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Abstract As events unfold, the underlying networks change. Most network science 
tools, however, assume analysts have a single snapshot of the data, or at most, a 
second snapshot at a different time. The underlying network representation schemes, 
assessment technologies, and visualizations do not lend themselves naturally to 
dynamic networks. Herein, we identify key criteria for network representation of 
dynamic, uncertain information and present a technology enabler that combines 
information fusion and dynamic network analysis. The value of technological 
solutions for network analytics in a dynamic environment are discussed.  

1 Introduction 

New challenges have arisen as network scientists move to apply their analytical 
techniques to military and other real-world environments. The target environments 
involve large amounts of relational data that characterize dynamic, often distributed, 
decision-making situations. These situations require time-sensitive network analyses 
to support command decision-making as real world events alter the networks and, 
sometimes, prudent courses of action. Analysts need to capture and assess the impact 
of these changes, with minimal computational overhead; they require Network 
Representation Languages (NRLs) that adequately support the continuous ingestion of 
battlefield data, kinetic and non-kinetic, into dynamic network analysis packages such 
as ORA [1]. In the following, we identify core requirements for NRLs to meet this 
need, and sketch the value of rapid network assessment.  

We believe the core requirement for continuous network analysis of battlefield data 
is an NRL that adequately handles dynamic, uncertain meta-network data. For many 
xml schemes—such as GraphML—it is possible to do all the things we are suggesting 
in terms of edges and meta-data. However, that does not mean the approach is easy or 
there is a network analysis tool that can understand that information. Our goal is to 



 

identify what changes are needed to handle real time data, extending DynetML to 
produce CoreNetML and DyNetML 2.0. We further extend our goal to re-use tools 
such as ORA, originally design for static analysis, to assist in dynamic network 
analysis. In this paper we discuss how this is accomplished through CHANS. The 
majority of well-known NRLs (e.g., CSV, edge-list, UCINET-native [2], and 
GraphML [3] are very good at representing static networks. The representation of 
uncertain observations, however, can be difficult if not impossible. Three key 
improvements are needed to handle the battlespace: Enhanced Edge Representation 
(EER), Enhanced Node Representation (ENR), and Enhanced Meta-Data 
Representation (EMR).  

In Section 2, we define criteria for network representation of distributed, dynamic, 
uncertain environments, and provide a high level score card that compares 
representation capabilities of well-known NRLs, alongside enhanced representations 
such as CoreNetML—developed by Lockheed Martin Advanced Technology 
Laboratories (LM ATL) as an extension of DyNetML 1.0 (see [4] for an initial 
description of DyNetML and http://www.casos.cs.cmu.edu/projects/dynetml/ for the 
1.0 specification). Next, in Sections 3 and 4, we illustrate how enhanced NRLs can 
enable dynamic battlefield assessment in a notional system where battlefield 
observations are input to LM ATL’s Core HumAn Network System (CHANS) 
prototype and updated DyNetML is exported to ORA for rapid analysis of network 
changes. Section 5 concludes. 

2 Criteria for Dynamic Distributed Network Analytics 

The dynamic, distributed, uncertain character of real world settings often yields 
incomplete data. For example, examination of the Tanzania embassy bombing 
indicates the data arrived piecemeal. A group of terrorists worked together to build, 
deploy and explode a bomb. Early attention to this group might have revealed some 
work related to bomb manufacturing, but only as the events unfolded would 
information start appearing on associated surveillance and transportation activities. 
Even as data became available, it may not have been reliable or complete because it 
would have depended on leads from informants, tracking via sensors, and so on.  

Data from real situations has these features: 1) one or more sources with 
characteristics such reliability and pedigree, 2) potential delays in positive 
identification of unknown nodes (entities), and 3) nodes and edges (relations) that may 
appear, disappear, or change in strength over time as new information arrives. In 
addition, the networks of concern are “meta-networks” that are multi-modal (different 
types of nodes, e.g., people, places, assets), multi-link (different types of relations), 
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and multi-level (multiple types of networks, e.g., variations in the granularity of 
representation such as individuals versus groups).  

To analyze such data, a simple solution is to divide it into time periods and then 
assess a sequence of networks, each defined at a particular level of reliability. 
However, from a computational perspective such a solution does not scale. 
Computationally, the key criteria are: 1) scalability, 2) minimization of data IO costs, 
3) facilitation of temporal analysis, and 4) facilitation of sensitivity analysis.  

Real-world data characteristics and computational criteria imply a need for 
attributed data. Three types of attribute information need to be represented: 

1) Edge Attributes: Details including strength, direction, reliability, existence, and 
change in these factors (DyNetML 1.0 with EER).  

