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ORA is the organizational risk analyzer.  Its purpose is to assess the level of possible organizational risk and the factors that contribute to this risk.  
All measures are based on the meta-matrix and take in to account the relations among personnel, knowledge, resources and tasks.  These measures 
are based on work in social networks, operations research, organization theory, knowledge management, and task management. As ORA is a product 
in development, additional measures will be added. 
 
ORA runs on a PC running windows 2000 or XP operating system.  The system interface is in JAVA and the measures are a combination of C and 
C++. 
 
ORA takes as input one or more matrices in the meta-matrix for an organization and then calculates the measures herein. 
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A network N consists of two sets of nodes, called U and V, and a set E⊂ UxV. An element e = (i,j) in E indicates there exists a relationship or tie 
between nodes i∈U and j∈V.  A network where U=V and therefore E⊂ VxV, is called a square network; otherwise the network is a rectangular 
network.  In square networks, (i,i)∉E for i∈V, that is, there are no self-loops. 
 
An organization is a collection of networks.  A measure is a function that maps one or more networks to Rn.  Measures are often either scalar valued 
(real or binary) or vector valued (real or binary with dimension |U| or |V|). 
 
When defining or implementing measures, a network can be represented as (1) a graph or as (2) an adjacency matrix.  To represent a square network 
as a graph, let G=(V,E), where V is the network’s nodes, and E are the ties; rectangular networks will not be represented as graphs.  Both square and 
rectangular networks are represented as adjacency matrices.  Given a network N=((U,V),E), define a matrix M of dimension |U|x|V|, and let M(i,j) = 
1 iff (i,j)∈E.  Then M is the adjacency matrix representation of N.  Note that since a square network has no self-loops, its adjacency matrix 
representation has a zero diagonal. 
 
The adjacency matrices of an organization’s networks is called the MetaMatrix for the organization. The following adjacency matrices for the most 
common networks are used throughout the measures documentation: 
 

A = Communication Network: element (i,j) is the degree to which agent i communicates with agent j 
AK  = Knowledge Network: element (i,j) is the degree to which agent i knows knowledge j 
AR  = Capabilities Network: element (i,j) is the degree to which agent i owns resource j 
AT  = Assignment Network: element (i,j) is the degree to which agent i is assigned to task j 
K  = Information Network: element (i,j) is the degree to which knowledge i is connected to knowledge j 
KR = Training Network: element (i,j) is the degree to which knowledge i is needed to use resource j 
KT = Knowledge Requirement Network: element (i,j) is the degree to which knowledge i is needed to do task j 
R  = Resource Substitute Network: element (i,j) is the degree to which resource i can be substituted for resource j 
RT = Resource Requirement Network: element (i,j) is the degree to which resource i is needed to do task j 
T  = Precedence Network: element (i,j) is the degree to which task i must be done before task j 

 
The matrices A,K,R,T are square networks; the others are rectangular networks. 



The following matrix notation is used: 
 

|Matrix| = dimension of a square Matrix (i.e. if Matrix has dimension r x r, then |Matrix| = r) 
Matrix(i,j)  = the entry in the ith row and jth column of Matrix 
Matrix(i,:)  = ith row vector of  Matrix 
Matrix(:,j)  = jth column vector of Matrix 
sum(Matrix) = sum of the elements in Matrix (also, Matrix can be a row or column vector of Matrix) 
Matrix’ = the transpose of  Matrix 
~Matrix = for binary Matrix, ~Matrix(i,j) = 1 iff Matrix(i,j) = 0. 
Matrix@Matrix = element-wise multiplication of two matrices (e.g. C=A@B => C(i,j) = A(i,j)*B(i,j)) 
 

These mathematical terms and symbols are used: 
 

card(Set) = |Set| = the cardinality of Set 
sgn(x) = 1 if x >= 0, and -1 otherwise 
ℜ  denotes a real number 
Ζ  denotes an integer 
 

These graph theoretic terms are used: 
 

),( jid G is the length of the shortest directed path in G from node i to node j.  Note that if there is a path from i to j in G, then Vjid G <≤ ),(1 . 
Therefore, let ),( jid G = |V| if there is no path in G from i to j.  Also, let ),( iid G = 0 for each i∈V. 

 
The Reachability Graph for a square network N=(V,E) is defined as follows: let G=(V,E) be the graph representation for N.  The Reachability 
Graph for N is the graph G’=(V,E’) where E’= {(i,j)∈VxV | ∃ directed path from i to j in G}. 
 
The Underlying Network for a network N=(V,E) is defined as follows: N’=(V,E’) where E’= {(i,j) | (i,j)∈E ∨  (j,i)∈E }.  That is, an symmetric 
version of N.



