
Measures for ORA (Organizational Risk Analyzer)

Jeffrey Reminga
Kathleen M. Carley

Carnegie Mellon University
March 22, 2003

ORA is the organizational risk analyzer. Its purpose is to assess the level of possible organizational risk and the factors that contribute to this risk.
All measures are based on the meta-matrix and take in to account the relations among personnel, knowledge, resources and tasks. These measures
are based on work in social networks, operations research, organization theory, knowledge management, and task management. As ORA is a product
in development, additional measures will be added.

ORA runs on a PC running windows 2000 or XP operating system. The system interface is in JAVA and the measures are a combination of C and
C++.

ORA takes as input one or more matrices in the meta-matrix for an organization and then calculates the measures herein.

Acknowledgement.
This work has benefited from research and metric development by Carter Butts, Mike Ashworth, Craig Schreiber, LiChiou Chen and David
Krackhardt.

The research reported herein was supported in part by the National Science Foundation NSF IRI9633 662, NSF IGERT 9972762, the Office of Naval
Research (ONR), Office of Naval Research Grant No. N00014-97-1-0037 and 9620.1.1140071, and NASA.

Additional support was provided by CASOS - the center for Computational Analysis of Social and Organizational Systems at Carnegie Mellon
University (http://www.casos.ece.cmu.edu).

The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of the National Science Foundation, the Navy, NASA or the U.S. government.

Suggestions for additional measures should be sent to Kathleen M. Carley, kathleen.carley@cmu.edu

http://www.casos.ece.cmu.edu
mailto:kathleen.carley@cmu.edu

A network N consists of two sets of nodes, called U and V, and a set E⊂ UxV. An element e = (i,j) in E indicates there exists a relationship or tie
between nodes i∈U and j∈V. A network where U=V and therefore E⊂ VxV, is called a square network; otherwise the network is a rectangular
network. In square networks, (i,i)∉E for i∈V, that is, there are no self-loops.

An organization is a collection of networks. A measure is a function that maps one or more networks to Rn. Measures are often either scalar valued
(real or binary) or vector valued (real or binary with dimension |U| or |V|).

When defining or implementing measures, a network can be represented as (1) a graph or as (2) an adjacency matrix. To represent a square network
as a graph, let G=(V,E), where V is the network’s nodes, and E are the ties; rectangular networks will not be represented as graphs. Both square and
rectangular networks are represented as adjacency matrices. Given a network N=((U,V),E), define a matrix M of dimension |U|x|V|, and let M(i,j) =
1 iff (i,j)∈E. Then M is the adjacency matrix representation of N. Note that since a square network has no self-loops, its adjacency matrix
representation has a zero diagonal.

The adjacency matrices of an organization’s networks is called the MetaMatrix for the organization. The following adjacency matrices for the most
common networks are used throughout the measures documentation:

A = Communication Network: element (i,j) is the degree to which agent i communicates with agent j
AK = Knowledge Network: element (i,j) is the degree to which agent i knows knowledge j
AR = Capabilities Network: element (i,j) is the degree to which agent i owns resource j
AT = Assignment Network: element (i,j) is the degree to which agent i is assigned to task j
K = Information Network: element (i,j) is the degree to which knowledge i is connected to knowledge j
KR = Training Network: element (i,j) is the degree to which knowledge i is needed to use resource j
KT = Knowledge Requirement Network: element (i,j) is the degree to which knowledge i is needed to do task j
R = Resource Substitute Network: element (i,j) is the degree to which resource i can be substituted for resource j
RT = Resource Requirement Network: element (i,j) is the degree to which resource i is needed to do task j
T = Precedence Network: element (i,j) is the degree to which task i must be done before task j

The matrices A,K,R,T are square networks; the others are rectangular networks.

The following matrix notation is used:

|Matrix| = dimension of a square Matrix (i.e. if Matrix has dimension r x r, then |Matrix| = r)
Matrix(i,j) = the entry in the ith row and jth column of Matrix
Matrix(i,:) = ith row vector of Matrix
Matrix(:,j) = jth column vector of Matrix
sum(Matrix) = sum of the elements in Matrix (also, Matrix can be a row or column vector of Matrix)
Matrix’ = the transpose of Matrix
~Matrix = for binary Matrix, ~Matrix(i,j) = 1 iff Matrix(i,j) = 0.
Matrix@Matrix = element-wise multiplication of two matrices (e.g. C=A@B => C(i,j) = A(i,j)*B(i,j))

These mathematical terms and symbols are used:

card(Set) = |Set| = the cardinality of Set
sgn(x) = 1 if x >= 0, and -1 otherwise
ℜ denotes a real number
Ζ denotes an integer

These graph theoretic terms are used:

),(jid G is the length of the shortest directed path in G from node i to node j. Note that if there is a path from i to j in G, then Vjid G <≤),(1 .
Therefore, let),(jid G = |V| if there is no path in G from i to j. Also, let),(iid G = 0 for each i∈V.

