
Noname manuscript No.
(will be inserted by the editor)

Extracting Ordinal Temporal Trail Clusters in Networks

using Symbolic Time Series Analysis

Aparna Gullapalli · Kathleen M. Carley

the date of receipt and acceptance should be inserted later

Abstract Temporal trails generated by agents traveling to various locations at

different time epochs are becoming more prevalent in large social networks. We

propose an algorithm to intuitively cluster groups of such agent trails from net-

works. The proposed algorithm is based on modeling each trail as a probabilistic

finite state automata (PFSA). The algorithm also allows the specification of the

required degree of similarity between the trails by specifying the depth of the

PFSA. Hierarchical agglomerative clustering is used to group trails based on their

representative PFSA and the locations that they visit. The algorithm was applied

to simulated trails and real world network trails obtained from merchant marine

ships GPS locations. In both cases it was able to intuitively detect and extract the

underlying patterns in the trails and form clusters of similar trails.

Keywords Spatiotemporal networks, Network trails, Time series Analysis,

Symbolic Dynamics

1 Introduction

Modern networks are increasingly evolving into large, dynamic, multi-mode entities

due to the ease with which data can be computationally recorded and visualized

from such diverse scientific fields as economics, geography, biology, epidemiology,

organizational studies etc. In response to the richness of the available data, instead

A. Gullapalli · K.M. Carley
CASOS, Institute of Software Research, School of Computer Science, Carnegie Mellon Univer-
sity,
5000 Forbes Avenue, Pittsburgh, PA 15223, USA
Tel: +1 412 268 6016, Fax: +1 412 268 1744
E-mail: aparnag@cs.cmu.edu E-mail: kathleen.carley@cs.cmu.edu

2 Aparna Gullapalli, Kathleen M. Carley

of the traditional representation of networks as individual agents (nodes) and the

ties in between them [Wasserman and Faust, 1994], current networks consist of

multiple types of nodes with multiple classes of node attributes. An interesting

feature in many of these networks is the incorporation of network observation time

where the network structure and/or agent behavior is viewed at discrete snapshots

of time [Carley, 2004]. These spatiotemporal networks are constantly changing and

evolving with time. The analysis of the evolution of agent behavior with time at

the microscale could potentially lead towards understanding and predicting the

behavior of agents and networks at the macro scale.

One possible way to investigate the spatiotemporal nature in networks is to

track each agent’s location in space across the temporal domain thus leading to a

time-ordered sequence of locations visited by the agents. Thus a time series data

sequence can be extracted from a spatiotemporal network by relating it to a trail

in the temporal network. A trail in a network is a walk (across time) in which all

edges are distinct though some nodes may occur more than once. Thus for temporal

trails, it is a set of nodes (locations) visited by an agent sequentially across time.

In this sense, it is a time ordered sequence, i.e. a sequence of observations taken

at different times [Pena et al, 2001]. As an initial step towards understanding the

behavior of the agents across space and time, this paper provides a methodology

to extract groups of agents with comparable behavioral patterns in the temporal

domain. The goal of trail clustering is to identify and extract agents who visit

similar set of nodes in similar patterns thereby leading to similar trails. The actual

time of visitation as well as the time spent by the agent at each location is not

considered in the clustering paradigm; the order in which the locations are visited

determines cluster membership. Evaluating the group behaviors of clustered agents

in the spatial domain at each time instance based on results of trail clustering can

provide insights that would not have been available by analyzing spatial behavior

alone.

The time scale may vary for different networks (years, months, days or sec-

onds) and this information is lost when the time series data is generated but an

understanding of the changes in the spatial data over time can provide critical

insights into the structure, process and shape of the network. This paper deals

with time series data analysis within the purview of spatiotemporal networks.

An example of spatiotemporal network is found in geospatial networks where the

Global Positioning System (GPS) position information about an agent at each

time instance is included [Goodchild, 2010]. Typically the analysis of such geospa-

tial networks is restricted to analysis of the agent interactions at each observation

time snapshot [Peuquet, 2001] or with the behavior of a single agent over time.

Extracting Ordinal Temporal Trail Clusters using STSA 3

The goal of the trail clustering algorithm presented in this paper is to present

a fast, flexible and customizable tool to extract groups of trails that behave simi-

larly across both space and time. The clustering algorithm proposed in this paper

begins by modeling each trail as a probabilistic finite state automata. Clustering

is performed at two scales; at the macro level the trails are clustered based on

the PFSA into coarse clusters. These coarse clusters at the macro level are further

refined by performing agglomerative clustering on them. Several customization

parameters are available to allow the adaptation of the clustering algorithm to

the type of network data being analyzed. In this paper the results of applying

the clustering algorithm on a computer generated validation dataset and on GPS

coordinates of ship movements in the English channel are presented.

The paper is organized as follows. Section 2 gives the background and moti-

vation for the proposed approach to trail classification. Section 3 provides a brief

overview of probabilistic finite state automata (PFSA) followed by the technical

details of representing trails as PFSAs. Section 4 then presents the methodology

of clustering these PFSAs for recognizing patterns in the temporal trails. Section 5

implements the proposed algorithm on two datasets, one computer simulated and

the other obtained from the GPS coordinates of the movements of merchant marine

ships. The results of the trail clustering algorithm applied to these two datasets

are presented and analyzed. The clustering results are also evaluated against other

established clustering approaches. Section 6 concludes with a summary of the pro-

posed trail clustering algorithm and a discussion of future directions of the work

presented.

2 Background and Motivation

There is a wealth of literature related to methods for performing time-series data

clustering. Excellent overviews of the methods for clustering time series data

are provided [Liao, 2005], [Antunes and Oliveira, 2001] and [Roddick and

Spiliopoulou, 2002]. In most cases the nature and source of time series data dictates

the applicable approach towards analysis. Time series data clustering methodol-

ogy is also of interest for recognizing similar subsequences of data within the time

series. For example in social networks, sequence analysis is used to answer ques-

tions regarding similar orders in social and cultural structures [Abbott and Tsay,

2000] as well as visualization of social diffusion patterns in virtual worlds [Börner

and Penumarthy, 2003]. In several instances, the temporal trails are used to de-

rive representative networks where the temporal information dictates the network

structure. Community detection approaches are then used to find clusters in this

flattened network [Cazabet et al, 2012]. The one drawback of this approach is

4 Aparna Gullapalli, Kathleen M. Carley

that the temporal nature of the trails is no longer retained, though it may be

useful when dealing with a very large datasets such as those found from social

media such as Twitter and Facebook. Clustering of temporal trails can be done

in a supervised or unsupervised manner. An example of model based temporal

sequence classification which uses apriori supervisory knowledge is instance based

learning where each trail can be represented as a set of instances that describe all

the trails. A new trail is classified according to its relation to stored instances. This

approach to temporal sequence classification has been used for anomaly detection

[Lane and Bordley, 1999].

