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Abstract—Managing and controlling knowledge intensive 
dynamic systems requires being able to estimate, analyze, 
and evaluate, under conditions of uncertainty, the existing 
system and the impact of actions, such as changes in 
personnel or resources on this system.  Our approach to this 
problem is dynamic network analysis.  Using a combination 
of statistical and simulation tools, we analyze the robustness 
under uncertainty of a series of metrics for identifying key 
entities whose removal from the network destabilizes the 
network by degrading performance on one or more 
dimensions.  We examine multiple types of uncertainty, 
including cases of over and underestimation of the presence 
of relations among entities. We find that higher levels of 
information assurance are needed for nodes than edges, 
and that destabilization even under uncertainty can still be 
disruptive.  An illustrative use of this work includes 
identification of individuals in a covert network to isolate in 
order to decrease the networks ability to take action. 
 
 1. INTRODUCTION 
Covert networks are dynamic entities.  To destabilize these 
networks it is necessary to trace the chains of relationships 
connecting individuals, knowledge, resources, tasks, events, 
locations, etc. as they evolve.  Destabilization and 
surveillance strategies need to be evaluated in the context of 
evolving networks and missing or incorrect information.  To 
ignore either the dynamics or the information assurance 
issue is liable to lead to erroneous, and possibly 
devastatingly wrong, policies.  For example, isolating a 
leader in a cellular network may have the same effect as 
cutting off the Hydra’s head; instead of one you know have 
many leaders [1].  To facilitate such policies two types of 
tools are needed.  First, we need tools for identifying which 
actor or actors critical [2].  Second, we need tools for 
estimating the likelihood that the right entity has been 
identified, as it is rarely the case that full information is 
known.  We approach these interlinked problems using 
Dynamic Network Analysis [3]. Dynamic network analysis 
treats the system as a series of interlocked dynamic and 
probabilistic networks connecting diverse entities such as 
people, knowledge and tasks.   

 
Traditionally, social network analysis (SNA) has focused on 
small, bounded networks, with 2-3 types of links (such as 
friendship and advice) among one type of node (e.g., actors), 
at one point in time, with close to perfect information.  
Although a few studies have considered extremely large 
networks, or two types of nodes (people and events), or 
unbounded networks (such as inter-organizational response 
teams); such studies are the exception to the rule.  As such 
little is known about the extent to which the extant measures 
scale and still enable actors to be discriminated among in 
large networks or are robust under varying levels of 
information assurance.  Further, what little work has been 
done on dynamic networks suggests that traditional SNA 
measures may be less than adequate for discerning critical 
actors in a complex dynamic environment [4].  
 
What is needed is a dynamic network analysis theory and 
toolkit.  We are working to develop such a tool kit and the 
associated metrics and decision aids.  In this paper, two 
tools that will form the cornerstone of such a toolkit – 
DyNet and ORA are used.  DyNet is a multi-agent network 
model of network evolution and destabilization where the 
destabilization is done under varying levels of information 
assurance.  ORA is a statistical package for locating 
vulnerabilities in dynamic networks using both traditional 
SNA measures and new measures designed for the more 
detailed meta-matrix data [5]. 
 
The meta-matrix is a conceptual device where the entities of 
concern and the relations among them are identified.  For 
this paper, we focus on the entities actors, knowledge and 
tasks recognizing that other entities such as technology, 
resources, or events might be added in a more detailed 
scheme.  These entities are connected vis a series of 
relations shown in table 1.  In this paper, we will use these 
matrices as binary matrices given the focus on the relative 
impact of social network and dynamic network measures; 
although, much of our work on ORA deals with non binary 
data. 
 