 
Measure Name Description Reference Formula 

    
Access Index, 
Knowledge Based 

Boolean value which is true if an agent is 
the only agent who knows a piece of 
knowledge and who is known by exactly 
one other agent.  The one agent known 
also has its KAI set to one. 
Type Node Level 
Input AK:binary; A:binary 
Output Binary  

Ashworth The Knowledge Access Index (KAI) for agent i is defined as follows: 
let ( ) ( )}1:)),((1))(:,(),(|{ =∧=∧= iAsumsAKsumsiAKsS i   

Then ( ) ( )( )1),(| =∧∅≠∃∨∅≠= ijASjSKAI jii  
 

Access Index, Resource 
Based 

Boolean value which is true if an agent is 
the only agent with access to a resource 
and who is known by exactly one other 
agent.  The one agent known also has its 
RAI set to one. 
Type Node Level 
Input AR:binary; A:binary 
Output Binary  

Ashworth The Resource Access Index (RAI) for agent i is defined identically as 
Knowledge Access Index, with the matrix AK replaced by AR. 
 

Actual Workload, 
Knowledge 

The knowledge an agent uses to perform 
the tasks to which it is assigned. 
Type Node Level 
Input  AK:binary; KT:binary; AT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Actual Workload for agent i is defined as follows: 
 

(AK*KT*AT’)(i,i)/sum(KT) 
 
Note how Potential Workload is the first matrix product. 

Actual Workload, 
Resource 

The resources an agent uses to perform 
the tasks to which it is assigned. 
Type Node Level 
Input  AR:binary; RT:binary; AT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Actual Resource Workload for agent i is identical to Actual Knowledge 
Workload, replacing AK with AR and KT with RT. 

Cut Point Vertices A node who if removed from a network N 
creates one or more new weak 
components is a Cut Point Vertice. 
Type Node Level 
Input N:square, symmetric 
Output Binary 

Cormen, Leiserson, 
Riverest,  Stein, 2001 
p.558 

A Cut Point Vertice is an articulation point of N, as defined in the referenced 
book. 



Centrality, Betweenness The Betweenness Centrality of node v in 
a network N is defined as: across all node 
pairs that have a shortest path containing 
v, the percentage that pass through v.  
This is defined for directed networks. 
Type Node Level 
Input N: square 
Output ]1,0[∈ℜ  

Freeman, 1979 Let G=(V,E) be the graph representation for the network.  Let n=|V|, and fix a 
node v∈V.   
For (u,w)∈VxV, let ),( wunG be the number of geodesics in G from u to w.  

If (u,w)∈E, then set ),( wunG =1. 
Define the following: 

let )},(),(),(|),{( wvdvudwudVxVwuS GGG +=∈=  

let between = ∑
∈Swu

GGG wunwvnvun
),(

),(/)),(*),((  

Then Betweenness Centrality of node v = between / ((n-1)(n-2)/2). 
 
Note: if G is not symmetric, then between is normalized by (n-1)(n-2). 

Centrality, Closeness The average closeness of a node to the 
other nodes in a network N.  Loosely, 
Closeness is the inverse of the average 
distance in the network between the node 
and all other nodes.  This is defined for 
directed networks. 
Type Node Level 
Input N:square 
Output ]1,0[∈ℜ  

Freeman, 1979 Let G=(V,E) be the graph representation of the square network.  Fix v∈V.   
 

let dist = ∑
∈Vi

G ivd ),( , if every node is reachable from v 

Then Closeness Centrality of node v = (|V|-1)/dist.  If some node is not 
reachable from v then the Closeness Centrality of v is |V|. 

Centrality, Degree The Degree Centrality of a node in a 
square network N is its normalized out-
degree.  This is defined the same for 
directed networks. 
Type Node Level 
Input N:square 
Output ]1,0[∈ℜ  

Wasserman and Faust, 
1994 (pg 199) 

Let G=(V,E) be the graph representation of a square network and fix a node x. 
let deg = }),(|{ EuxVucard ∈∈ , this is the out-degree of node x. 

The Degree Centrality of node x is deg / (|V|-1) 



Clustering Coefficient, 
1998 

Measures the degree of clustering in a 
network N.  
 
Type Graph Level 
Input N:symmetric(?), square 
Output ]1,0[∈ℜ  

Watts and Strogatz, 
1998 

let G=(V,E) be the graph representation of a square network.  
For each node i∈V define the following: 

let }),(|{ ViuVuin i ∈∈=  

let }),(|{ VuiVuout i ∈∈=  

let },|),{( ii invuEvuinconnect ∈∈=  

let },|),{( ii outvuEvuoutconnect ∈∈=  

Then compute for each node i∈V its Node Clustering Coefficient incc . 
There are three ways to do this:  based on (1) in-degree, (2) out-degree, or (3) 
freeman degree: 
 
If 0|| =iin  or 0|| =iout , then 0=incc .  Otherwise, compute incc in one 
of the following three ways: 

 (1) let 
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Then Clustering Coefficient = ||/ Vncc
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
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Cognitive Load A complex measure taking into account 
the number of other agents, resources, 
and tasks an agent needs to manage and 
the communication needed to engage in 
such activity. 
 