The approaches to clustering of time series data can be broadly divided into

three categories: data based, feature based and model based [Liao, 2005]. An

example of data based approach towards classification of temporal sequences is

found in Hirano and Tsumato [2004] where the authors analyze several different

approaches to classifying temporal sequences obtained from the medical domain.

The clustering method proposed in this paper is a model based approach since it

extracts a probabilistic finite state automata that represents the raw time series

data. Clustering is performed on the model and not on the raw data. There exist

several approaches to model generation from time series data including ARMA

models [Baragona, 2001], hidden Markov models [Li and Biswas, 1999][Wang et

al, 2002] and Bayesian models [Ramoni et al, 2002]. These algorithms deal with

time series data generated from such diverse fields as robot sensor data, ecology and

tool condition monitoring. The probabilistic finite state automata model of a trail

is constructed by visualizing each trail as a time ordered series of subsequences.

Clustering of time-series data derived from user web sessions using local sequence

alignment with dynamic programming is explored by [Poornalatha and Prakash,

2012]. An alternate approach to sequence based clustering is proposed in Assent

et al [2008] which is based on extracting all possible lengths of subsequences in

a temporal sequence for clustering purposes. Though it is possible to modify the

proposed model representation of this paper to consider all possible subsequence

lengths this may impose a level of similarity for clustering that may not be practical

for agent movements in real networks. The motivation for clustering explored in

this paper is to extract agents that exhibit similar behavior in the order of locations

that they visit. It is not necessary that they visit these locations at the same time.

Agents that are clustered together are done so because their general spatiotemporal

behavior is more similar to each other than that exhibited by agents that do not

belong to that cluster.

Extracting Ordinal Temporal Trail Clusters using STSA 5

3 Probabilistic finite state automata modeling

The trails that are extracted from spatiotemporal networks consists of a sequence

of locations visited by agents in ascending order of time. As with all networks

these locations are descriptive, hence, we require a methodology to convert this

time series sequence into a numerical feature vector that effectively quantifies the

various patterns observable therein. There have been several approaches to time

series data analysis which have been customized to the origins of the network

dataset in question.

There has been an increased interest in using symbolic dynamics and statis-

tical mechanics approaches towards time-series analysis and modeling [Shalizi et

al, 2002; Schmiedekamp et al, 2006]. The D-Markov algorithm, a method of gen-

erating PFSA’s, has been previously proposed as a simple, computationally fast

approach to model the non-linear behavior of dynamical systems. The first step

in symbolic time-series analysis is to convert a continuous time-series signal into

an equivalent discrete time-series with no significant loss in information. There

are several approaches to this conversion process including the use of the wavelet

transform [Rajagopalan and Ray, 2006] and the analytical signal space [Subbu and

Ray, 2008]. In the discrete time-space, each discrete time-series value corresponds

to a symbol, thus allowing the conversion of any time-series data (continuous or

discrete) into an equivalent symbol sequence. The symbol sequence is then con-

verted into a PFSA using the D-Markov algorithm. The D-Markov algorithm [Ray,

2004] has generally been used for detecting slowly evolving anomalies by observ-

ing the dynamical system over extremely long periods of time. This algorithm

has been adapted in the current paper to model short sequences of network trails

as PFSA’s, for classifying them based on the location visit patterns. The various

states and transitions in between these states of the modeled PFSA are dictated

by the symbol sequence that is being modeled. The current section will briefly

give an overview of the D-Markov machine and a few of its features, followed by

its application to modeling trails.

Consider the trail as a time series whose dynamic, time-dependent structure

needs to be modeled. Since the trail is equivalent to a discrete time-series, it can

be treated as a symbol sequence (without the need for conversion into a symbol

sequence) where each symbol of the series represents the node visited at that

particular time instance. For the purposes of symbolic time series analysis, in a

symbol sequence, the history of a symbol is the sequence of symbols (possibly

infinite) preceding it and similarly the future is the sequence of symbols following

the current symbol. To reduce the complexity of the analysis the process (that

generated the trail) is assumed to be Markovian of length D; that is the current

6 Aparna Gullapalli, Kathleen M. Carley

symbol is affected only by a history of length D. This implies that the current

symbol is dependent only on the D symbols immediately preceding it and not the

rest. Similarly, the future of each symbol is assumed to be of length one, i.e., the

symbol immediately following it in the sequence. This is shown below in Figure 1.

Fig. 1 Time Series with history and future of a symbol

The essential problem that needs to be solved from the modeling perspective

is that given the history (of length D) of the current symbol, the future (of length

1) of the current symbol is to be estimated, for each possible set of such histories

in the symbol sequence. With this aim in mind, probabilities are assigned to the

symbol based on their frequency of occurrence. Then, from a probabilistic point

of view, the future can be thought of as the conditional distribution of the future

of the current symbol given its history. This conditional distribution is termed

as the morph. The PFSA generation problem then is reduced to discovering a

partition of the set of histories in the input symbol stream, such that the morph of

all the histories in each partition is the same. Thus, the future of all the histories

in a partition is the same and each of these partitions is termed as a state of the

process.

To provide a computationally fast solution the D-Markov machine defines a

known apriori structure. The algorithm assumes that the symbol sequence can

be represented as a Dth-order Markov chain with an appropriate D. The fixed

invariant structure allows for easy pattern representation. A stochastic process Xt

is called Dth order Markov process if the probability of the current observation

depends only on the previous (at most) D observations, i.e., ∀i, and ∀σi ∈ Σ.

P (σi/σi−1σi−2...σi−Dσi−D−1...σ0) = P (σi/σi−1σi−2...σi−D) (1)

In other words, the process has a memory of length D and hence the system is

modeled as a Dth order Markov process. Such a process can be represented as a

PFSA whose states are defined as “blocks” of length “D” defined over the symbol

alphabet, Σ, where “D” is called the “depth”. Alternatively, the states can be

seen as histories of length “D” in the symbol string. e.g., for a trail consisting of

visits to locations α and β only, i.e. an alphabet Σ = {α, β}, and depth of two,

Extracting Ordinal Temporal Trail Clusters using STSA 7

the four states are {αα, αβ, βα, ββ}. For a given symbol sequence and depth, the

total number of states in a D-Markov machine is upper bounded by |Σ|D. The

D-Markov machine structure for depths of one, two and three for a trail consisting

of visits to locations α and β is shown in Figure 2.