Table 1.  Meta-Matrix for Dynamic Networks 
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 Actors Knowledge Tasks 
Actors INT  

Interaction 
or social 
network 

Fact_Known 
Knowledge 

network 

Prob_Assigned 
Assignment 

network 

Knowledge   Prob_Fact 
Needs 

networks 
Tasks   Task_ 

Precedence 
Precedence 

network 
 
In this paper, we are using ORA and DyNet to provide 
initial indicators of the value of isolation destabilization 
tactics on covert networks.  We begin by describing the 
experimental design used for assessing the robustness of the 
metrics under varying levels of information assurance, 
followed by the resultant robustness profiles of selected 
measures.  Then we run a dynamic analysis of the embassy 
bombing data under no destabilization, destabilization based 
on degree centrality, and destabilization based on cognitive 
load.  Then we interpret these results in terms of the 
information assurance information. 
 
 
2. EXPERIMENTAL DESIGN FOR MEASURE 
ROBUSTNESS 
 
An important characteristic of a measure is its robustness, or 
how sensitive a measure is to changes in its input.  Our 
methodology to test measure robustness is a Monte Carlo 
virtual experiment whereby we repeatedly generate an initial 
network, introduce error into the network, and then compare 
the measure values of the initial and perturbed networks. 
 
Parameters 

The virtual experiment independent variables and their 
values are shown in Table 2. 
 

Table 2.  Summary of Virtual Experiment 
Parameter Description Range 
Size Nodes in the network 

(size) 
10, 25, 50, 100 

Density Density of the 
network 

.01, .02, .05, .1, .3, 

.5, .7, .9 
Type_Error Type of error in the 

perturbed network. 
Superfluous Edges, 
Missing Edges, 
Node Removal 

Per_Error The percentage of 
nodes/edges that are 
changed in the initial 
network given the 
error type. 

0. 1, 5, 10, 25, 50 

 
For each <Size, Density, Type_Error, Per_Error> 

combination, a Monte Carlo simulation is run in which 100 
initial networks of size N and density D are generated 
uniformly at random.  Each network is square with edges 
drawn uniformly at random.  Future work will move beyond 
these ranges of values. 
 
For each of these 100 initial networks, 100 perturbed 
networks are generated by introducing Type_Error of 
quantity Per_Error into the initial network.  The measures 
for the initial and perturbed networks are then computed and 
compared. 
 
Error 

An initial network is perturbed by one of the following four 
types of error: 
 

• Superfluous Edges - edges are added uniformly at 
random to the initial network 

• Missing Edges - edges are removed uniformly at 
random from the initial network 

• Missing Nodes - nodes are removed uniformly at 
random from the initial network. 

 
For the initial results reported in this paper the number of 
missing edges was set equal to the number of superfluous 
edges.  Further work will remove this assumption. 
The amount of error, indicated by the parameter 
Percent_Error is the percentage of nodes or edges altered 
when perturbing the initial network.  
 
Measures  

We run a series of measures on both the initial and the 
perturbed network.  These measures capture various aspects 
of what it means for a node to be critical or “key” in a 
network.  We use both standard SNA measures and dynamic 
network measures.  Herein we report on only three such 
measures – degree centrality, betweenness centrality, and 
cognitive load. Each of these measures is arguably an 
indicator of a critical actor [1],[4]. These measures are 
vector valued, with a single value per actor.  In other words, 
each measure provides a ranking of the actors in terms of 
their criticality on that measure. 
 
Degree Centrality—The Degree Centrality of a node in a 
network INT is its degree. 
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Betweenness Centrality—The Betweenness Centrality of 
node i in a network INT is defined as: across all node pairs 
excluding i that have a shortest path containing i, the 
percentage that pass through i. Let SPjk be the shortest 
sequence of nodes starting with j and ending with k such that 
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between every node m and the following node n in the 
sequence, INTmn = 1.  And, let CSPjki =1 if SPjk contains i 
and CSPjki =0 otherwise.  Using CSPjki, Betweeness 
Centrality can be defined as follows: 
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Cognitive Load—The Cognitive Load of node i in a set of 
networks connecting actors, knowledge, resources, and tasks 
is defined as the sum of all relations that require cognitive 
action to be realized.  It takes into account the number of 
other agents, resources, and tasks an agent needs to manage, 
the difficulty of that management, and the communication 
needed to engage in such activity.  Cognitive load uses not 
just the interaction network, but also the network linking 
people to tasks (Prob_Assigned), that linking people to tasks 
(Fact_Known), the network defining what information is 
needed for which task (Prob_Fact), and which task needs to 
be done before which (Task_Precedence). 
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Note that cognitive load includes degree centrality as it’s 
first term.  Further, when all of the networks are random 
with the same density and size, cognitive load is highly 
correlated with degree centrality. 
 