Note: Cognitive Load is defined if one or 
both of the following pairs of networks 
exists: {AR,RT}, {AK,KT}.   
 
Type Node Level 
Input   A:binary; AT:binary; [AR:binary; 
RT:binary]; [AK:binary; KT:binary] 
Output ]1,0[∈ℜ  

Carley, 2002 The Cognitive Load for agent i is defined as follows: 
let ATR = AT*RT’ 
let ATA = AT*AT’ 

let 1x = # of agents that agent i interacts with / total # of agents 

         = )1/(),( −







∑

≠

AjiA
ij

 

let 2x = # of tasks agent i is assigned to / total # of tasks 

          = sum(AT(i,:))/|T| 

let 3x = sum of # agents who do the same tasks as agent i / (total # tasks * 
total # agents) 

           = ))(1/(),( TAjiATA
ij

−







∑

≠

 

Note that 4x , 5x , 6x  depend upon networks AR and RT; if the networks 
AK and KT exist, then three analogous terms for knowledge are computed 
and averaged.  If only AK and KT exist, then only they are used. 

let 4x = # of resources agent i manages / total # of resources 

          = sum(AR(i,:))/|R| 

let 5x = sum of # resources agent i needs to do all its tasks / (total # tasks * 
total # resources) 

          = sum(ATR(i,:))/(|T|*|R|) 

let 6x = sum of negotiation needs agent  i must do for each task / total 
possible negotiations 

           = )/()0),(0),(( TRjiATRjiAR
j









>≠>∑  

Then Cognitive Load for agent i = ( ) 6/654321 xxxxxx +++++  
Communicative Need Type Graph Level 

Input N:square 
Output ]1,0[∈ℜ  

Carley, 2002 Let G = (V,E) represent a square network:   
Then the Communicative Need = (Reciprocal Edge Count of G) / |E| 

Component Count The number of weakly connected 
components in a network N.  
Type Graph Level 
Input N:square, symmetric 
Output |]|,0[ V∈Ζ  

Wasserman and Faust, 
1994 (pg 109) 

Given a square, symmetric network represented by a graph G=(V,E), the 
Component Count is the number of connected components in G.  Such 
components are often called “weak” because the graph G is undirected. 



Congruence, 
Communication 

Measures to what extent agents 
communicate when and only when it is 
needful to complete tasks.  Hence, higher 
congruence occurs when agents don’t 
communicate if the tasks don't require it, 
and do when tasks require it.  
Communication needs to be reciprocal. 
Type Graph Level 
Input AT:binary; AR:binary; RT:binary, 
T:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Communication Congruence = 1 iff agents communicate when and only when 
it is needful to complete their tasks.   Agents i and j must reciprocally 
communicate iff  one of the following is true:  

(a) if i is assigned to a task s and j is assigned to a task t and s directly 
precedes task t (handoff) 

(b) if i is assigned to a task s and j is also assigned to s (co-assignment) 
(c) if i is assigned to a task s and j is not, and there is a resource r to which 

agents assigned to s have no access but j does (negotiation to get 
needed resource). 

The three cases are computed as follows: 
(a) let H = AT*T*AT’ 
(b) let C = AT*AT’ 
(c) let N = AT*Z*AR’, where Z(t,r) = (AT’*AR - RT’)(t,r)<0 
 
Then let Q(i,j) = [(H+C+N) + (H+C+N)’](i,j) > 0, and note that reciprocal 
communication is required - indicated by adding the transpose. 
 
let d = card{ (i,j) | A(i,j) != Q(i,j) }, which measures the degree to which 
communication differs from that which is needed to do tasks.   
 
Finally, d /= (|A|*(|A|-1)), normalizes d to be in [0,1] 

Then, Communication Congruence = 1 - d  
Congruence, Knowledge Measures the similarity between what 

knowledge is assigned to tasks via agents, 
and what knowledge is required to do 
tasks.  Perfect congruence occurs when 
agents have knowledge when and only 
when it is needful to complete tasks. 
Type Graph Level 
Input AK:binary; AT:binary; KT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Knowledge Congruence = 1 iff agents have knowledge when and only when it 
is needful to complete their tasks.  Thus, we compute the knowledge assigned 
to tasks via agents, and compare it with the knowledge needed for tasks.  

let KAT = (AK’*AT) 
let d = card{ (i,j) | (KAT(i,j)>0) != (KT(i,j)>0)} 
let d = d / (|K|*|T|), which normalizes d to be in [0,1] 

Then Knowledge Congruence = 1 - d 

Congruence, Resource Measures the similarity between what 
resources are assigned to tasks via agents, 
and what resources are required to do 
tasks.  Perfect congruence occurs when 
agents have access to resources when and 
only when it is needful to complete tasks. 
Type Graph Level 
Input AR:binary; AT:binary; RT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Identical to Knowledge Congruence with AR replaced by AK and KT replaced 
by RT. 