Fig. 2 The structure of the D-Markov machine at different depths for an alphabet Σ = {α, β}.
The solid lines indicate transitions on symbol α and the dashed lines indicate transitions on
symbol β

The transition from one state to the next depends only on the current state

and the symbol observed. This probabilistic automaton is termed as a D-Markov

machine. The states of the D-Markov and its state transition function δ are fixed

as soon as the alphabet size |Σ| is selected and the depth of the machine is selected.

The only unknown for the probabilistic model then are the transition probabil-

ities, which are calculated from the symbol sequence using a counting measure

method. Trails which are similar in nature will have similar frequencies of node

visits which will lead to having D-Markov machines with the same structure and

similar transition probabilities.

A D-Markov machine can be represented in two ways, namely the state visit

probability vector p and the state transition matrix, Π. p is a vector of length

|Σ|D, containing the probability of occurrence of each state in the symbol sequence.

However, p does not contain the complete information about the machine, hence

8 Aparna Gullapalli, Kathleen M. Carley

two D-Markov machines may have the same p, but different Π-matrices. The Π-

matrix is a stochastic matrix that gives the probability of transition from one state

to another state in the machine. This is a non-negative square matrix with all row

sums equal to 1. The πij element describes the transition probability from state i

to state j. For a D-Markov machine with a higher depth D, there will be a large

number of zero valued entries and the Π-matrix will be sparse. An alternative way

to represent the Π-matrix is with the morph matrix Π̃. The morph matrix Π̃,

provides the conditional symbol probabilities for each state. While the Π-matrix

is a square matrix, the Π̃ matrix has a size of |Q|× |Σ|, where |Q| is the number of

states in the D-Markov machine. It follows that for a value of D = 1, both these

matrices are identical. The state transition matrix for the D-Markov machine of

depth two described in Figure 2 is:

Π =

π11 π12 0 0

0 0 π23 π24

π31 π32 0 0

0 0 π43 π44

where:

πij : Probability of transition from ith state to jth state in one hop and state 1

represents {αα}, state 2 represents {αβ}, state 3 represents {βα} and state 4 rep-

resents {ββ}

Π̃ =

π̃11 π̃12

π̃21 π̃22

π̃31 π̃32

π̃41 π̃42

where:

π̃ij : Probability of occurrence of jth symbol when in ith state, where j= {α, β}.

4 Trail clustering based on PFSA

The modeling of each trail in the spatiotemporal network as a PFSA converts the

symbolic sequence of visited locations into a numerical feature vector representing

the patterns observed in the trail. The representation of the trail as a numerical

vector will allow the usage of a clustering algorithm to classify the trails. Clustering

is the partitioning of a data set into groups of similar objects. Representing the data

by fewer clusters necessarily loses certain fine details, but achieves simplification in

Extracting Ordinal Temporal Trail Clusters using STSA 9

representation. From a machine learning perspective clusters correspond to hidden

patterns, that may not be obvious to a visual inspection.

The aim of the trail clustering algorithm is to find agents which travel similar

paths either synchronously or asynchronously. Using an approach like the k-means

algorithm which necessitates the apriori specification of the number of required

clusters is counterintuitive to this aim. This apriori specification requires some

knowledge of the underlying patterns in the trails which is not always possible.

In addition, this may also impose a nonexistent structure in the results where

trails are incorrectly classified due to the requirement that they belong to one

of the prespecified number of clusters. Hierarchical clustering approaches like ag-

glomerative clustering, where each trail is treated as a cluster and these clusters

are merged successively based on a distance metric, does not have the problem of

apriori specification of the number of clusters. Yet, the problem of choosing appro-

priate clusters from the hierarchy still remains. Depending on the cutoff parameter

chosen this results in dissimilar trails with minimal overlap in the locations visited

being grouped into a single cluster, due to a low distance measure between their

probability vectors.

Hence this paper proposes a two level approach to clustering of the trails, an

initial coarse clustering to partition the input trailset into several groups of trails

where all the trails within a group visit similar locations. This is followed by a

finer clustering of the previously coarse cluster members to further refine each of

these partitions, based on the frequency with which they visit the similar locations.

Thus, the clusters of trails are extracted organically from the trail dataset without

imposing an apriori limitation on the total number of clusters that need to be

formed.

4.1 Coarse clustering algorithm

The coarse clustering algorithm begins with the PFSA using the D-Markov ma-

chine algorithm for each of the trails in the input trailset. The length of the proba-

bility vector for the PFSA for a trail is based on the depth of the machine and the

number of distinct nodes (locations) visited by all the member trails. Thus the size

of the alphabet for all the trails is equal to the total number of unique locations

visited by all the agents. Though the overall alphabet of the parent trailset may

be quite large, a trail need not visit each of the locations specified in the alphabet.

The individual alphabet for each trail is determined only by the locations visited

by it. This distinction becomes even more crucial for machines with a higher depth,

where the number of states grow exponentially with depth.

10 Aparna Gullapalli, Kathleen M. Carley

Coarse clustering partitions the trails in the trailset based on the states they

visit. Since the end goal is to extract similar trails, trails that visit the same or

almost the same locations are more similar than those that do not visit the same

locations. Thus clustering is performed on the trails by grouping trails with the

same alphabet into the same cluster. The alphabet of an individual trail is based

on only the locations visited by that agent. For example if the parent trailset

alphabet is Σ = {α, β, δ, ϕ, λ, ω}, a trail with alphabet Σi = {α, β, λ} will not

belong to the same cluster as a trail with alphabet Σj = {α, β} or one with

alphabet Σk = {α, δ, λ}.
Each trail is represented by its state probability vector p. The Π-matrix or the

morph matrix is not used since the memory storage requirements can get quite

prohibitive, especially for a large depth value. At the end of the coarse clustering

step, the parent trailset is partitioned into several primary clusters based on the

locations visited by each trail. In addition, there also may occur some primary

clusters which have only one member trail because there are no other trails in the

whole trailset which visit all the same locations.