Statistics  

After introducing the error into the initial network, we run 
the measure and compare its values with those from the 

initial network.  A variety of statistics are computed.  In this 
paper we report two of these – Pearson’s Correlation and 
top-1.  These statistics are computed between the initial 
network’s measure value X and the perturbed network’s 
measure value Y: 
 
Pearson’s Correlation—This is the average across all Y 
perturbations of the standard correlation statistic, computed 

as: 
YX

YXCov
σσ

),(
, where Cov(X,Y) is the co-variance of the 

vectors X and Y.  This captures the extent to which the 
ranking of the measure on the initial and perturbed matrix 
are the same.  The errors discussed are random and assigned 
at random to nodes/ties in the network.  When these errors 
systematically impact nodes that are high/low in ranking on 
some measure more than those that are low/high the 
correlation between the initially and perturbed will drop. 
The higher the correlation, the more resilient the measure 
across information errors, as the percentage error acts like a 
constant offset for that measure..  Whereas, a low correlation 
indicates that the measure is not robust to that type of error. 
 
Top-1—This is a very restrictive measure of the accuracy 
with which the actor that is highest on the measure of 
concern in the initial network is correctly identified in the 
perturbed network.  It is the percentage of the Y 
perturbations in which the node labeled highest on measure 
“Z”  is also highest in the initial X network.  
 
Note that when the type of error is Node Removal, the 
perturbed vector Y has missing nodes, which are treated as 
missing data in the following manner: the nodes removed 
from Y are also removed from X and the above statistics are 
computed with Y and the reduced X. 
 
 3. INFORMATION ASSURANCE RESULTS 
In general, the higher the percentage error the less like that 
the top person is correctly identified and the less likely that 
the overall pattern of the network is correctly discerned.  
The top-1 measure is slightly more robust for extremely 
small (size 10) low density (.01) networks; whereas, the 
Pearson-correlation measure is less robust.  Admittedly, 
such small networks are of little interest and they are the 
ones where complete information is easiest to locate.   
 
The impact of errors is not linear.  For top-1, for both degree 
and betweenness centrality, we see decreasing effects as the 
size of the network increases (see e.g., the impact of 
different levels of node removal on the robustness of degree 
centrality in Fig. 1.).  Further, for top-1, size has a 
substantially greater impact on measure robustness than 
density (see tables 3 and 4).  Additionally, there is an 
interaction effect between Percent_Error and size/density. 
For degree centrality there is no interaction effect due to size 
and density, whereas there is a slight interaction effect for 
betweenness.  Since in general we may be dealing with large 
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sparse networks it may be worth expending more effort on 
locating who is in the network than in tracking down all 
possible connections. 
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Figure 1. Impact of different percentage of node removal on 

identification of actor highest in degree centrality 
 
 
Table 3. Choosing Top-1 Using Degree Centrality 
 Node 

Removal 
Edge 
Removal 

Edge 
Superfluous 

Variable Std.Coeff Std Coeff Std Coeff 
Per_Error -1.509*** -1.480*** -1.374*** 
Size -0.645*** -0.829*** -0.644*** 
Density -0.277*** -0.599*** -0.197 
Per_Error 2 0.837*** 0.978*** 0.980*** 
Size 2 0.495*** 0.586*** 0.495*** 
Density 2 0.243*** 0.266* -0.215* 
Per_Error * 
Size 

-0.164*** -0.199*** -0.099 

Per_Error * 
Density 

-0.103*** -0.096* -0.286*** 

Size * 
Density 

0.033 0.056 0.055 

R2 0.902 0.865 0.858 
* <= .05, ** <= .01 *** <= .005 
 
Finally, we find that in general, for node removal the 
response surface can be adequately characterized using a 
second order equation for both degree and betweenness 
centrality.  However, the robustness of the top-1 measure 
under either edge removal or superfluous nodes is less well 
characterized by a second order equation suggesting some 
third order effects.  The results suggest that there is a limit to 
how bad the estimation of the top actor can be, and that 
using the application of these techniques even on highly 
incorrect data leads to the accurate location of the key actor 
more often than would occur by chance (1/number of 
nodes). 
 