The Reachability Graph for a square network N=(V,E) is defined as follows: let G=(V,E) be the graph representation for N. The Reachability
Graph for N is the graph G’=(V,E’) where E’= {(i,j)∈VxV | ∃ directed path from i to j in G}.

The Underlying Network for a network N=(V,E) is defined as follows: N’=(V,E’) where E’= {(i,j) | (i,j)∈E ∨ (j,i)∈E }. That is, an symmetric
version of N.

Measure Name Description Reference Formula

Access Index,
Knowledge Based

Boolean value which is true if an agent is
the only agent who knows a piece of
knowledge and who is known by exactly
one other agent. The one agent known
also has its KAI set to one.
Type Node Level
Input AK:binary; A:binary
Output Binary

Ashworth The Knowledge Access Index (KAI) for agent i is defined as follows:
let () ()}1:)),((1))(:,(),(|{ =∧=∧= iAsumsAKsumsiAKsS i

Then () ()()1),(| =∧∅≠∃∨∅≠= ijASjSKAI jii

Access Index, Resource
Based

Boolean value which is true if an agent is
the only agent with access to a resource
and who is known by exactly one other
agent. The one agent known also has its
RAI set to one.
Type Node Level
Input AR:binary; A:binary
Output Binary

Ashworth The Resource Access Index (RAI) for agent i is defined identically as
Knowledge Access Index, with the matrix AK replaced by AR.

Actual Workload,
Knowledge

The knowledge an agent uses to perform
the tasks to which it is assigned.
Type Node Level
Input AK:binary; KT:binary; AT:binary
Output]1,0[∈ℜ

Carley, 2002 Actual Workload for agent i is defined as follows:

(AK*KT*AT’)(i,i)/sum(KT)

Note how Potential Workload is the first matrix product.

Actual Workload,
Resource

The resources an agent uses to perform
the tasks to which it is assigned.
Type Node Level
Input AR:binary; RT:binary; AT:binary
Output]1,0[∈ℜ

Carley, 2002 Actual Resource Workload for agent i is identical to Actual Knowledge
Workload, replacing AK with AR and KT with RT.

Cut Point Vertices A node who if removed from a network N
creates one or more new weak
components is a Cut Point Vertice.
Type Node Level
Input N:square, symmetric
Output Binary

Cormen, Leiserson,
Riverest, Stein, 2001
p.558

A Cut Point Vertice is an articulation point of N, as defined in the referenced
book.

Centrality, Betweenness The Betweenness Centrality of node v in
a network N is defined as: across all node
pairs that have a shortest path containing
v, the percentage that pass through v.
This is defined for directed networks.
Type Node Level
Input N: square
Output]1,0[∈ℜ

Freeman, 1979 Let G=(V,E) be the graph representation for the network. Let n=|V|, and fix a
node v∈V.
For (u,w)∈VxV, let),(wunG be the number of geodesics in G from u to w.

If (u,w)∈E, then set),(wunG =1.
Define the following:

let)},(),(),(|),{(wvdvudwudVxVwuS GGG +=∈=

let between = ∑
∈Swu

GGG wunwvnvun
),(

),(/)),(*),((

Then Betweenness Centrality of node v = between / ((n-1)(n-2)/2).

Note: if G is not symmetric, then between is normalized by (n-1)(n-2).

Centrality, Closeness The average closeness of a node to the
other nodes in a network N. Loosely,
Closeness is the inverse of the average
distance in the network between the node
and all other nodes. This is defined for
directed networks.
Type Node Level
Input N:square
Output]1,0[∈ℜ

Freeman, 1979 Let G=(V,E) be the graph representation of the square network. Fix v∈V.

let dist = ∑
∈Vi

G ivd),(, if every node is reachable from v

Then Closeness Centrality of node v = (|V|-1)/dist. If some node is not
reachable from v then the Closeness Centrality of v is |V|.

Centrality, Degree The Degree Centrality of a node in a
square network N is its normalized out-
degree. This is defined the same for
directed networks.
Type Node Level
Input N:square
Output]1,0[∈ℜ

Wasserman and Faust,
1994 (pg 199)

Let G=(V,E) be the graph representation of a square network and fix a node x.
let deg = }),(|{ EuxVucard ∈∈ , this is the out-degree of node x.

The Degree Centrality of node x is deg / (|V|-1)

Clustering Coefficient,
1998

Measures the degree of clustering in a
network N.

Type Graph Level
Input N:symmetric(?), square
Output]1,0[∈ℜ

Watts and Strogatz,
1998

let G=(V,E) be the graph representation of a square network.
For each node i∈V define the following:

let }),(|{ ViuVuin i ∈∈=

let }),(|{ VuiVuout i ∈∈=

let },|),{(ii invuEvuinconnect ∈∈=

let },|),{(ii outvuEvuoutconnect ∈∈=

Then compute for each node i∈V its Node Clustering Coefficient incc .
There are three ways to do this: based on (1) in-degree, (2) out-degree, or (3)
freeman degree:

If 0|| =iin or 0|| =iout , then 0=incc . Otherwise, compute incc in one
of the following three ways:

 (1) let
||||
||

2
ii

i
i inin

inconnect
ncc

−
=

 (2) let
||||

||
2

ii

i
i outout

outconnect
ncc

−
=

 (3) let 







−

+
−

=
||||

||
||||
||

2
1

22
ii

i

ii

i
i outout

outconnect
inin

inconnect
ncc

Then Clustering Coefficient = ||/ Vncc
Vi

i 






∑
∈

.