4.2 Approximate clustering

Very often in trail dataset analysis the interest is to look beyond extracting corre-

lated and co-located trails. That is trails that do not visit all the same locations

but do visit most of the same locations should be clustered if they visit this subset

of same locations with similar frequencies. To extract these interesting patterns

amongst the trails the coarse clustering algorithm takes as an optional input the

threshold of the similarity percentage amongst the trails. The algorithm then forms

coarse clusters by grouping trails with more than N locations in common, where

the threshold value N is determined by the user defined percentage. As with the

previous approach, these coarse clusters are then refined to determine the final

clusters of similar trails. Increasing the depth signifies that trails which have se-

quences of location visits in common greater than the threshold will get grouped

into the same coarse cluster.

4.3 Cluster refining

After the coarse clustering stage the agents have been grouped based on the lo-

cations that they have visited. These coarse clusters are further partitioned to

extract similar trails within them based on the frequencies with which they visit

these locations. It bears repeating here that for a higher depth specification for the

PFSA this translates into clustering agents based on the sequence (of length equal

Extracting Ordinal Temporal Trail Clusters using STSA 11

to the depth) of locations that they visit similarly. One of the essential problems

in clustering is the determination of the type of distance metric to use for finding

similarity amongst trails. Of the possible numerous similarity measures, Keogh

and Kasetty [2003] demonstrated that the Eucledian distance outperformed all of

them significantly. In addition to the Eucledian metric, the cluster refining was

performed using the Kullback-Leibler divergence as well as the angle norm be-

tween the probability vectors and no appreciable difference in the performance

was observed. Hence by default, the Eucledian distance between the probability

vectors p is used to determine the cluster membership.

The refining algorithm is a radius based clustering approach which begins by

constructing the matrix of distances between all the trails within a coarse cluster.

The two trails within the primary coarse cluster with the least amount of distance

in between them are merged together into a single cluster (if the distance between

them falls below a certain threshold). From these two trails, the trail which is

located more centrally in the coarse cluster (based on its average distance from

the other trails) is chosen as the “archtype” of the cluster against whom all the

other remaining trails are compared for membership. The radius of the cluster

is determined as a factor of the difference between the minimum distance and

maximum distance of the archtype trail with all the other trails in the primary

cluster. Once the radius for the cluster is determined all trails in the coarse cluster

which are compared with the archtype trail for cluster membership. If the distance

between the probability vectors of a member trail of the coarse cluster and the

archtype of a cluster is greater than the radius, then that trail forms a separate

cluster and becomes the archtype for the new cluster.

Thus at the end of the cluster refining stage, the agglomerative clustering

algorithm results in the formation of groups of trails where each of the trails visit

the same locations with similar visit probabilities. When the analysis is performed

for depth greater than one, this implies that the members in each of the refined

clusters visit the same sequence of locations (length of the sequence equals the

depth) with the similar visit probabilities.

4.4 The choice of depth

At the end of the trail clustering algorithm the output is a set of clusters. The

cluster members are trails with similar state visit probabilities (if the clustering is

performed based on the probability vector p). For a specified depth of one, each of

the trails in a cluster will have visited the same location with similar frequencies

though not necessarily in the same order. If the order in which the locations are

visited by the agent is important, then an increase in the depth is recommended.

12 Aparna Gullapalli, Kathleen M. Carley

An increase in depth will allow the grouping of trails based on the frequency of

visits to sequences of locations.

One important thing to note in the above discussion is the length of the input

trail i.e. the total number of locations visited in a trail. Since the Π-matrix and

the p are stochastic in nature, the length of the trail will determine statistical

convergence of their values. Though the algorithm will compute clusters for any

depth (< the trail length), at high values, the trails are not sufficiently long enough

to ensure that the probability values are statistically significant.

4.5 Related work

Trail clustering is performed by treating each trail as a D-order Markov chain

where D is a user specified input that allows the selection of the desired level of

granularity in the clustering results. The Bayesian clustering by dynamics [Ramoni

et al, 2002] algorithm is similar to our approach where they model each time series

data as a Markov chain, except they restrict themselves to using only first order

Markov chains. The transition probabilities observed in the Markov chain are

used to represent the time series data. Unfortunately due to the restriction of

modeling the data as a first order Markov chain any additional patterns in the

time series data that occur at a higher order are not discovered. A methodology

for discovering modeling time series as a mixed memory Markov model using

the Expectation Maximization (EM) procedure is provided in Saul and Jordan

[1999]. In contrast, the proposed algorithm is computationally simpler in the model

discovery phase while allowing one to retain the advantages of treating the data as a

higher order Markov chain. Related work by Smyth [1999] describes a methodology

to derive clusters from the Markov chains by partitioning the time series into a

predetermined clusters and treating each of them as a mixture model. The EM

algorithm is then used to compute the mixture model and to assign time series to

clusters to maximize the posterior probability. By contrast, the present algorithm

uses the dynamics of the time-series data itself to determine coarse clusters from

which agglomerative clusters are generated without the need to apriori specify the

expected number of clusters.

5 Empirical results

In this section the trail clustering algorithm is evaluated empirically by applying

it to two datasets, one computer generated and the other obtained from the GPS

data of travels of merchant marine ships to view the effectiveness of the clustering

algorithm.

Extracting Ordinal Temporal Trail Clusters using STSA 13

5.1 Computer simulated temporal trails

To test the accuracy and efficiency of the trail clustering algorithm, a dataset with

the trails following certain predefined patterns was generated. This approach will

allow us to test if the clustering algorithm can recognize and distinguish between

the different patterns.

The test dataset consists of 200 trails. All the trails are of an equal length of

35. Each of the trails in the dataset visits one of two possible locations A or B.

The probability of visiting location A and location B determines the “type” of

the trail. In the test dataset there are three distinct visit probability distributions

to which each trail can belong to. The type of each trail was generated using a

random number generator. The dataset contains

– 98 trails belonging to Type 1 where : Prob(A) = 0.5 and Prob(B) = 0.5

– 43 trails belonging to Type 2 where: Prob(A) = 0.75 and Prob(B) = 0.25

– 59 trails belonging to Type 3 where: Prob(A) = 0.25 and Prob(B) = 0.75

A random number generator was used to generate the sequence of locations

visited in the trail based on the above distributions. Since a random number

generator was used, the distribution of visit locations would be as specified only

for very long sequences. For trails that are shorter in length like the ones in the

test dataset, the trails will have some variance from the specified distribution

values. This also ensures there is sufficient heterogeneity in the dataset to test the

clustering algorithm. The temporal aspect of the trail is introduced by treating

each visit location occurring at a distinct time period. For the current experiment,

the difference between two consecutive time periods is uniform and all the trails

begin at the same time period and end at the same time period.