Connectedness Given a square network N, the degree to 
which N’s underlying network is 
connected. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Krackhardt, 1994 Let N be a given square network.  The Connectedness of N is the Density of 
the Reachability Network for N. 

Constraint The degree to which an agent is 
constrained by its current communication 
network. 
Type Node Level 
Input A 
Output ]1,0[∈ℜ  

Burt, 1992 This is the Effective Size of Network measure described by Equ. 2.4 on pg. 55 
of Burt, 1992.  Note that the Communication Network is used for the matrix Z. 

Density The actual number of network edges 
versus the maximum possible edges for a 
network N. 
Type Graph Level 
Input N 
Output ]1,0[∈ℜ  

Wasserman and Faust, 
1994 (pg 101) 

Let M be the adjacency matrix for the network of dimension m x n.  If the 
network is square, then M is square and has a zero diagonal, and therefore 
Density = sum(M)/(m*(m-1)). 
For rectangular networks, Density = sum(M)/(m*n). 

Diameter The maximum shortest path length 
between any two nodes in a square 
network G=(V,E).  If there exist i,j in V 
such that j is not reachable from i, then 
the diameter is returned as |V|. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Wasserman and Faust, 
1994 (pg 111) 

The diameter of G=(V,E) is defined as: 
},|),(max{ Vjijid G ∈  

That is, the maximum shortest directed path between any two vertices in G.  If 
there exists i and j such that j is not reachable from i, then |V| is returned. 

Diversity 
 

The distribution of difference in idea 
sharing. 
Type Graph Level 
Input AK:binary 
Output  

??? Let kw = sum(AK(:,k)), Kk ≤≤1  

Let d = ( )∑
=

−
||

1

2/1
K

k
k Aw  

Then Diversity = d / |A| 
Edge Count, Lateral Fixing a root node x, a lateral edge (i,j) is 

one in which the distance from x to i is 
the same as the distance from x to j. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Carley, 2002 Let G=(V,E) be the graph representation of a network.  And fix a node x∈V to 
be the root node. 

Let S = {(i,j)∈E | ),(),( jxdixd GG = } 
Then, Lateral Edge Count = |S| / |E| 

Edge Count, Pooled A pooled edge in a network N=(V,E) is 
an edge (i,j)∈E such that there exists at 
least one other edge (i,k) ∈E, and k ≠ j. 
Type Graph Level 
Input N 
Output ]1,0[∈ℜ  

Carley, 2002 Let M be the adjacency matrix representation of the network. 
Let S = { (i,j) | M(i,j)=1 ∧ sum(M(:,j))>1 } 
In other words: edge (i,j) is a pooled edge iff the indegree of node j > 1. 

 
The Pooled Edge Count = |S| / |E| 



Edge Count, Reciprocal The number of edges in a network 
N=(V,E) that are reciprocated; an edge 
(i,j)∈E is reciprocated if (j,i)∈E. 
Type Graph Level 
Input N 
Output ]1,0[∈ℜ  

 Let G=(V,E) be the graph representation of a network. 
Let S = card{(i,j)∈E | i<j, (j,i)∈E } 

 
he Reciprocal Edge Count = |S| / |E| 

Edge Count, Sequential The number of edges in network N that 
are neither Reciprocal Edges nor Pooled 
Edges.  Note that an edge can be both a 
Pooled and a Reciprocal edge. 
Type Graph Level 
Input N 
Output ]1,0[∈ℜ  

Carley, 2002 Let G=(V,E) be the graph representation of a network, and let X = set of 
Pooled edges of G, and let Y = set of Reciprocal edges of G. 
 
Then Sequential Edge Count = | E-X-Y| / |E| 

Edge Count, Skip The number of edges in a network that 
skip levels. 
Type Graph Level 
Input N 
Output ]1,0[∈ℜ  

Carley, 2002 A skip edge in a network represented by G=(V,E) is an edge (i,j) ∈E such that j 
is reachable from i in the graph G’=(V,E\(i,j)), that is, the graph G with edge 
(i,j) removed.  Skip Count is simply the number of such edges in G normalized 
to be in [0,1] by dividing by |E|. 

