
places on Knowledge Similarity versus Belief 
Similarity. In this experiment, we set α to 0.50 for 
equal weighting of the two factors of Social 
Influence. 

 𝑅𝑆!" =   
!(!"!")

!"!"!
!!!

+
(!!!)!"!"

!"!"!
!!!

 (4) 

Still building to the belief calculation, we require a 
value to quantify the expertise seeking (EXP) 
discussed at the beginning of this section. It is a pair-
wise function of the knowledge not shared between 
agents and their n alters and calculated using (5) 
below.  

 𝐸𝑋𝑃!" =   
(!"#!!"×!"#!"#!,!!!

!! ! !"#!!"!
 (5) 

We’ve noted that this model uses fact-based beliefs 
so we had to provide the model a belief by fact 
weighting matrix, V, that provides valence weights 
for each belief to each fact from [-1.0,1.0]. This 
matrix allows facts to impact more than one belief as 
well as have no impact at all with a weight of zero 
(0). Intermediate outputs of Pythia—a different 
component of the multi-modeling effort that is a 
timed-influence Bayesian network tool [38-40]—
provided these weights and are shown in Fig. 2 as 
“Model & Experimental Params.” We’ll denote the 
valence weight V for belief b using fact k as shown 
below in (6). 
 𝑉!" (6) 

To account for the ability for an agent to have 
perceptions of its beliefs, as well as to generalize 
self-perception to three (3) states (strongly agree, 
strongly disagree, no opinion), we use (7) for self-
perception of belief b for later use.  

 𝐵!!"! =   

1, !!"×!"#!!"
|!|

> 0.2!

−1, !!"×!"#!!"
|!|

< 0.2!

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

We also need to calculate the expected influence of 
self-perceived knowledge for each belief (EI), or how 
strongly the agent holds fact-based-belief, b, and we 
use (8) for that purpose. 
 𝐸𝐼!!" =   

!!"×!"#!!"!
!!"!

 (8) 

We need three more values to calculate the per-
agent per-belief value per-turn. They are the 
influentialness of alters on the ego (INFji) in (9); the 
resistance to being influenced by alters (INFii) in 
(10); and the total influentialness (TotalInfji) in (11). 
The value of influentialnessj in (9) is an exogenous 
parameter set by the experimenter and represents the 

ability of alters to influence the ego—the ji notation 
in (9) and (11) is intentional and not a typographic 
error. The value of BIi in (10) is also exogenous and 
represents the propensity of an ego to be influenced 
by alters, also called belief influenceability. In this 
model, these values were kept constant and used 
successful default settings from prior validated work 
with Construct. 
 ∀𝑗   alters   connected  to  𝑖 ego : 
 𝐼𝑁𝐹!" =    𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑛𝑒𝑠𝑠!×

!"!"×!"#!"
!

 (9) 

 𝐼𝑁𝐹!! =    1 − 𝐵𝐼! ×
!"!!!!"!!"

!
 (10) 

Summing (9) for each j connected to i helps us 
generate (11). 
 ∀𝑗   alters   connected  to  𝑖 ego :   
 𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑓! =      𝐼𝑁𝐹!"!  (11) 

In compressed form, we can now represent agent 
i’s self-perception of belief b at time t in (12). 
𝐵𝑇𝑀!!"! =   𝐵𝑇𝑀!!"!!!× 1 − 𝐵𝐼!! + 𝐵𝐼!!×

!"#!"!
!"#$%&'(!!

×𝐵𝑇𝑀!"#!! +
!"#!"!

!"#$%&'(!!
×𝐵!!"!

!  (12) 

V. THE INDIA-PAKISTAN CRISIS SCENARIO 
We used this data-to-model approach, as 
operationalized in the software application AutoMap 
[28, 41], as part of a scenario-driven exercise. The 
intent of the exercise was to illustrate the value of 
two organizations coordinating to assess the impact 
of different courses of action (COAs). The 
organizations were two US Regional Combatant 
Commands (COCOM): US Pacific Command 
(USPACOM) and US Central Command 
(USCENTCOM). The scenario for this fictional 
situation used a mixture of fictional scenario events 
and real-world events from a specific time-period, 
from 2 June 2002 to 5 August 2002. It also used 
fictional and real-world interactions among agents 
along with real names for people and places. The 
interactions were generated through SME elicitation 
and use five of the seven categories from [42]: public 
appeals; communication facilitation; mediation; fact-
finding; and humanitarian aid. The scenario location 
is along the disputed territorial border regions of 
Jammu and Kashmir between India, Pakistan and 
China. The scenario begins with a fictitious raid into 
the parliament building of Srinagar, India by gunmen 
on 2 June 2002. The scenario continues to 5 August 
2002 with a number of actions by Pakistan, India, the 
United States, and select other countries of interest.  