The Loom visualization platform Davis et al [2008] within the ORA analysis

platform Carley and Reminga [2004] is used to visually represent all the trails in

the dataset. The ORA analysis platform consists of tools and data formats that

allow the analysis and representation of all aspects of dynamic networks. Loom

uses a waterfall like diagram to visualize the changing nature of a trail over time.

Each location in the trail is shown as a vertical strip laid side by side across the

viewing area and the transitions between the various locations is displayed by a

series of arrows between them. The vertical axis encodes time from the earliest to

the latest beginning from the top.

5.1.1 Trail clustering results

The trail clustering algorithm was applied to this dataset with an initial depth of

the Markov machine as one. This is the most basic level of pattern classification

14 Aparna Gullapalli, Kathleen M. Carley

Fig. 3 Examples of the three different types of trails in the test dataset beginning with type
1 on the left, type 2 in the middle and type 3 on the right. The different visit probabilities
specified for generation can be seen in the different total number of visits to locations A and
B for each of the three trails.

that can be achieved using the algorithm. At the end of the coarse clustering stage

all of the 200 trails in the dataset were grouped together into a single cluster.

This is expected because all the trails visit the same locations at depth one. The

agglomerative clustering refining stage when applied to the coarse cluster resulted

in the division of the coarse cluster into three separate clusters, where each clusters

archtype belonged to one of the three types of trails in the trailset. Approximate

clustering was not performed on this trailset because all the trails visit the same

locations. The following table enumerates the results obtained. As seen in column

3 of Table 1, there are 98 trails of type 1 (equal probability of occurrence of A

and B) in the original trailset. The trail clustering algorithm clustered 101 trails

(column 4) into cluster 1 whose archtype trail belonged to type 1. Of these, 4 trails

originally belonging to type 1 got classified into clusters of type 2 and type 3 instead

(column 5) and 7 trails belonging to the other types got clustered into cluster 1

(column 6). The reason for this misclassification is that the actual distribution

of the visit probabilities though generated from the distribution of {0.5,0.5} were

closer to the archtypes for clusters 2 and 3 than the archtype for cluster 1. The

Extracting Ordinal Temporal Trail Clusters using STSA 15

three different trails plotted in Figure 3 are the archtypes for clusters 1, 2 and 3

respectively.

Cluster Type of cluster Original num Total num of Num of trails Num of trails
number archtype of trails members in cluster not classified misclassified

1 1 98 101 4 7

2 2 43 38 6 1

3 3 59 61 2 4

Table 1 Trail clustering results on the test dataset for a depth of 1

5.1.2 Effect of Varying the Depth

The analysis at a depth of 1 was able to classify the trailset data according the

major underlying patterns therein. But the advantage of performing the Markov

depth based analysis is that trails can be classified by increasingly stricter con-

ditions of similarity imposed on the sequences of symbols appearing the trails.

The test trailset data was analyzed using the trail clustering algorithm at differ-

ent depths increasing from two to five. For demonstrating the increasing level of

similarity in the clustered trails, Table 2 contains the results of the analysis for

the members of cluster 2 at depth 1 (row 2 in Table 1). As the depth is increased

from 1 to 2, only 33 out of the 38 trails at depth 1 are grouped together in a

single cluster. On further increasing the depth to three. 18 of the remaining 33

trails are grouped together into 4 different clusters. At a depth of level 5, which

indicates that only trails having subsequences of 5 visit locations in common, only

two clusters containing two trails each remain.

Depth Trail ids of type 1 belonging to same clusters

2 {4 5 7 16 39 40 43 52 71 80 83 84 85 89 95 98 103 113

118 119 120 121 130 134 136 140 148 161 172 184 185 191}
3 {7 113 118 121 130 134 172 184}, {85 185}, {84 98 120 136 140 148}, {89 95}
4 {110 113 184}, {89 95}
5 {113 184}, {89 95}

Table 2 Effects of Depth Variation on the test dataset

The trail ids depicted in bold in each row of Table 2 are shown in the Loom

waterfall diagram in Figure 4. As can be seen from the progression from the depth

of two to a depth of five the trails that are clustered have increasing similarity

in the frequency and sequence in which they visit the two locations. Varying the

16 Aparna Gullapalli, Kathleen M. Carley

depth at which the clustering is done allows the user to extract groups of trails

based upon the degree of similarity desired. The two trails in the cluster at a depth

of five are shown individually in Figure 5. The regions of the trails highlighted by

the ovals and square depict the same sequence of locations of length 5 or more

(though at different time epochs) visited by both trail 113 and trail 184.

Fig. 4 Loom depiction of the trails in bold in Table 2 at different depths of analysis of the
trail clustering algorithm.

5.1.3 Clustering result evaluation

The proposed clustering algorithm’s results were evaluated against the agglomera-

tive hierarchical clustering and the k-means clustering approaches. The probability

vectors of the PFSAs for each trail were used as the input observations for each of

these approaches. The trail clustering algorithm is similar to the agglomerative ap-

proach in that both of them start with assigning each trail to a single cluster. The

Extracting Ordinal Temporal Trail Clusters using STSA 17

Fig. 5 (a) The cluster at depth 5 as shown in Figure 4 (b & c) The two trails in the cluster,
numbered 113 and 184, shown individually. In addition to the long trails of visits at location
B, the similar transition between locations A and B of length 5 and more are shown in the
circled regions.

merge decisions are based on distances between clusters. Unlike the trail clustering

algorithm, agglomerative clustering forms a hierarchical cluster tree from which

clusters are determined based on an input cutoff parameter. For evaluation we used

the single, complete and Ward’s approach to computing distance between clusters.

Single linkage computes the distance between clusters as the distance between the

two closest elements in the two clusters. Complete linkage computes it as the max-

imum distance between two elements in the two clusters. Wards linkage computes

the distance as the increase in variance for the cluster being merged [Jain and

Dubes, 1988]. K-means clustering is a partitional clustering approach which aims

to partition the observations into k clusters (specified as an input parameter by the

user) in which each observation belongs to the cluster with the nearest mean. In

addition to requiring an apriori knowledge of the number of clusters that the data

needs to be partitioned into, k-means suffers from the additional drawback that

it tends to prefer clusters of approximately similar size. In the test case described

above though, we know that the data is derived from three different distributions.

18 Aparna Gullapalli, Kathleen M. Carley

It is encouraging that the proposed algorithm was able to organically partition

the data into three different clusters. But we can use this apriori knowledge of the

number of classes of the observations to specify as the number of clusters for the

k-means algorithm and as the cutoff parameter for the agglomerative clustering

trees.