Cognitive Load A complex measure taking into account
the number of other agents, resources,
and tasks an agent needs to manage and
the communication needed to engage in
such activity.

Note: Cognitive Load is defined if one or
both of the following pairs of networks
exists: {AR,RT}, {AK,KT}.

Type Node Level
Input A:binary; AT:binary; [AR:binary;
RT:binary]; [AK:binary; KT:binary]
Output]1,0[∈ℜ

Carley, 2002 The Cognitive Load for agent i is defined as follows:
let ATR = AT*RT’
let ATA = AT*AT’

let 1x = # of agents that agent i interacts with / total # of agents

 =)1/(),(−







∑

≠

AjiA
ij

let 2x = # of tasks agent i is assigned to / total # of tasks

 = sum(AT(i,:))/|T|

let 3x = sum of # agents who do the same tasks as agent i / (total # tasks *
total # agents)

 =))(1/(),(TAjiATA
ij

−







∑

≠

Note that 4x , 5x , 6x depend upon networks AR and RT; if the networks
AK and KT exist, then three analogous terms for knowledge are computed
and averaged. If only AK and KT exist, then only they are used.

let 4x = # of resources agent i manages / total # of resources

 = sum(AR(i,:))/|R|

let 5x = sum of # resources agent i needs to do all its tasks / (total # tasks *
total # resources)

 = sum(ATR(i,:))/(|T|*|R|)

let 6x = sum of negotiation needs agent i must do for each task / total
possible negotiations

 =)/()0),(0),((TRjiATRjiAR
j









>≠>∑

Then Cognitive Load for agent i = () 6/654321 xxxxxx +++++
Communicative Need Type Graph Level

Input N:square
Output]1,0[∈ℜ

Carley, 2002 Let G = (V,E) represent a square network:
Then the Communicative Need = (Reciprocal Edge Count of G) / |E|

Component Count The number of weakly connected
components in a network N.
Type Graph Level
Input N:square, symmetric
Output |]|,0[V∈Ζ

Wasserman and Faust,
1994 (pg 109)

Given a square, symmetric network represented by a graph G=(V,E), the
Component Count is the number of connected components in G. Such
components are often called “weak” because the graph G is undirected.

Congruence,
Communication

Measures to what extent agents
communicate when and only when it is
needful to complete tasks. Hence, higher
congruence occurs when agents don’t
communicate if the tasks don't require it,
and do when tasks require it.
Communication needs to be reciprocal.
Type Graph Level
Input AT:binary; AR:binary; RT:binary,
T:binary
Output]1,0[∈ℜ

Carley, 2002 Communication Congruence = 1 iff agents communicate when and only when
it is needful to complete their tasks. Agents i and j must reciprocally
communicate iff one of the following is true:

(a) if i is assigned to a task s and j is assigned to a task t and s directly
precedes task t (handoff)

(b) if i is assigned to a task s and j is also assigned to s (co-assignment)
(c) if i is assigned to a task s and j is not, and there is a resource r to which

agents assigned to s have no access but j does (negotiation to get
needed resource).

The three cases are computed as follows:
(a) let H = AT*T*AT’
(b) let C = AT*AT’
(c) let N = AT*Z*AR’, where Z(t,r) = (AT’*AR - RT’)(t,r)<0

Then let Q(i,j) = [(H+C+N) + (H+C+N)’](i,j) > 0, and note that reciprocal
communication is required - indicated by adding the transpose.

let d = card{ (i,j) | A(i,j) != Q(i,j) }, which measures the degree to which
communication differs from that which is needed to do tasks.

Finally, d /= (|A|*(|A|-1)), normalizes d to be in [0,1]

Then, Communication Congruence = 1 - d
Congruence, Knowledge Measures the similarity between what

knowledge is assigned to tasks via agents,
and what knowledge is required to do
tasks. Perfect congruence occurs when
agents have knowledge when and only
when it is needful to complete tasks.
Type Graph Level
Input AK:binary; AT:binary; KT:binary
Output]1,0[∈ℜ

Carley, 2002 Knowledge Congruence = 1 iff agents have knowledge when and only when it
is needful to complete their tasks. Thus, we compute the knowledge assigned
to tasks via agents, and compare it with the knowledge needed for tasks.

let KAT = (AK’*AT)
let d = card{ (i,j) | (KAT(i,j)>0) != (KT(i,j)>0)}
let d = d / (|K|*|T|), which normalizes d to be in [0,1]

Then Knowledge Congruence = 1 - d

Congruence, Resource Measures the similarity between what
resources are assigned to tasks via agents,
and what resources are required to do
tasks. Perfect congruence occurs when
agents have access to resources when and
only when it is needful to complete tasks.
Type Graph Level
Input AR:binary; AT:binary; RT:binary
Output]1,0[∈ℜ

Carley, 2002 Identical to Knowledge Congruence with AR replaced by AK and KT replaced
by RT.