A. Data-to-model Process Applied to the Scenario 
We used 3,000 LexisNexis®-provided text files 

that met the search criteria of the scenario’s dates and 
the terms: “India” and “Pakistan.” These newspaper 
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articles provided background and supporting cultural 
and contextual data to the scenario-provided 
information. We also scraped each nation’s national 
security apparatus’ official web sites (circa 2010) as 
well as the official web sites of USCENTCOM and 
USPACOM. By national security apparatus we mean 
the functional equivalents of the US National 
Security Council (NSC), Department of Defense 
(DoD), and Department of State (DoS). After these 
web scrapes, there were approximately 27,000 files in 
our corpus. We built the synonym and classification 
thesauri as well as the delete list from scratch: there 
was no COCOM planning staff from which we could 
borrow thesauri or delete lists. The development of 
these lists took approximately 160 man-hours, though 
subsequent improvements to Automap’s “Data to 
Model Wizard” have demonstrated significant 
speedup [26].  

Identification of specific persons relevant to a 
border-crisis scenario was an iterative process of 
identifying a term or sets of terms (e.g. “Prime 
Minister of India,” “Vajpayee”) then using web-
based searches to determine the nature of the term 
and resolve uncertainties. This allowed us to remove 
the multitude of cricket players and Bollywood stars 
within the corpus. We used social network measures 
such as degree centrality, betweenness centrality, and 
eigenvector centrality to estimate different aspects of 
a node’s criticality in our resultant networks as well 
as consultation with our multi-modeling partners. 
Table II describes the end-state of the network model.  

B. Network Analysis Applied to Scenario Models 
Following the scenario outline, we divided the data 

set into three vignettes: 1) initial crisis incident plus 
eight days; 2) mid-crisis when the COCOMs were 
using independent analysis and actions; and 3) a final 
period when the two COCOMs would, in the 
scenario, collaborate and merge their respective 
models and COAs to present to US national 
leadership. For each vignette, we used the 
Organizational Risk Analyzer (ORA) network 
analysis software [43] to calculate numerous static 

node and static network measures and to visualize the 
interconnections of strategic decision-makers 
(labeled “SNA Reports” in Fig. 2). A more 
comprehensive discussion of which network 
measures we used is available in Chapter 14 of the 
efforts final technical report [44]. ORA includes over 
157 different network measures applicable to two-
mode and multi-mode networks [45].  

Using this methodology, we discerned shifts in 
relative rankings of the top ten agents across the 
vignettes. Fig. 3 is an example graphic from the “Key 
Agent” report, which is a component of the “Key 
Entities” report, for Vignette B from the 
USCENTCOM perspective. The graphic identifies 
the agents that are most commonly in the top ten (10) 
rankings across twenty-two (22) different social 
network analytic measures relevant to agents. In this 
report, President Musharraf is in the top ten agents 
90% of the time, or twenty (20) of twenty-two (22) 
measures. The numbers after the agents’ title in the 
arrows reflect the change from Vignette A to 
Vignette B, with three (3) new agents appearing in 
Vignette B. The Secretary of State’s (SecState) 
involvement suggests that the diplomacy instrument 
of national power is increasing its level of effort.  

 
Fig. 3 The change in actor relevance indicates that 
the scenario is shifting from a diplomatic to a 
military situation. 

The appearance of PACOM and CENTCOM, 
meanwhile, is consistent with an interpretation that 
the scenario is rapidly moving from a diplomacy-
centric situation to one involving the US military. 
This finding is in accord with the tenor of the 
scenario and the impressions of our SMEs. The 
Chairman of the Joint Chiefs’ (CJCS) drop in relative 
ranking is consistent with the increasing presence of 
both COCOM commanders in direct discussions and 
interactions with the President. Their direct 
involvement with the President is consistent with the 
DoD moving from planning for action with the CJCS 
as the principal military advisor to executing action 

TABLE II  NODE COUNTS, PER COCOM, VIGNETTE A & B 
 Vignette A Vignette B 
 
Node Type 

PACOM 
Count 

CENT
COM 
Count 

PACOM 
Count 

CENT
COM 
Count 

Agents 42 47 42 47 
Knowledge 145 145 148 148 
Belief 21 21 32 32 
Other node sets not depicted here: Event, Location, Organization, 
Resource, Role, Task. USPACOM was principally focused on 
India while USCENTCOM was principally focused on Pakistan. 
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through the COCOMs. 