– Internal measure

The internal measure method for comparing clustering results evaluates the

clusters based on the data contained within them. The best scores are as-

signed to algorithms which produce clusters with high similarity within a clus-

ter and low similarity between clusters. The Davies-Bouldin index [Davies

and Bouldin, 1979] was used for evaluating the results of each of the clustering

results and is computed as follows:

DB =
1

n

n∑
i=1

maxi 6=j

(
σi + σj

d(ci, cj)

)
where n is the number of clusters, ci is the centroid of cluster i, σi is the

average distance of all the observations in cluster i to ci and d(x, y) is the

distance between x and y. The Eucledian distance was used to evaluate the

distance between centroids. The results are shown below:

Clustering approach DB Value

Complete Linkage 0.4269

Wards Criterion 0.4669

Single Linkage 0.5930

K-means Clustering 0.4354

Trail Clustering 0.4284

Table 3 Davies-Bouldin index values for clustering results of various clustering approaches

The trail clustering approach had a lower DB value than all of the cluster-

ing approaches other than complete linkage agglomerative clustering which

marginally outperformed it. Unlike complete linkage, merge decisions for trail

clustering are based on distance to a single ”‘archtype”’ observation so it comes

at a lower computational cost compared to complete linkage clustering.

– External measure

External cluster evaluation measures can be used to evaluate clustering method-

ologies when class labels are available apriori for each observation. The clus-

tering algorithm evaluation is based on the class labels of the observations

assigned to each cluster. V-measure, an entropy-based external measure was

used to evaluate the algorithms [Rosenberg and Hirschberg, 2007]. V-measure

Extracting Ordinal Temporal Trail Clusters using STSA 19

is computed as the harmonic mean of the homogeneity and completeness of

the clusters. Homogeneity is satisfied when all clusters contain elements of the

same class and completeness is satisfied when all data points that are members

of a class are elements of the same cluster. The closer to a value of 1 that the

V-measure for a clustering result is, the more homogeneous and complete the

clustering results are. Shown below are the V-measure values for the various

clustering approaches:

Clustering approach V-measure value

Complete Linkage 1.0016

Wards Criterion 1.0013

Single Linkage 1.0026

K-means Clustering 1.0012

Trail Clustering 1.0012

Table 4 V-measure values for clustering results of various clustering approaches

The underlying classes for the observations are very distinct and are few in

number. This allows the clustering algorithms to arrive at a good partitioning

of the observed trails as shown by the relative closeness of the V-measure value

to 1. But the trail clustering and k-means algorithm have the lowest observed

V-measure value as compared to other clustering approaches. Unlike k-means

clustering, no apriori specification of the number of clusters is required by the

clustering algorithm presented in this paper.

5.2 Merchant marine ship GPS data

The other dataset analyzed using the trail clustering algorithm was obtained from

monitoring the movements of merchant marine vessels in the English channel. From

the 25th to 30th of June 2005, a sensor network queried Automated Identification

System (AIS) transponders on these vessels, recording navigational details such

as current latitude and longitude, heading, speed, reported destination, and sev-

eral forms of identifying information. In total, movements of over 1700 vessels were

recorded, with activities ranging from simple shipping lane traversals to apparently

complex itineraries with stops at multiple ports of call. The AIS transponder is

directly connected to a Global Positioning System (GPS) and other ship naviga-

tional computers, allowing it to automatically generate an accurate report of the

vessel’s current position.

20 Aparna Gullapalli, Kathleen M. Carley

Fig. 6 Geospatial GPS location of the merchant marine ships movement in the English Chan-
nel over a period of five days. The GPS locations are displayed using Google Earth

5.2.1 Preprocessing the data

In total the merchant marine dataset analyzed includes 42869 AIS reports from

1729 distinct vessels, over a large geographic range. For the purposes of the current

analysis only the latitude and longitude in each of the reports was used to deter-

mine the location of each ship at any particular time. Figure 6 shows the locations

of all the AIS reports for all the ships based on their geographical positions. In

the English Channel area, the effective sensor resolution was approximately 1100

meters, or .6 nautical miles, meaning that small differences in location cannot be

accurately distinguished. The trail clustering algorithm presented in this paper

treats each trail as time ordered sequence of locations, where each location is rep-

resented by a unique id. In contrast, the AIS transponders represent the location

as a multidimensional feature vector. The latitude and longitude values were cho-

sen to represent the location of a ship. This also necessitates the conversion of the

{latitude,longitude} tuple a single representative (unique) location id. This was

done by obtaining the corresponding Cartesian coordinate values on the surface

of the earth for each location based on the latitude and longitude values. Each

Extracting Ordinal Temporal Trail Clusters using STSA 21

location is then represented by
√
x2 + y2 where x and y are the corresponding

Cartesian coordinate value on the surface of the earth. As also stated above the

sensor resolution is around 1100 meters. To address this problem with the sensor

resolution a distance of 1600m was used to determine the location ids. That is

if two locations were within 1600m of each other they were assigned the same

location id. This resulted in 217 unique location id’s corresponding to the various

geographical positions in the input dataset.

5.2.2 Trail clustering results

Trail clustering was applied to the merchant marine dataset using a depth of 1. At

depth 1, the total alphabet size for the whole dataset is 217. Due to the diversity

of the trails in the dataset and the lack of precision in the obtained geographical

positions the approximate clustering algorithm was also used to extract similar

trails. The threshold was set to 0.75, i.e. if two trails have more than 75 percent

of locations in common they are grouped together into a coarse cluster. One of

these trails is picked as the coarse cluster archtype and all further comparisons for

similarity are made against this trail. At the end of performing clustering based

on visits to the same locations a total of 49 refined clusters containing more than

1 member trail were formed. Out of these, seven clusters had 3 member trails, the

rest had two members each. Figure 7 depicts four of the refined clusters in Loom.

The corresponding location id for each two-dimensional latitude and longitude

coordinates is represented by each of the waterfalls in the Loom diagram.

Figure 7(a) and 7 (b) shows trails which are exactly the same. In Figure 7(a)

two of them travel the same path at the same time (they are within 1600m of each

other at all times), hence only one of them is visible (the third trail is overlaid by

the light gray colored trail). The trail clustering algorithm does not differentiate

between similar events that occur at different instances of time as seen in Figure

7(a) and 7 (b). Figure 7(c) shows the results of the agglomerative clustering based

on distances between member clusters. The two trails each have different visit

probabilities to location 1. But since they visit location 181 with a significantly

higher frequency the two trails are grouped together. Similarly, in Figure 7(d) the

effects of clustering with a depth of 1 can be observed. The order in which the

topmost trail visits the three locations is different from the other two. They get

grouped together because the frequency of their visits to these three locations is

the same.