Effective Network Size The effective size of an agent’s 
Communication Network based on 
redundancy of ties. 
Type Node Level 
Input A 
Output ]1,0[∈ℜ  

Burt, 1992 This is the Effective Size of Network measure described by Equ. 2.2 on pg. 52 
of Burt, 1992.  Note that the Communication Network is used for the matrix Z. 

Exclusivity, Knowledge 
Based 

Detects agents who have singular 
knowledge. 
Type Node Level 
Input AK:binary 
Output ]1,0[∈ℜ  

Ashworth The Knowledge Exclusivity Index (KEI) for agent i is defined as follows: 

∑ =
−

||

1
)))(:,(1exp(*),(K

j
jAKsumjiAK  

Exclusivity, Resource 
Based 

Detects agents who have singular 
resource access. 
Type Node Level 
Input AR:binary 
Output ]1,0[∈ℜ  

Ashworth The Resource Exclusivity Index (REI) for agent i is defined exactly as for 
Knowledge Based Exclusivity, but with the matrix AK replaced by AR. 

Exclusivity, Task Based Detects agents who exclusively perform 
tasks. 
Type Node Level 
Input AT:binary 
Output ]1,0[∈ℜ  

Ashworth The Task Exclusivity Index (TEI) for agent i is defined exactly as for 
Knowledge Based Exclusivity, but with the matrix AK replaced by AT. 



Hierarchy The degree to which a square network N 
exhibits a pure hierarchical structure. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Krackhardt, 1994 Let N be a given square network.  The Hierarchy of N is the Reciprocity of the 
Reachability Network for N. 

Interdependence The percentage of edges in a network N 
that are Pooled or Reciprocal. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Carley, 2002 Let G=(V,E) be the graph representation of a square network. 
Let a = Pooled Edge Count and b = Reciprocal Edge Count of the network. 
Then Interdependence = (a+b)/|E| 

Interlocker and Radial Interlocker and radial nodes in a square 
network have a high and low Triad 
Count, respectively. 
Type Node Level 
Input N:square 
Output Binary 

Carley, 2002 Let N=(V,E) be a square network. 
Let it = Triad Count for node i, Vi ≤≤1 . 

Let u = the mean of { it } 

Let d = the variance of { it } 

Then if )( dut k +≥ , then agent k is an interlocker. If )( dut k −≤ then 
agent k is a radial. 

Load, Knowledge Average number of knowledge per agent. 
Type Graph Level 
Input AK:binary 
Output ],0[ R∈ℜ  

Carley, 2002 Knowledge Load = sum(AK)/ (|A|) 

Load, Resource Average number of resources per agent. 
Type Graph Level 
Input AR:binary 
Output ],0[ R∈ℜ  

Carley, 2002 Resource Load = sum(AR)/ (|A|) 

Negotiation, Knowledge The extent to which personnel need to 
negotiate with each other because they 
lack the knowledge to do the tasks to 
which they are assigned. 
Type Graph Level 
Input AT:binary; AK:binary; KT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Compute the percentage of tasks that lack at least one resource: 
let Need = (AT’*AK) - KT’ 
let S = { i  | Ti ≤≤1 , ∃  j : Need(i,j) < 0 } 

Then Need for Negotiation =  |S| / |T| 

Negotiation, Resource The extent to which personnel need to 
negotiate with each other because they 
lack the resources to do the tasks to which 
they are assigned. 
Type Graph Level 
Input AT:binary; AR:binary; RT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Identical to Knowledge Negotiation, replacing AK with AR, and KT with RT. 



Network Centralization, 
Betweenness 

Network centralization based on the 
betweenness score for each node in a 
square network.  This measure is define 
for symmetric and non-symmetric 
networks. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Freeman, 1979 Let G=(V,E) represent the square network, and let n = |V| 
let id = Betweenness Centrality of node i 

let }1|max{ nidd i ≤≤=  

Then Network Betweenness Cent. = )1/(
1

−







−∑

≤≤

ndd
ni

i . 

Network Centralization, 
Closeness 

Network centralization based on the 
closeness centrality of each node in a 
square network.  This is not defined for 
unconnected or directed networks. 
Type Graph Level 
Input N:square, symmetric, connected 
Output ]1,0[∈ℜ  

Freeman, 1979 Let G=(V,E) represent the square network, and let n = |V| 
let id = Closeness Centrality of node i 

let }1|max{ nidd i ≤≤=  

Then Network Closeness Cent.  = ))32/()1)(2/((
1

−−−







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≤≤

nnndd
ni

i . 