C. Dynamic analysis through diffusion simulations 
The Automap-extracted meta-network built by the 

D2M process described in Sections A and B above, 
became the primary input to the Construct 
simulation, as shown in Fig. 2. For this scenario, the 
primary output measure of interest was the number of 
strategic decision-makers who possessed a “pro-war” 
belief as calculated using (12). We harvested the 
strategic decision-makers and their relationships 
directly from the text-mined multi-mode data. The 
remainder of the multi-mode data, drawn primarily 
from LexisNexis®, was not pertinent to the scenario 
and questions of interest.  

We still needed some form of knowledge in the 
simulation so we implemented stylized 
representations of knowledge; these representations 
were created to reflect national identity, culture, as 
well as knowledge both for and against aggression.  
The size of these pools and their distribution to 
agents was based on the text-mined outputs of 
AutoMap. We also seeded the simulation with the 
majority of agents to have more “anti-war” 
knowledge than “pro-war”—representing the status 
quo that there are far more people disinclined to go to 
war than there are those inclined to start a war. The 
error-prone transactive memory was instantiated with 
a population-wide false-negative rate of 0.5 (that is 
an ego wrongly perceives an alter does not have a 
particular piece of knowledge).  

We implemented the scenario within Construct as 
a set of forty-one exogenous “provocations,” twenty-
nine “responses,” and twenty-four general events that 
added general facts to agents’ knowledge pools. All 
these events had a magnitude, a start-time, and an 

end-time. Within Construct, we used a special-
purpose agent for each individual provocation and 
response. The knowledge bits these agents transferred 
were bit strings exogenously tied to the beliefs of 
‘pro-war’ for provocations, and ‘anti-war’ for 
responses. We modeled the impact of these events by 
constraining the duration the special agents were 
active within the simulation—inactive agents do not 
interact with others and thus do not share knowledge 
with other agents. The creation of links to decision 
maker agents, as well as durations of activity, were 
drawn from the multi-modeling team, subject matter 
experts, and intermediate outputs of Pythia—all 
exogenous to the social network from AutoMap. The 
duration of activity of the special agents increased the 
probability that the knowledge it was communicating 
would be learned by its interaction partners, thereby 
impacting the knowledge-anchored beliefs of those 
interaction partners. The complete collection 
(~120KB) of provocations and responses, durations, 
names, and start times, as well as the complete input 
files (~400KB) for Construct are available from the 
authors on request. 

As shown in Table III, the principal question we 
explored was one of timing the interventions, with 
three relevant sub-questions, specifically: 1) how 
many strategic decision-makers will possess the pro-
war belief if the United States does not intervene (the 
“None” case); 2) given the scenario and all of its 
deterrence and de-escalation actions, how many 
Indian and Pakistani decision-makers will possess 
pro-war beliefs (the “Scenario” case); and 3) given a 
stable set of deterrence actions, how does changing 
the timing of this action set change the number of 
decision-makers with pro-war belief (the “Early”, 
“Middle”, and “Late” cases)? 

These virtual experiments showed that without US 
or others’ work to tamp down tensions, within thirty 
days more than 60% of the Pakistani and Indian 
strategic decision makers believe that war is the right 
choice. Fig. 4 also indicates that the conventional 
studied diplomatic US response set in the scenario 
document was insufficient to avoid war despite 
producing a shift toward anti-war beliefs in the minds 
of decision-makers. Early interventions produced the 
most significant impact (see also Fig. 5) – as agents 
then chose to pass along knowledge with negative 
valence towards the “pro-war” belief. 

There are a number of reasons for this outcome. 
Agents in the model suffer the same “echo chamber” 
effect as people in the real world—their interactions 
with agents like themselves reinforce their beliefs and 
existing knowledge, forming a feedback loop that 

Table III  Experimental Conditions 
Variable Possible 

Values 
Combinations 

Variables: 
Response Timing None 

Early 
Middle 

Late 
Scenario 

5 

Constants: 
Provocation Timing Scenario 1 

Social Network Automap 1 
Knowledge Network Stylized 1 
K x Belief Network Stylized 1 
TM False Negative 0 1 
TM False Positive 0.5 1 

   

Total Combinations 5 
Runs per Condition 25 
Total Runs 125 
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gains ever larger portions of the population [46]. 
Interupting that feedback loop early by exposing 
agents to additional or alternate information is 
critical. Fig. 5 was very sensitive to additional 
provocations (e.g., troop deployments, missile 
launches, riots and media coverage thereof)—
reinforcing the perception that actions will frequently 
overwhelm talks. 

 
Fig. 4 Construct forecasts that the majority of 
strategic decision makers in both India and 
Pakistan will possess the pro-war belief within 
thirty days.  Deterrence actions from the scenario 
have only minimal impacts until more than a 
month after the crisis begins. 

 
Fig. 5 Early interventions allow more time for 
comprehensive response. 