The merchant marine ships are not polled at the same locations along their

routes. Hence, even if two ships travel the same route they may not be grouped

together if all their positional querying locations are separated. In such circum-

stances approximate clustering is an useful tool. The trailset was clustered further

22 Aparna Gullapalli, Kathleen M. Carley

Fig. 7 Loom description of trails belonging to four of the 49 clusters identified by clustering
the merchant marine ship GPS data. The trails were clustered based on visiting the same
locations only

using approximate clustering and a threshold value of 0.75. This value indicates

that if two trails have more than 75% of location ids in common they get grouped

into the same coarse cluster. After all the clusters were grouped in this manner,

agglomerative clustering of these groups resulted in an additional 68 clusters con-

taining a total of 152 trails. Nine of these clusters are shown in Figure 8.

The benefits of extracting similar trails by approximate clustering can be seen

in the cluster depicted in the middle of the bottom row where the gray colored

trail is a subset of the black trail essentially following the same geographical path.

To further illustrate the approximate clustering the circular trails visualized on

the left in the top row of Figure 8 were plotted in Loom. The resulting Loom trails

are shown in Figure 9. The circled and boxed regions show regions where there is

total overlap between the two trails. This leads to their being grouped together

into the same final cluster.

Increasing the depth to two for analyzing the merchant marine ship trails re-

sulted in only 34 trails being grouped together into a total of 15 clusters. Further

Extracting Ordinal Temporal Trail Clusters using STSA 23

Fig. 8 Nine examples of trail clusters discovered by approximate clustering with a threshold
of 0.75 which were not discovered by the regular clustering algorithm. The trails are depicted
in the two dimensional latitude-longitude plane. To increase the ease of the visualization of
the trails, the axis values of the latitude and longitude in the nine graphs are different

clustering using an approximate clustering threshold of 0.75 resulted in an ad-

ditional 15 clusters containing 33 trails in total. Thus only 67 out of the initial

1729 trails were classified as part of a cluster; the rest all belonged to one member

clusters.

5.2.3 Comparison with other clustering approaches

An external criterion of cluster evaluation like the V-measure cannot be used

with the merchant marine ship dataset since apriori class labels are unavailable

to compare against the clustered trails. Unlike the simulated dataset where there

was some knowledge of the dataset that allowed the estimation of the optimal

input for the cutoff values and number of final clusters for the other algorithms,

24 Aparna Gullapalli, Kathleen M. Carley

Fig. 9 Loom depiction of the circular trails as seen in the top row of Figure 8.

such information is unavailable here. The trail clustering algorithm resulted in 117

clusters that contained more than 1 member trails. A cutoff value of 200 clusters

was used for the agglomerative hierarchical clustering tree methods. The same

value of 200 was used for the k-means algorithm as the number of final clusters.

The DB values for the various clusters are shown below:

Clustering approach DB value

Complete Linkage 0.9087

Wards Criterion 1.1999

Single Linkage 0.7357

K-means Clustering 1.2995

Trail Clustering 1.0479

Table 5 Davies-Bouldin index values for clustering results of various clustering approaches
for the Merchant Marine ship dataset

Extracting Ordinal Temporal Trail Clusters using STSA 25

Though it appears that the single linkage and complete linkage agglomerative

approaches outperform the rest of the clustering algorithms significantly a closer

inspection of the resulting clusters shows that very disparate trails are being clus-

tered together in the hierarchical tree. An example cluster for single linkage and

complete linkage are shown below in Figures 10 and 11. The advantage of the

bi-level approach to clustering is that such disparate trails will rarely get grouped

together as similar at the coarse clustering level.

Fig. 10 Example of trails clustered together
by Single Linkage agglomerative clustering

Fig. 11 Example of trails clustered together
Complete Linkage agglomerative clustering

6 Conclusions

The main goal of this paper was to provide an approach to clustering spatiotem-

poral trails in networks. A probabilistic finite state automata (PFSA) approach

based on Markov theory was proposed to model each trail. The advantage of using

PFSA modeling is that it allows the representation of each trail as a numerical

vector. The representative vectors for each of the trails were then clustered to-

gether using agglomerative clustering. The advantage of agglomerative clustering

is that it does not require the prespecification of the total number required clus-

ters. The use of Markov theory in the PFSA construction allowed the flexibility of

fine tuning the level required similarity between trails based on the needs of the

user.

The trail clustering algorithm was applied to two trail datasets, one computer

simulated and the other obtained from the actual paths taken by merchant marine

ships in the English channel. The trail clustering algorithm was able to intuitively

cluster the three different trail types in the simulated dataset. It was also reliably

26 Aparna Gullapalli, Kathleen M. Carley

able to derive sets of trails with a higher degree of commonality with increasing

depth. The usefulness of the trail clustering algorithm was demonstrated by its

ability to parse the large and dense trails in the real world merchant marine ship

data and extract meaningful clusters of similar trails and isolate trails that do not

behave like any other trail in the dataset. This is especially important in secu-

rity related applications because the global shipping network plays an important

role in smuggling and terrorist attacks. If automated techniques such as the trail

clustering algorithm can isolate trails of ships that behave contrary to the overall

expected behavior, then targeted surveillance and interventions can be performed.

The effectiveness of the approximate clustering algorithm was also demonstrated

by the ability of trail clustering to extract clusters of trails that follow the same

path but have different polled geographical GPS locations.

The PFSA modeling allows the representation of the trail with the state tran-

sition matrix in addition to the probability vector used in the current paper. The

state transition matrix for each PFSA contains information in the form of the

likelihood of visiting a particular location while in the current location. Since the

transition matrix contains more information regarding observed trail patterns it

may be worthwhile to investigate if there are improvements in the derived clusters

of trails. We did not use the state transition matrix in the current algorithm due

to the higher computational memory requirements, especially at higher values for

the depth of the PFSA. We are currently investigating different approaches to-

wards adapting the trail clustering algorithm to use the state transition matrix in

a computationally efficient manner. The one main drawback of the current algo-

rithm is its insensitivity to time differences. Though the temporal element dictates

the sequence in which the locations are visited, the amount of time between two

consecutive locations in the trail is not a factor in clustering. For example two

trails that visit similar locations with similar frequencies will be grouped together

even if these visits occur at different time scales, one in a matter of days and the

other across months. We intend to investigate methods to deal with time instance

sensitive trails in the future. One potential advantage of applying trail cluster-

ing to spatiotemporal networks is the eventual possibility of making decisions or

predictions of future behavior for trails based on the PFSA of the cluster. This

can be done by using the state probability vector or the state transition matrix

to predict the future based on the next location likelihoods of the current state

(location/sequence of locations).