Network Centralization, 
Column Degree 

A centralization based on the out degree 
of column vertices in a network N. 
Type Graph Level 
Input N 
Output ]1,0[∈ℜ  

NetStat Let M be the adjacency matrix representation of a rectangular network with n 
rows and o columns. 

let ))(:,( jMsumd j= = out degree of column node j, oj ≤≤1  

let }1|max{ ojdd j ≤≤=  

Then Column Degree Network Centralization = )*)1/((
1

nodd
oj

j −







−∑

≤≤

. 

Network Centralization, 
Degree 

This centralization is defined on a square 
network N and is based on node out-
degree.  The scaling of the measure 
depends on whether the network is 
symmetric. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Freeman, 1979 Let M be the adjacency matrix representation of a square network. And let 
n=|M|. 

let :)),(( iMsumd i= = out degree of node i 

let }1|max{ nidd i ≤≤=  

Then Degree Network Centralization = ))2)(1/((
1

−−







−∑

≤≤

nndd
ni

i . 

Note: if the network is not symmetric, then the scaling factor is (n-1)2 

Network Centralization, 
Row Degree 

A centralization based on the out degree 
of row vertices in a network N. 
Type Graph Level 
Input N 
Output ]1,0[∈ℜ  

NetStat Let M be the adjacency matrix representation of a rectangular network with n 
rows and o columns. 

let :)),(( iMsumd i= = out degree of row node i 

let }1|max{ nidd i ≤≤=  

Then Row Degree Network Centralization = )*)1/((
1

ondd
ni

i −







−∑

≤≤

. 

Note: dividing by (n-1)*o normalizes the value to be in [0,1] 



Network Levels The Network Level of a square network 
N is the maximum Node Level of its 
nodes. 
Type Graph Level 
Input N:square 
Output ]1,0[ −∈Ζ V  

NetStat Let G=(V,E) be the graph representation of a square network. 
Then the Levels of G = max { ),( jid G  | i,j∈V; j reachable from i in G } 

Node Level The Node Level for a node v in a square 
network N is the worst case shortest path 
from v to every node v can reach. 
Type Node Level 
Input N:square 
Output ]1,0[ −∈Ζ V  

Carley, 2002 Let G=(V,E) be the graph representation of a square network and fix a node v. 
Node Level for v = max { ),( jvd G | j∈V; j reachable from v in G } 

Omega, Knowledge 
Based 

The degree to which an organization 
reuses knowledge. 
Type Graph Level 
Input AT:binary; KT:binary; T:binary 
Output ]1,0[∈ℜ  

Carley, Dekker, and 
Krackhardt 2000 

Let TAT = TA*TA’ 
Let N = ((T’@TAT)*KT’)@KT’ 
 
Then Knowledge Based Omega = sum(N)/sum(KT) 

Omega, Resource Based The degree to which an organization 
reuses resources. 
Type Graph Level 
Input AT:binary; RT:binary; T:binary 
Output ]1,0[∈ℜ  

Carley, Dekker, and 
Krackhardt 2000 

Identical to Knowledge Based Omega, replacing KT with RT. 



Performance as 
Accuracy 

Measures how accurately agents can 
perform their assigned tasks based on 
their access to knowledge and resources. 
Type Graph Level 
Input AK:binary; AT:binary; 
AR:binary; KT:binary; RT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Accuracy is computed based on the binary classification problem.  It is 
computed in one of two ways: 
(1) Knowledge based:  Let b be a binary string of length |K|, let N=KT’, and let 
S=AK.  Fix a task t. 
let answer  = ( ∑∑

≤≤≤≤ ||1||1

),(/),(
KkKk

k ktNbktN  > .5) , which is the correct 

classification of b with respect to task t.  Now, let let I={ i | AT(i,t)=1}. 
let answer(i) =  ( ∑∑

≤≤≤≤ ||1||1

),(),(/),(),(
Kk

k
Kk

kiSktNbkiSktN  > .5), i∈I. 

This is agent i’s classification of b with respect to t. 
The group of agents classify b using majority voting. That is, let  

group_answer = ( ∑
∈Ii

ianswer
I

)(
||

1
 > .5 ). 

Then, if group_answer = answer, then the group was accurate, otherwise not. 
This is repeated multiple times for each task, and across all tasks.  The 
percentage correct is Performance as Accuracy. 
 
(2) Resource based: let N=RT’ and S=AR in the analysis of case (1). 
 
If the network has the knowledge and resource graphs to perform both cases, 
then Performance as Accuracy is the average of the two. 
 

Potential Workload, 
Knowledge 

Maximum knowledge an agent could use 
to do tasks if it were assigned to all tasks. 
Type Node Level 
Input  AK:binary; KT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Potential Knowledge Workload for agent i = sum((AK*KT)(i,:))/sum(KT) 

Potential Workload, 
Resource 

Maximum resources an agent could use to 
do tasks if it were assigned to all tasks. 
Type Node Level 
Input  AR:binary; RT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Potential Resource Workload for agent i is identical to Potential Knowledge 
Workload, replacing AK with AR, and KT with RT. 