Connectedness Given a square network N, the degree to
which N’s underlying network is
connected.
Type Graph Level
Input N:square
Output]1,0[∈ℜ

Krackhardt, 1994 Let N be a given square network. The Connectedness of N is the Density of
the Reachability Network for N.

Constraint The degree to which an agent is
constrained by its current communication
network.
Type Node Level
Input A
Output]1,0[∈ℜ

Burt, 1992 This is the Effective Size of Network measure described by Equ. 2.4 on pg. 55
of Burt, 1992. Note that the Communication Network is used for the matrix Z.

Density The actual number of network edges
versus the maximum possible edges for a
network N.
Type Graph Level
Input N
Output]1,0[∈ℜ

Wasserman and Faust,
1994 (pg 101)

Let M be the adjacency matrix for the network of dimension m x n. If the
network is square, then M is square and has a zero diagonal, and therefore
Density = sum(M)/(m*(m-1)).
For rectangular networks, Density = sum(M)/(m*n).

Diameter The maximum shortest path length
between any two nodes in a square
network G=(V,E). If there exist i,j in V
such that j is not reachable from i, then
the diameter is returned as |V|.
Type Graph Level
Input N:square
Output]1,0[∈ℜ

Wasserman and Faust,
1994 (pg 111)

The diameter of G=(V,E) is defined as:
},|),(max{ Vjijid G ∈

That is, the maximum shortest directed path between any two vertices in G. If
there exists i and j such that j is not reachable from i, then |V| is returned.

Diversity

The distribution of difference in idea
sharing.
Type Graph Level
Input AK:binary
Output

??? Let kw = sum(AK(:,k)), Kk ≤≤1

Let d = ()∑
=

−
||

1

2/1
K

k
k Aw

Then Diversity = d / |A|
Edge Count, Lateral Fixing a root node x, a lateral edge (i,j) is

one in which the distance from x to i is
the same as the distance from x to j.
Type Graph Level
Input N:square
Output]1,0[∈ℜ

Carley, 2002 Let G=(V,E) be the graph representation of a network. And fix a node x∈V to
be the root node.

Let S = {(i,j)∈E |),(),(jxdixd GG = }
Then, Lateral Edge Count = |S| / |E|

Edge Count, Pooled A pooled edge in a network N=(V,E) is
an edge (i,j)∈E such that there exists at
least one other edge (i,k) ∈E, and k ≠ j.
Type Graph Level
Input N
Output]1,0[∈ℜ

Carley, 2002 Let M be the adjacency matrix representation of the network.
Let S = { (i,j) | M(i,j)=1 ∧ sum(M(:,j))>1 }
In other words: edge (i,j) is a pooled edge iff the indegree of node j > 1.

The Pooled Edge Count = |S| / |E|

Edge Count, Reciprocal The number of edges in a network
N=(V,E) that are reciprocated; an edge
(i,j)∈E is reciprocated if (j,i)∈E.
Type Graph Level
Input N
Output]1,0[∈ℜ

 Let G=(V,E) be the graph representation of a network.
Let S = card{(i,j)∈E | i<j, (j,i)∈E }

he Reciprocal Edge Count = |S| / |E|

Edge Count, Sequential The number of edges in network N that
are neither Reciprocal Edges nor Pooled
Edges. Note that an edge can be both a
Pooled and a Reciprocal edge.
Type Graph Level
Input N
Output]1,0[∈ℜ

Carley, 2002 Let G=(V,E) be the graph representation of a network, and let X = set of
Pooled edges of G, and let Y = set of Reciprocal edges of G.

Then Sequential Edge Count = | E-X-Y| / |E|

Edge Count, Skip The number of edges in a network that
skip levels.
Type Graph Level
Input N
Output]1,0[∈ℜ

Carley, 2002 A skip edge in a network represented by G=(V,E) is an edge (i,j) ∈E such that j
is reachable from i in the graph G’=(V,E\(i,j)), that is, the graph G with edge
(i,j) removed. Skip Count is simply the number of such edges in G normalized
to be in [0,1] by dividing by |E|.

Effective Network Size The effective size of an agent’s
Communication Network based on
redundancy of ties.
Type Node Level
Input A
Output]1,0[∈ℜ

Burt, 1992 This is the Effective Size of Network measure described by Equ. 2.2 on pg. 52
of Burt, 1992. Note that the Communication Network is used for the matrix Z.

Exclusivity, Knowledge
Based

Detects agents who have singular
knowledge.
Type Node Level
Input AK:binary
Output]1,0[∈ℜ

Ashworth The Knowledge Exclusivity Index (KEI) for agent i is defined as follows:

∑ =
−

||

1
)))(:,(1exp(*),(K

j
jAKsumjiAK

Exclusivity, Resource
Based

Detects agents who have singular
resource access.
Type Node Level
Input AR:binary
Output]1,0[∈ℜ

Ashworth The Resource Exclusivity Index (REI) for agent i is defined exactly as for
Knowledge Based Exclusivity, but with the matrix AK replaced by AR.