Extracting Ordinal Temporal Trail Clusters using STSA 27

7 Acknowledgments

This work was supported in part by the Office of Naval Research (N00014-06-1-

0104) for adversarial assessment and (N00014-08-11186) for rapid ethnographic

assessment, the Army Research Office and ERDC-TEC (W911NF0710317). Addi-

tional support was provided by CASOS - the center for Computational Analysis of

Social and Organizational Systems at Carnegie Mellon University. The views and

conclusions contained in this document are those of the authors and should not be

interpreted as representing the official policies, either expressed or implied, of the

Office of Naval Research, the Army Research Institute, the U.S. Army Engineer

Research and Development Centers (ERDC), Topographic Engineering Center or

the U.S. government.

References

Abbott A, Tsay A (2000) Sequence analysis and optimal matching methods in

sociology: Review and prospect. Sociological Methods & Research 29(1):3 – 33.

Antunes CM, Oliveira AL (2001) Temporal data mining : an overview. KDD Work-

shop on Temporal Data Mining, pp 1 – 15.

Assent I, Krieger R, Glavic B, Seidl T (2008) Clustering multidimensional se-

quences in spatial and temporal databases, Knowl. Inf. Syst.,16(1):29 – 51.

Baragona R (2001) A simulation study on clustering time series with metaheuristic

methods. Quaderni di Statistica, 3.

Börner K, Penumarthy S (2003) Social diffusion patterns in three-dimensional

virtual worlds. Information Visualization 2(17):182–198.

Carley KM (2004) Dynamic network analysis, In: Committee on Human Factors,

National Research Council, 133 – 145.

Carley KM, Reminga J (2004) Ora: Organizational risk analyzer. Technical Re-

port CMU-ISRI-04-106, Institute for Software Research International, Carnegie

Mellon University.

Davies DL, Bouldin DW (1979) A cluster separation measure. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, PAMI-1(2): 224 – 227.

Davis G, Olson J, Carley KM (2008) OraGIS and loom: Spatial and temporal

extensions to the ORA analysis platform. Technical Report CMU-ISR-08-121,

Institute for Software Research International, Carnegie Mellon University.

Goodchild MF (2010) Twenty years of progress: Giscience in 2010. Journal of

Spatial Information Science 1, 3 – 20.

28 Aparna Gullapalli, Kathleen M. Carley

Hirano S, Tsumoto S (2004) Classiffication of temporal sequences using rough clus-

tering. Fuzzy Information, 2004. Processing NAFIPS ’04. IEEE Annual Meeting

of the, 2: 711 – 716.

Jain A, Dubes R (1988) Algorithms for Clustering Data. Prentice-Hall, Inc.

Keogh E, Kasetty S (2003) On the need for time series data mining benchmarks:

A survey and empirical demonstration. Data Mining and Knowledge Discovery,

7:349 – 371.

Lane T, Brodley CE (1999) Temporal sequence learning and data reduction for

anomaly detection. ACM Transactions on Information Systems Security, pp 295–

331.

Li C, Biswas G (1999) Temporal pattern generation using hidden markov model

based unsupervised classiffication. Advances in Intelligent Data Analysis, vol-

ume 1642 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg.

pp 245 – 256.

Liao TW (2005) Clustering of time series data – a survey. Pattern Recognition,

38(11):1857 – 1874.

Pena D, Tiao G, Tsay SR (2001) A course in Time Series Analysis, Wiley Series

in Probability and Statistics.

Peuquet DJ (2001) Making space for time: Issues in space-time data representation.

GeoInformatica 5:11–32.

Poornalatha G, Prakash SR (2012) Web sessions clustering using hybrid sequence

alignment measure (HSAM). Social Network Analysis and Mining, 1869-5450,

pp 1–12, in press.

Rajagopalan V, Ray A (2006) Symbolic time series analysis via wavelet-based

partitioning. Signal Processing, 86(11):3309-3320.

Ramoni M, Sebastiani P, Cohen P (2002) Bayesian clustering by dynamics. Ma-

chine Learning, 47:91 – 121.

Ray A (2004) Symbolic dynamic analysis of complex systems for anomaly detec-

tion. Signal Processing 84(7):1115 – 1130.

Cazabet R, Takeda H, Hamasaki M, Amblard F (2012) Using dynamic community

detection to identify trends in user-generated content. Social Network Analysis

and Mining, 2(4):361 – 371.

Roddick JF, Spiliopoulou (2002) A survey of temporal knowledge discovery

paradigms and methods. IEEE Transactions on Knowledge and Data Engineer-

ing, 14:750 – 767.

Rosenberg A, Hirschberg J (2007) V-measure: A conditional entropy-based exter-

nal cluster evaluation measure. In EMNLP-CoNLL’07, pp 410 – 420.

Saul LK, Jordan MI (1999) Mixed memory markov models: Decomposing complex

stochastic processes as mixtures of simpler ones. Machine Learning, 37:75 – 87.

Extracting Ordinal Temporal Trail Clusters using STSA 29

Schmiedekamp M, Subbu A, Phoha S (2006) The clustered causal state algorithm:

Efficient pattern discovery for lossy data-compression applications. Computing

in Science and Engineering 8(5):59 – 67.

Shalizi CR, Shalizi KL, Crutchfield JP (2002) An algorithm for pattern

discovery in time series. Technical Report 02-10-060, Santa Fe Institute,

arxiv.org/abs/cs.LG/0210025.

Smyth P (1999) Probabilistic model-based clustering of multivariate and sequential

data. In: Proceedings of Artificial Intelligence and Statistics, Morgan Kaufmann,

pp 299 – 304.

Subbu A, Ray A (2008) Space partitioning via Hilbert transform for symbolic time

series analysis. Applied Physics Letters, 92(8):084107 – 084107-3.

Wang L, Mehrabi MG, Kannatey-Asibu E (2002) Hidden markov model-based tool

wear monitoring in turning. Journal of Manufacturing Science and Engineering,

124(3):651 – 658.

Wasserman S, Faust K (1994) Social Network Analysis, Cambridge University

Press.