Reciprocity The fraction of joined node pairs that are 
reciprocally joined in a square network N. 
Type Graph Level 
Input N: square 
Output ]1,0[∈ℜ  

NetStat Let G=(V,E) represent a square network. 
let S = {(i,j) | (i,j)∈E ∧ (j,i)∈E} 
let T = {(i,j) | (i,j)∈E ∨ (j,i)∈E} 

Then the network’s Reciprocity = |S|/|T| 

Redundancy, Access Average number of redundant agents per 
resource.  An agent is redundant if there 
is already an agent that has access to the 
resource. 
Type Graph Level 
Input AR:binary 

Carley, 2002 This is the Column Redundancy of matrix AR. 



Output ]*)1(,0[ RA −∈ℜ  
Redundancy, 
Assignment 

Average number of redundant agents 
assigned to tasks.  An agent is redundant 
if there is already an agent assigned to the 
task. 
Type Graph Level 
Input AT 
Output ]*)1(,0[ TA −∈ℜ  

Carley, 2002 This is the Column Redundancy of matrix AT. 

Redundancy, Column Given a network N, the mean number of 
non-zero column entries in excess of one 
in the network’s matrix representation. 
Type Graph Level 
Input N of dimension m x n 
Output ]*)1(,0[ nm −∈ℜ  

Netstat Let M be the matrix representation for a network N of dimension m x n. 
let }1))(:,(,0{max −= jMsumd j , for nj ≤≤1 ; this is the number 

of column entries in excess of one for column j. 

Then Column Redundancy = nd
n

j
j /

1








∑

=

 

Redundancy, Knowledge Average number of redundant agents per 
knowledge.  An agent is redundant if 
there is already an agent that has the 
knowledge. 
Type Graph Level 
Input AK 
Output ]*)1(,0[ KA −∈ℜ  

Carley, 2002 This is the Column Redundancy of matrix AK. 

Redundancy, Resource Average number of redundant resources 
assigned to tasks.  A resource is 
redundant if there is already a resource 
assigned to the task. 
Type Graph Level 
Input RT:binary 
Output ]*)1(,0[ TR −∈ℜ  

Carley, 2002 This is the Column Redundancy of matrix RT. 

Redundancy, Row Given a network N, the mean number of 
non-zero row entries in excess of one in 
the network’s matrix representation. 
Type Graph Level 
Input N of dimension m x n 
Output ]*)1(,0[ mn −∈ℜ  

Netstat Let M be the matrix representation for a network N of dimension m x n. 
let }1:)),((,0{max −= jMsumd i , for mi ≤≤1 ; this is the number of 

column entries in excess of one for row i. 

Then Row Redundancy = md
m

j
j /

1








∑

=

 



Relative Expertise The degree of dissimilarity between 
agents based on shared knowledge.  Each 
agent computes to what degree the other 
agents know what they do not know. 
Type Node Level 
Input AK:binary 
Output ]1,0[∈ℜ  

Carley, 2002 The Relative Expertise matrix (RE) is defined as follows: 
RE(i,i) = 0 
RE(i,j) = (~AK*AK’) = # knowledge that j knows that i does not know 

Finally, normalize RE by its row sums: 
RE(i,:) /= sum(RE(i,:)) 

The Relative Expertise for agent i = )1/(),(
1

−
















∑
≠
=

AjiRE
A

ij
j

,  

that is, the average of the non-diagonal elements of row i of RE. 
Relative Similarity The degree of similarity between two 

agents based on shared knowledge.  Each 
agent computes to what degree the other 
agents know what they know. 
Type Node Level 
Input AK: binary 
Output ]1,0[∈ℜ  

Carley, 2002 Let M = AK*AK’ 
Let w(i) = sum(M(i,:)), Ai ≤≤1  
Then Relative Similarity (RS) between agents i and j is RS(i,j) = M(i,j)/w(i). 

The Relative Similarity for an agent i = )1/(),(
1

−
















∑
≠
=

AjiRS
A

ij
j

, 

that is, the average of the non-diagonal elements of row i of RS. 
Span of Control The average number of subordinates per 

supervisor in the Communication 
Network.  
Type Graph Level 
Input A:binary 
Output ]1,0[ −∈ℜ V  

Carley, 2002 For each agent in the Communication Network who has 1 or more subordinates 
(a supervisor), sum the number of subordinates, then divide by the number of 
supervisors. 