2) Node Attributes: Details including existence, attributes about the state of the 
node such as level of education or age, and so on (DyNetML 1.0 with ENR). 

3) Meta-Data Attributes: Details about who generated the data, why, when, how, 
coding constraints, information pedigree, credibility, level of classification, etc. 
(DyNetML 1.0 with EMR).  

CoreNetML, the LM ATL enhancement of DynetML 1.0, addresses the features of 
real-world data outlined above by encoding varying and often conflicting information, 
along with temporal and geo-spatial markers; encoded confidence values based on 
source and pedigree identifiers enable de-confliction by outside data normalization 
services. CoreNetML exemplifies aspects of EER, ENR, and EMR in the 
representation of real-world data. In a similar vein, a new DyNetML 2.0 with EER, 
ENR, and EMR as standard features, and a new version of ORA using these features, 
will be released November 2008. 

Table 1 scores common NRLs, alongside enhanced NRLs, in terms of their 
capability to represent attributed data. For each feature the NRL is rated as √=yes, 
D=difficult, or U=unknown/to be determined; a blank cell means no. Additionally, √*, 
means that when there are multiple edges between the same pair of nodes, an 
equivalent way of handling classes of such edges is with attributes on the network for 
that edge class rather than on the edge itself. This form of representation is more 
compact.  

As can be seen in Table 1, the various enhancements each focus on a section of the 
feature-set of a network. A wide range of capabilities are now enabled by attribute-
enhanced representations (e.g., CoreNetML, DyNetML 2.0). In the area of network 
dynamics, these include, but are not limited to: 

1) Ingestion and assessment of real time changes. 
2) Characterization of change in groups by change in members attributes. 
3) Visualization of and detection of change in networks with minimal IO. 
4) Tighter link to simulation and forecasting tools as ability to handle evolving 

networks including node attributes such as age and beliefs are possible. 
5) Ability to reason about, locate patterns in, and track trail data over time. 



 

Table 1. Score-Card of existing network representations highlights the necessary features provided by 
CoreNetML and DyNetML 2.0 
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Scalable to Large Datasets    √ √ U U √ √ 
Nodes – Multi-mode  D  √ √ √ √ √ √ 

Meta-ontology     √ √ √ √ √ 
Node Attributes          

Name √ √  √ √ √ √ √ √ 
ID √ √  √ √ √ √ √ √ 
String    √  √  √  
Dates      √ √ √  
Data type        √  
Numerical     √ √ √ √ √ 

Edges – Multi-link  D √ √ √ √ √ √ √ 
Edge Attributes          

String    √ √* √ √ √* √* 
Numerical  √ √ √ √ √ √ √ √ 
Temporal tagging       √ √   
Temporal deltas          

Meta-network Meta-data          
Coding choices         √ 
Source    √ √   √ √ 
Source attributes         √ 
Date    √ √ √ √ √ √ 
Author    √     √ 
Other context     √ √ √ √ √ 

Multi-level  D  √ √ √ √ √ √ 
Network attributes √ √ √ √* √* √* √* √* √ 

Name √ √ √ √ √ √ √ √ √ 
ID √ √ √ √ √ √ √ √ √ 



Dynamic Networks: Rapid Assessment of Changing Scenarios 

3 Enhanced NRLs and Dynamic Battlefield Analysis 

Battlefields require timely collection and assessment of new information in the context 
of prior information. This new information may be confirmations of suppositions, 
completely new intelligence, reports on the impact of a course of action and so on. 
From a network standpoint, intelligence changes the network by altering the attributes 
of nodes or edges and the presence of nodes or edges. Attribute-enhanced NRLs 
support the tracking of such changes, and open possibilities for dynamic battlefield 
assessment systems comprised of dynamic network analysis technologies. Information 
fusion of soft, non-kinetic and potentially conflicting data has only recently been 
recognized as a core requirement for dynamic network analysis [5]. Figure 1 illustrates 
such a system using Core HumAn Network System from LM ATL, and ORA and 
Construct from CMU.  

Figure 1. Attribute-
enhanced NRLs facilitate 
network analysis of newly 
observed changes and 
prediction of expected 
changes using simulation 
tools such as Construct [6]. 

 

CHANS is designed to bring together disparate information, data sources and 
network analysis technologies to produce effective classification and forecasting 
results. It includes a central data store called the Human Network Core (HNC), where 
all human network and communication data is persisted, a Data Fusion Service 
responsible for maintaining data integrity, and Forecasting and Classification 
Interfaces that provide network analysis tools with access into the HNC.  