Exclusivity, Task Based Detects agents who exclusively perform
tasks.
Type Node Level
Input AT:binary
Output]1,0[∈ℜ

Ashworth The Task Exclusivity Index (TEI) for agent i is defined exactly as for
Knowledge Based Exclusivity, but with the matrix AK replaced by AT.

Hierarchy The degree to which a square network N
exhibits a pure hierarchical structure.
Type Graph Level
Input N:square
Output]1,0[∈ℜ

Krackhardt, 1994 Let N be a given square network. The Hierarchy of N is the Reciprocity of the
Reachability Network for N.

Interdependence The percentage of edges in a network N
that are Pooled or Reciprocal.
Type Graph Level
Input N:square
Output]1,0[∈ℜ

Carley, 2002 Let G=(V,E) be the graph representation of a square network.
Let a = Pooled Edge Count and b = Reciprocal Edge Count of the network.
Then Interdependence = (a+b)/|E|

Interlocker and Radial Interlocker and radial nodes in a square
network have a high and low Triad
Count, respectively.
Type Node Level
Input N:square
Output Binary

Carley, 2002 Let N=(V,E) be a square network.
Let it = Triad Count for node i, Vi ≤≤1 .

Let u = the mean of { it }

Let d = the variance of { it }

Then if)(dut k +≥ , then agent k is an interlocker. If)(dut k −≤ then
agent k is a radial.

Load, Knowledge Average number of knowledge per agent.
Type Graph Level
Input AK:binary
Output],0[R∈ℜ

Carley, 2002 Knowledge Load = sum(AK)/ (|A|)

Load, Resource Average number of resources per agent.
Type Graph Level
Input AR:binary
Output],0[R∈ℜ

Carley, 2002 Resource Load = sum(AR)/ (|A|)

Negotiation, Knowledge The extent to which personnel need to
negotiate with each other because they
lack the knowledge to do the tasks to
which they are assigned.
Type Graph Level
Input AT:binary; AK:binary; KT:binary
Output]1,0[∈ℜ

Carley, 2002 Compute the percentage of tasks that lack at least one resource:
let Need = (AT’*AK) - KT’
let S = { i | Ti ≤≤1 , ∃ j : Need(i,j) < 0 }

Then Need for Negotiation = |S| / |T|

Negotiation, Resource The extent to which personnel need to
negotiate with each other because they
lack the resources to do the tasks to which
they are assigned.
Type Graph Level
Input AT:binary; AR:binary; RT:binary
Output]1,0[∈ℜ

Carley, 2002 Identical to Knowledge Negotiation, replacing AK with AR, and KT with RT.

Network Centralization,
Betweenness

Network centralization based on the
betweenness score for each node in a
square network. This measure is define
for symmetric and non-symmetric
networks.
Type Graph Level
Input N:square
Output]1,0[∈ℜ

Freeman, 1979 Let G=(V,E) represent the square network, and let n = |V|
let id = Betweenness Centrality of node i

let }1|max{ nidd i ≤≤=

Then Network Betweenness Cent. =)1/(
1

−







−∑

≤≤

ndd
ni

i .

Network Centralization,
Closeness

Network centralization based on the
closeness centrality of each node in a
square network. This is not defined for
unconnected or directed networks.
Type Graph Level
Input N:square, symmetric, connected
Output]1,0[∈ℜ

Freeman, 1979 Let G=(V,E) represent the square network, and let n = |V|
let id = Closeness Centrality of node i

let }1|max{ nidd i ≤≤=

Then Network Closeness Cent. =))32/()1)(2/((
1

−−−







−∑

≤≤

nnndd
ni

i .

Network Centralization,
Column Degree

A centralization based on the out degree
of column vertices in a network N.
Type Graph Level
Input N
Output]1,0[∈ℜ

NetStat Let M be the adjacency matrix representation of a rectangular network with n
rows and o columns.

let))(:,(jMsumd j= = out degree of column node j, oj ≤≤1

let }1|max{ ojdd j ≤≤=

Then Column Degree Network Centralization =)*)1/((
1

nodd
oj

j −







−∑

≤≤

.

Network Centralization,
Degree

This centralization is defined on a square
network N and is based on node out-
degree. The scaling of the measure
depends on whether the network is
symmetric.
Type Graph Level
Input N:square
Output]1,0[∈ℜ

Freeman, 1979 Let M be the adjacency matrix representation of a square network. And let
n=|M|.

let :)),((iMsumd i= = out degree of node i

let }1|max{ nidd i ≤≤=

Then Degree Network Centralization =))2)(1/((
1

−−







−∑

≤≤

nndd
ni

i .