Speed, Average The average communication time 
between any two agents who can 
communicate via some path. 
Type Graph Level 
Input A 
Output ]1,0[∈ℜ  

Carley, 2002 let G=(V,E) be the graph representation of the Communication Network. 
let D={ ),( jid G  | i,j∈V, i ≠ j; j reachable from i in G } 

Then Average Speed = Dd
Dd

/






 ∑
∈

 

Speed, Minimum The worst case communication time 
between any two agents. 
Type Graph Level 
Input A 
Output ]1,0[∈ℜ  

Carley, 2002 Minimum Speed = 1 / (Levels for the Communication Network) 

Task Completion, 
Knowledge Based 

The percentage of tasks that can be 
completed by the agents assigned to them, 
based solely on whether the agents have 
the requisite knowledge to do the tasks.  
Type Graph Level 
Input AK:binary; AT:binary; KT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Find the tasks that cannot be completed because the agents assigned to the 
tasks lack necessary knowledge: 

let Need = (AT’*AK) - KT’ 
let S = { i  | Ti ≤≤1 , ∃  j : Need(i,j) < 0 } 

Knowledge Based Task Completion is the percentage of tasks that could be 
completed =  (|T|-|S|) / |T| 



Task Completion, 
Overall 

The percentage of tasks that can be 
completed by the agents assigned to them, 
based solely on whether the agents have 
the requisite knowledge and resources to 
do the tasks.  
Type Graph Level 
Input AR:binary; AT:binary; RT:binary; 
AK:binary, KT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 This is the average of Knowledge Based Task Completion and Resource Based 
Task Completion.  If one of the two could not be computed, then the other is 
returned.  

Task Completion, 
Resource Based 

The percentage of tasks that can be 
completed by the agents assigned to them, 
based solely on whether the agents have 
the requisite resources to do the tasks.  
Type Graph Level 
Input AR:binary; AT:binary; RT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Find the tasks that cannot be completed because the agents assigned to the 
tasks lack necessary resources.  Defined identically as Knowledge Based Task 
Completion, replacing matrix AK with AR and matrix KT with RT. 

Transitivity The percentage of triads i,j,k in a square 
network N such that if (i,j) and (j,k) are in 
the network, then (i,k) is in the network. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

NetStat Let M be the adjacency matrix representation of the network. 
let I = {(i,j,k) ∈V3 | i,j,k distinct } 
let Potential = { (i,j,k) ∈I | M(i,j) = M(j,k) } 
let Empty = { (i,j,k) ∈I | M(i,j)=M(j,k)=M(i,k)=0 } 
let Complete = { (i,j,k) ∈I | M(i,j)=M(j,k)=M(i,k)=1 } 

Then Transitivity = (|Empty| + |Complete|)/|Potential| 

Triad Count The number of Communication Network 
triads that an agent is in. 
Type Node Level 
Input A:binary 
Output )]2)(1(,0[ −−∈Ζ AA  

NetStat let Triad be an agent by agent matrix where 
Triad(i,i) = 0 
Triad(i,j) = card{ k | k != i, k != j; A(i,j) ∧ A(i,k) ∧ A(k,j) }, i ≠ j 

Then the Triad count for agent i = sum(Triad(i,:)) 

Trust The trust value for an agent is the average 
trust that exists between it and the other 
agents. 
Type Node Level 
Input AR:binary; AK:binary; 
AT:binary, A:binary 
Output ]1,0[∈ℜ  

Carley, 2002 let Trust be a matrix of dimension |A| x |A| defined as follows: 
Trust(i,i) = 0 
Trust(i,j) = (# triads with both i and j)  +  
                   AR(i,:)’ * AR(j,:)  +  // # resources i and j share 
                   AK(i,:)’ * AK(j,:)  +  // # knowledge i and j share 
                   AT(i,:)’ * AT(j,:)   + // # tasks i and j share 
                   A(i,j) ∧ A(j,i) + // reciprocal communication tie between i and j 
                   |A| / ),( jid P   // inverse communication time between i and j 

Trust is then normalized so that each entry is in [0,1]. 
The trust value for agent i = sum(Trust(i,:)) / |A| 

Under Supply, 
Knowledge 

The extent to which the knowledge 
needed to do tasks are unavailable in the 
entire organization. 
Type Graph Level 
Input AK:binary; AT:binary; KT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Compute the average number of needed knowledge per task: 
let Need = (AT’*AK) - KT’ 
let TaskNeed(i) = card{ j | Need(i,j)<0 }, for 1<=i<=|T| 

Then UnderSupply is sum(TaskNeed)/ |T| 



Under Supply, Resource The extent to which the resources needed 
to do tasks are unavailable in the entire 
organization. 
Type Graph Level 
Input AR:binary; AT:binary; RT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Under Resource Supply is identical to Under Knowledge Supply, replacing AK 
with AR, and KT with RT. 

Upper Boundedness The degree to which pairs of agents have 
a common ancestor. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Krackhardt, 1994  
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