D. Model implications for policy 
These results suggest that: US and others must use 

levers of deterrence quickly; levers of deterrence may 
need repeated use to have an effect; continued 
provocations will rapidly overwhelm US instruments 
of national power; early and fast action may not, by 
itself, lead to de-escalation though it may buy time to 
bring additional resources to bear. 

E. Validation 
Since the basis of the model is a fictitious scenario, 

there is no mechanism available to do empirical or 
historical validation of this specific model. As such, 
we turn to other forms of confirming face validity, 
plausibility and usefulness of the model. Of most 
important note, the conclusions from this model were 
consistent across three diverse sets of assumptions, 
paradigms, modeling languages and tools: Construct, 
CAESAR III [47, 48] and Pythia. CAESAR III is a 
colored petri-net tool for assessing decision-making 
organizations largely omitted from this discussion. 
The congruence in outcomes, despite the distinctly 
different operating assumptions and paradigms of 
each tool, provides increased confidence in the 
plausibility of the constructed models, the techniques 
to build them, and the assessments that derived from 
the master scenario event list. The larger multi-
modeling effort would also support incorporation of 
other models that incorporate other motivations for 
interactions (e.g., social capital, exchange theory, 
balance theory). 

More important than the particular validation of 
this specific instance is the confirmation that this 
semi-automatable and repeatable approach of moving 
from large quantities of unstructured text to a well-
developed meta-network is worthwhile. The static 
analysis using social network analysis tools and 
techniques generated reasonable results in the context 
of the scenario. The approach was further shown 
effective in generating the basis for an agent-based 
simulation model that might otherwise have taken 
significantly longer to build. Together, the presented 
approach shown in Fig. 2 provides techniques for 
decision makers to assess a wide variety of COAs in 
safe and controlled environments. 

As for the scenario itself, the effort tells decision 
makers that there is little decision space within which 
they can maneuver—not a ground breaking result, 
but one based on more than intuition and the personal 
experience of individuals. This outcome was also 
accepted by the SMEs of the project sponsor when 
reviewing the effort. 

VI. DISCUSSION 
We demonstrated a rapid model development 

approach that allows integration of multiple data-
sources to produce a meta-network which forms the 
basis for the simulation. We showed the feasibility of 
how multiple organizations can take these meta-
networks and examine possible futures—during long-
range deliberate planning and execution as well as 
crisis and time-sensitive environments. Finally, we 
established the ability of diffusion simulations and 
network science to provide estimations of action-
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reaction cycles in situations that require the 
coordinated use of multiple instruments of change—
in this case the elements of national power. These 
estimations were valid in the eyes of the SMEs and 
the results were congruent with the output of models 
from very different backgrounds. 

This first iteration of this approach and its 
application to deterrence was a useful demonstration; 
however, there are challenges. Data drawn from 
LexisNexis® is not an accurate reflection of the 
information each COCOM staff could or should 
maintain. We believe that as the data improves in 
quality and topicality, the utility and explanatory 
power of such models will improve. Further, each 
COCOM’s information assets are likely to have 
distinct and important differences that we did not 
reflect – and these differences may lead to diverse but 
more useful final results. Follow-on efforts will need 
to incorporate a more sustained collection of text and 
other unstructured data. Fictional scenarios will 
require additional synthetic data. 

The diffusion simulation made some additional 
simplifying assumptions. We did not conduct SME 
elicitation and profile the strategic actor set to learn 
and program their starting inclinations towards the 
pro-war belief. The simulation is able to use such 
information, with a few minor changes. We relied 
primarily on the agent-by-agent networks due to the 
paucity of the agent-to-knowledge links in the 
collected data. We estimate that COCOM staff’s 
would have richer data sets that would support use of 
additional networks within the Automap-extracted 
meta-network and avoid or reduce the use of stylized 
knowledge sets within Construct. Another 
simplifying assumption was the deliberate exclusion 
of India’s Cold Start doctrine [49-51], their ‘no first 
use against non-nuclear states’ policy [52], as well as 
Pakistan’s published responses to the Indian doctrine. 
We did not incorporate meta-cognition reasoning into 
the simulation—agents being aware that others are 
attempting to influence them. Construct is very 
robust to trends and population/group level analysis. 
It does not predict the precise actions of individuals 
at specific times nor should decision-makers use 
Construct for per-agent analysis or predictions. 

VII. CONCLUSION 
This work demonstrates that the data-to-model 

approach enables rapid model development and 
supports model reuse, merging, and extension when a 
network analytic approach is taken. This approach 
meets the needs of decision makers to quickly model, 
simulate, and assess consequences of actions and 

reactions in crisis de-escalation environments. 
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