Note: if the network is not symmetric, then the scaling factor is (n-1)2

Network Centralization,
Row Degree

A centralization based on the out degree
of row vertices in a network N.
Type Graph Level
Input N
Output]1,0[∈ℜ

NetStat Let M be the adjacency matrix representation of a rectangular network with n
rows and o columns.

let :)),((iMsumd i= = out degree of row node i

let }1|max{ nidd i ≤≤=

Then Row Degree Network Centralization =)*)1/((
1

ondd
ni

i −







−∑

≤≤

.

Note: dividing by (n-1)*o normalizes the value to be in [0,1]

Network Levels The Network Level of a square network
N is the maximum Node Level of its
nodes.
Type Graph Level
Input N:square
Output]1,0[−∈Ζ V

NetStat Let G=(V,E) be the graph representation of a square network.
Then the Levels of G = max {),(jid G | i,j∈V; j reachable from i in G }

Node Level The Node Level for a node v in a square
network N is the worst case shortest path
from v to every node v can reach.
Type Node Level
Input N:square
Output]1,0[−∈Ζ V

Carley, 2002 Let G=(V,E) be the graph representation of a square network and fix a node v.
Node Level for v = max {),(jvd G | j∈V; j reachable from v in G }

Omega, Knowledge
Based

The degree to which an organization
reuses knowledge.
Type Graph Level
Input AT:binary; KT:binary; T:binary
Output]1,0[∈ℜ

Carley, Dekker, and
Krackhardt 2000

Let TAT = TA*TA’
Let N = ((T’@TAT)*KT’)@KT’

Then Knowledge Based Omega = sum(N)/sum(KT)

Omega, Resource Based The degree to which an organization
reuses resources.
Type Graph Level
Input AT:binary; RT:binary; T:binary
Output]1,0[∈ℜ

Carley, Dekker, and
Krackhardt 2000

Identical to Knowledge Based Omega, replacing KT with RT.

Performance as
Accuracy

Measures how accurately agents can
perform their assigned tasks based on
their access to knowledge and resources.
Type Graph Level
Input AK:binary; AT:binary;
AR:binary; KT:binary; RT:binary
Output]1,0[∈ℜ

Carley, 2002 Accuracy is computed based on the binary classification problem. It is
computed in one of two ways:
(1) Knowledge based: Let b be a binary string of length |K|, let N=KT’, and let
S=AK. Fix a task t.
let answer = (∑∑

≤≤≤≤ ||1||1

),(/),(
KkKk

k ktNbktN > .5) , which is the correct

classification of b with respect to task t. Now, let let I={ i | AT(i,t)=1}.
let answer(i) = (∑∑

≤≤≤≤ ||1||1

),(),(/),(),(
Kk

k
Kk

kiSktNbkiSktN > .5), i∈I.

This is agent i’s classification of b with respect to t.
The group of agents classify b using majority voting. That is, let

group_answer = (∑
∈Ii

ianswer
I

)(
||

1
 > .5).

Then, if group_answer = answer, then the group was accurate, otherwise not.
This is repeated multiple times for each task, and across all tasks. The
percentage correct is Performance as Accuracy.

(2) Resource based: let N=RT’ and S=AR in the analysis of case (1).

If the network has the knowledge and resource graphs to perform both cases,
then Performance as Accuracy is the average of the two.

Potential Workload,
Knowledge

Maximum knowledge an agent could use
to do tasks if it were assigned to all tasks.
Type Node Level
Input AK:binary; KT:binary
Output]1,0[∈ℜ

Carley, 2002 Potential Knowledge Workload for agent i = sum((AK*KT)(i,:))/sum(KT)

Potential Workload,
Resource

Maximum resources an agent could use to
do tasks if it were assigned to all tasks.
Type Node Level
Input AR:binary; RT:binary
Output]1,0[∈ℜ

Carley, 2002 Potential Resource Workload for agent i is identical to Potential Knowledge
Workload, replacing AK with AR, and KT with RT.

Reciprocity The fraction of joined node pairs that are
reciprocally joined in a square network N.
Type Graph Level
Input N: square
Output]1,0[∈ℜ

NetStat Let G=(V,E) represent a square network.
let S = {(i,j) | (i,j)∈E ∧ (j,i)∈E}
let T = {(i,j) | (i,j)∈E ∨ (j,i)∈E}

Then the network’s Reciprocity = |S|/|T|

Redundancy, Access Average number of redundant agents per
resource. An agent is redundant if there
is already an agent that has access to the
resource.
Type Graph Level
Input AR:binary

Carley, 2002 This is the Column Redundancy of matrix AR.

Output]*)1(,0[RA −∈ℜ
Redundancy,
Assignment

Average number of redundant agents
assigned to tasks. An agent is redundant
if there is already an agent assigned to the
task.
Type Graph Level
Input AT
Output]*)1(,0[TA −∈ℜ

Carley, 2002 This is the Column Redundancy of matrix AT.

Redundancy, Column Given a network N, the mean number of
non-zero column entries in excess of one
in the network’s matrix representation.
Type Graph Level
Input N of dimension m x n
Output]*)1(,0[nm −∈ℜ

Netstat Let M be the matrix representation for a network N of dimension m x n.
let }1))(:,(,0{max −= jMsumd j , for nj ≤≤1 ; this is the number

of column entries in excess of one for column j.