The HNC is central in the CHANS. It persists data represented in CoreNetML from 
various sources including, but not limited to imagery, human generated reports and 
open data sources such as blogs and news feeds. The Data Fusion Service addresses 
significant hurdles to effective network analysis of evolving battlefield situations—
data normalization—by assessing confidence in the accuracy of incoming data based 
on its source, pedigree, occurrence and receipt time, and then normalizing incoming 
data to reflect confidence based on existing data.  



 

CHANS provides interfaces that facilitate the retrieval of information stored in the 
HNC for use by Forecasting and Classification services such as ORA and Construct. 
Edge enhancement in CoreNetML, for example, facilitates faster ingest, and 
assessment due to reduced IO, for both observed and forecasted changes. 
Consequently, techniques for dynamical analysis such as network change detection—a 
statistical process control approach to detecting substantive changes in networks—can 
be applied to real and simulated data ([7] [8], respectively). Expected changes due to 
network adaptation and healing can be forecast using simulation tools such as 
Construct [6]. 

4 Scenario 

How would the process have worked if we were able to conduct dynamic network 
analytics at the time of the Tanzania bombing in 1998? To illustrate, we use a subset 
of the Tanzania bombing data collected from open sources by Connie Fournelle at 
ALPHATECH and expanded by the CMU CASOS team [9]. We can think of this 
data—represented as a meta-network describing who, what, where, how and, to a 
lesser extent, why—as intelligence that has been collected from diverse sources and 
fused together by CHANS. For brevity’s sake, we show three periods of change in 
Figure 2 using items from the ORA Key Entity Report, and in the images show only 
people though other factors are tracked. El Hage is an FBI photo; Owhali is a CNN 
photo. We focus on three key actors identified in ORA’s Key Entity Report: the 
emergent leader of the group (highest in cognitive demand), the person most likely to 
be in the know (highest in degree centrality), and the person most likely to connect 
groups (highest in boundary spanning—high betweenness, low degree centrality).  

As we start the scenario, the brigade staff has been using CHANS and ORA to 
continuously update their understanding of the evolving situation. Late 1996: trusted 
informant warns al Qaeda may attack embassies; known cell structure is in Figure 2 as 
Time 1. Analyses show Khalfan Mohamed to be in-the-know and the emergent leader; 
Abdullah Ahmed Abdullah is the boundary spanner. February 1997: Wadih el Hage 
returns to Kenya and phone monitoring picks up el Hage in discussions with terror 
cell. This is picked up and processed by CHANS. Network analyses show a shift in 
key actors, with el Hage identified as in-the-know and the emergent leader, and 
Mohammed Odeh as the boundary spanner. May 1998: image analysis reveals that 
Mohamed Owhali is connected to Bin Laden—leading to another shift in structure as 
the group nears the August bombing, with el Hage in-the-know, Khalfan Mohamed 
again as the emergent leader, and Owhali as the boundary spanner. 

At each time period, CHANS ingests new reports, fuses these reports with the 
existing network using the Data Fusion Service and produces a revised DyNetML that 
 



Dynamic Networks: Rapid Assessment of Changing Scenarios 

Figure 2. 
Change in 
Networks. 

 



 

reflects reported changes in the network. This is imported into ORA, and the results 
are immediately compared with previous data. As new observations arrive, the relative 
standing of key actors is impacted—as are the implied courses of action. Until now 
updates to social networks based on incoming information were in a time consuming, 
manual manner. Therefore, a fast impact analysis due to rapid changes in the network 
was not possible. CHANS facilitates timely and automated fusion of newly available 
data into a cohesive, up-to-date network picture for analysis by tools such as Construct 
and ORA. This scenario and the interaction between CHANS, ORA and Construct 
showcases the potential enabled by attribute-enhanced NLRs. 

5 Concluding Remarks 

CHANS facilitates continuous social and human network monitoring through the 
collection and fusion of information such as reports from observers in the battlefield 
who report on events, locations of persons of interest, suspicious containers, and other 
relevant information. While there is always some degree of uncertainty associated with 
the reports, CHANS attempts to address this by estimating information confidence 
through its Data Fusion Service. Through the Core Network System component, the 
CHANS merges incoming observables into an evolving network representation. The 
outputs of CHANS are an updated network that can be readily imported into a network 
analysis tool such as ORA for rapid analysis of substantive changes in the network, 
which can be fed back to commanders in the field on short order. CHANS provides the 
capability to rapidly ingest, assimilate, and analyze battlefield and provide feedback 
regarding important current and potential future network changes. Modifications to 
standard NRLs enable this capability by enhancements to the representation of 
dynamics and uncertainty, along with reduced computational overhead. Dynamic 
network analytics can then take advantage of observed changes in the data to engage 
in trail analysis and change detection. 
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