Then Column Redundancy = nd
n

j
j /

1








∑

=

Redundancy, Knowledge Average number of redundant agents per
knowledge. An agent is redundant if
there is already an agent that has the
knowledge.
Type Graph Level
Input AK
Output]*)1(,0[KA −∈ℜ

Carley, 2002 This is the Column Redundancy of matrix AK.

Redundancy, Resource Average number of redundant resources
assigned to tasks. A resource is
redundant if there is already a resource
assigned to the task.
Type Graph Level
Input RT:binary
Output]*)1(,0[TR −∈ℜ

Carley, 2002 This is the Column Redundancy of matrix RT.

Redundancy, Row Given a network N, the mean number of
non-zero row entries in excess of one in
the network’s matrix representation.
Type Graph Level
Input N of dimension m x n
Output]*)1(,0[mn −∈ℜ

Netstat Let M be the matrix representation for a network N of dimension m x n.
let }1:)),((,0{max −= jMsumd i , for mi ≤≤1 ; this is the number of

column entries in excess of one for row i.

Then Row Redundancy = md
m

j
j /

1








∑

=

Relative Expertise The degree of dissimilarity between
agents based on shared knowledge. Each
agent computes to what degree the other
agents know what they do not know.
Type Node Level
Input AK:binary
Output]1,0[∈ℜ

Carley, 2002 The Relative Expertise matrix (RE) is defined as follows:
RE(i,i) = 0
RE(i,j) = (~AK*AK’) = # knowledge that j knows that i does not know

Finally, normalize RE by its row sums:
RE(i,:) /= sum(RE(i,:))

The Relative Expertise for agent i =)1/(),(
1

−
















∑
≠
=

AjiRE
A

ij
j

,

that is, the average of the non-diagonal elements of row i of RE.
Relative Similarity The degree of similarity between two

agents based on shared knowledge. Each
agent computes to what degree the other
agents know what they know.
Type Node Level
Input AK: binary
Output]1,0[∈ℜ

Carley, 2002 Let M = AK*AK’
Let w(i) = sum(M(i,:)), Ai ≤≤1
Then Relative Similarity (RS) between agents i and j is RS(i,j) = M(i,j)/w(i).

The Relative Similarity for an agent i =)1/(),(
1

−
















∑
≠
=

AjiRS
A

ij
j

,

that is, the average of the non-diagonal elements of row i of RS.
Span of Control The average number of subordinates per

supervisor in the Communication
Network.
Type Graph Level
Input A:binary
Output]1,0[−∈ℜ V

Carley, 2002 For each agent in the Communication Network who has 1 or more subordinates
(a supervisor), sum the number of subordinates, then divide by the number of
supervisors.

Speed, Average The average communication time
between any two agents who can
communicate via some path.
Type Graph Level
Input A
Output]1,0[∈ℜ

Carley, 2002 let G=(V,E) be the graph representation of the Communication Network.
let D={),(jid G | i,j∈V, i ≠ j; j reachable from i in G }

Then Average Speed = Dd
Dd

/






 ∑
∈

Speed, Minimum The worst case communication time
between any two agents.
Type Graph Level
Input A
Output]1,0[∈ℜ

Carley, 2002 Minimum Speed = 1 / (Levels for the Communication Network)

Task Completion,
Knowledge Based

The percentage of tasks that can be
completed by the agents assigned to them,
based solely on whether the agents have
the requisite knowledge to do the tasks.
Type Graph Level
Input AK:binary; AT:binary; KT:binary
Output]1,0[∈ℜ

Carley, 2002 Find the tasks that cannot be completed because the agents assigned to the
tasks lack necessary knowledge:

let Need = (AT’*AK) - KT’
let S = { i | Ti ≤≤1 , ∃ j : Need(i,j) < 0 }

Knowledge Based Task Completion is the percentage of tasks that could be
completed = (|T|-|S|) / |T|

Task Completion,
Overall

The percentage of tasks that can be
completed by the agents assigned to them,
based solely on whether the agents have
the requisite knowledge and resources to
do the tasks.
Type Graph Level
Input AR:binary; AT:binary; RT:binary;
AK:binary, KT:binary
Output]1,0[∈ℜ

Carley, 2002 This is the average of Knowledge Based Task Completion and Resource Based
Task Completion. If one of the two could not be computed, then the other is
returned.

Task Completion,
Resource Based

The percentage of tasks that can be
completed by the agents assigned to them,
based solely on whether the agents have
the requisite resources to do the tasks.
Type Graph Level
Input AR:binary; AT:binary; RT:binary
Output]1,0[∈ℜ

Carley, 2002 Find the tasks that cannot be completed because the agents assigned to the
tasks lack necessary resources. Defined identically as Knowledge Based Task
Completion, replacing matrix AK with AR and matrix KT with RT.

Transitivity The percentage of triads i,j,k in a square
network N such that if (i,j) and (j,k) are in
the network, then (i,k) is in the network.
Type Graph Level
Input N:square
Output]1,0[∈ℜ

NetStat Let M be the adjacency matrix representation of the network.
let I = {(i,j,k) ∈V3 | i,j,k distinct }
let Potential = { (i,j,k) ∈I | M(i,j) = M(j,k) }
let Empty = { (i,j,k) ∈I | M(i,j)=M(j,k)=M(i,k)=0 }
let Complete = { (i,j,k) ∈I | M(i,j)=M(j,k)=M(i,k)=1 }

Then Transitivity = (|Empty| + |Complete|)/|Potential|

Triad Count The number of Communication Network
triads that an agent is in.
Type Node Level
Input A:binary
Output)]2)(1(,0[−−∈Ζ AA

NetStat let Triad be an agent by agent matrix where
Triad(i,i) = 0
Triad(i,j) = card{ k | k != i, k != j; A(i,j) ∧ A(i,k) ∧ A(k,j) }, i ≠ j

Then the Triad count for agent i = sum(Triad(i,:))

Trust The trust value for an agent is the average
trust that exists between it and the other
agents.
Type Node Level
Input AR:binary; AK:binary;
AT:binary, A:binary
Output]1,0[∈ℜ

Carley, 2002 let Trust be a matrix of dimension |A| x |A| defined as follows:
Trust(i,i) = 0
Trust(i,j) = (# triads with both i and j) +
 AR(i,:)’ * AR(j,:) + // # resources i and j share
 AK(i,:)’ * AK(j,:) + // # knowledge i and j share
 AT(i,:)’ * AT(j,:) + // # tasks i and j share
 A(i,j) ∧ A(j,i) + // reciprocal communication tie between i and j
 |A| /),(jid P // inverse communication time between i and j

Trust is then normalized so that each entry is in [0,1].
The trust value for agent i = sum(Trust(i,:)) / |A|

Under Supply,
Knowledge

The extent to which the knowledge
needed to do tasks are unavailable in the
entire organization.
Type Graph Level
Input AK:binary; AT:binary; KT:binary
Output]1,0[∈ℜ

Carley, 2002 Compute the average number of needed knowledge per task:
let Need = (AT’*AK) - KT’
let TaskNeed(i) = card{ j | Need(i,j)<0 }, for 1<=i<=|T|

Then UnderSupply is sum(TaskNeed)/ |T|

Under Supply, Resource The extent to which the resources needed
to do tasks are unavailable in the entire
organization.
Type Graph Level
Input AR:binary; AT:binary; RT:binary
Output]1,0[∈ℜ

Carley, 2002 Under Resource Supply is identical to Under Knowledge Supply, replacing AK
with AR, and KT with RT.

Upper Boundedness The degree to which pairs of agents have
a common ancestor.
Type Graph Level
Input N:square
Output]1,0[∈ℜ

Krackhardt, 1994

∈
≠
∃
∩
≤
∨

Bibliography:

Bonacich, Phil 1987: "Power and centrality: A family of measures." American Journal of Sociology 92: 1170-1182.

Burt, Ronald. Structural Holes: The Social Structures of Competition. Cambridge, MA: Harvard University Press, 1992.

Carley, Kathleen 2002. Summary of Key Network Measures for Characterizing Organizational Architectures. Unpublished Document: CMU 2002

Cormen, Leiserson, Rivest, Stein 2001. Introduction to Algorithms, Second Edition. Cambridge, MA: MIT Press, 2001.

Carley, K, Dekker, D., Krackhardt, D (2000). “How Do Social Networks Affect Organizational Knowledge Utilitization?”

Fienberg, S.E., Meyer, M.M., and Wasserman, S.S. (1985). ``Statistical Analysis of Multiple Sociometric Relations,'' Journal of the American

Freeman, L.C. (1979). Centrality in Social Networks I: Conceptual Clarification. Social Networks, 1, 215-239.

Krackhardt, D. 1994. Graph Theoretical Dimensions of Informal Organizations. In Computational Organization Theory, edited by Carley, Kathleen

M. and M.J. Prietula. Hillsdale, NJ: Lawrence Erlbaum Associates, 1994.

Newman MEJ, Moore C, Watts DJ Mean-field solution of the small-world network model PHYS REV LETT 84 (14): 3201-3204 APR 3 2000

Newman MEJ, Watts DJ Renormalization group analysis of the small-world network model PHYS LETT A 263 (4-6): 341-346 DEC 6 1999

Newman MEJ, Watts DJ Scaling and percolation in the small-world network model PHYS REV E 60 (6): 7332-7342 Part B DEC 1999 Statistical

Association}, 80, 51-67.

Wasserman, Stanley and Katherine Faust. Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press, 1994.

Watts DJ Networks, dynamics, and the small-world phenomenon AM J SOCIOL 105 (2): 493-527 SEP 1999

Watts DJ, Strogatz SH Collective dynamics of 'small-world' networks NATURE 393 (6684): 440-442 JUN 4 1998