Table 4. Choosing Top-1 Using Betweenness Centrality 
 Node 

Removal 
Edge 
Removal 

Edge 
Superfluous 

Variable Std.Coeff Std Coeff Std Coeff 

Per_Error -1.510*** -1.532*** -1.507*** 
Size -0.855*** -0.857*** -0.753*** 
Density -0.337*** -0.407*** -0.184 
Per_Error 2 0.981*** 1.030*** 1.076*** 
Size 2 0.613*** 0.621*** 0.547*** 
Density 2 0.262* 0.065 -0.249* 
Per_Error * 
Size 

-0.243*** -0.211*** -0.101 

Per_Error * 
Density 

-0.133*** -0.109* -0.236*** 

Size * 
Density 

0.150*** 0.112* 0.118* 

R2 0.902 0.863 0.844 
* <= .05, ** <= .01 *** <= .005 
 
As the level of information assurance decreases and more 
errors are made the overall observed (perturbed) network 
begins to diverge sharply from the true (initial) network.  
This can be seen by looking at the correlation measure in 
Tables 5 and 6.  First, we see that the correlation is not a 
function of the percentage error.  There is an indirect effect 
of percentage error, for both degree and betweenness 
centrality, where the interaction of  error and density further 
lowers the overall correlation, particularly for errors due to 
adding or removing edges.   
 
Table 5. Correlation Using Degree Centrality 
 Node 

Removal 
Edge 
Removal 

Edge 
Superfluous 

Variable Std.Coeff Std Coeff Std Coeff 
Per_Error -0.368 -0.006 -0.188 
Size 1.790*** 1.205*** 1.323*** 
Density 1.322*** 1.239*** 1.604*** 
Per_Error 2 -0.182 -0.075 0.141 
Size 2 -1.351*** -0.774*** -0.967*** 
Density 2 -0.805*** -0.829*** -1.306*** 
Per_Error * 
Size 

0.189 -0.264*** 0.035 

Per_Error * 
Density 

0.055 -0.556*** -0.616*** 

Size * 
Density 

-0.442*** -0.449*** -0.323*** 

R2 0.508 0.658 0.574 
* <= .05, ** <= .01 *** <= .005 
 
Second, we see that where we were less likely to correctly 
predict the top actor using either degree or betweenness 
centrality as the size and density of the network increases, 
we are more likely to achieve a high correlation between the 
actual and the perturbed network. This suggests that as the 
size and density of the network grows we will increasingly 
be able to characterize its overall pattern.  Overall, these 
results show that the response surface for correlation cannot 
be adequately characterized with a second order equation.  
Preliminary investigations suggest that a third order equation 
will be sufficient; however, further determination will 
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require a much large sample over the space than described 
herein.  
 
Table 6.  Correlation Using Betweenness Centrality 
 Node 

Removal 
Edge 
Removal 

Edge 
Superfluous 

Variable Std.Coeff Std Coeff Std Coeff 
Per_Error -0.558*** -0.259 -0.397* 
Size 1.830*** 1.550*** 1.617*** 
Density 1.644*** 1.699*** 1.949*** 
Per_Error 2 -0.060 -0.026 0.266 
Size 2 -1.265*** -0.990*** -1.100*** 
Density 2 -0.978*** -1.148*** -1.486*** 
Per_Error * 
Size 

0.125 -0.200*** 0.010 

Per_Error * 
Density 

0.102 -0.392*** -0.540*** 

Size * 
Density 

-0.531*** -0.538*** -0.464*** 

R2 0.724 0.763 0.683 
* <= .05, ** <= .01 *** <= .005 
. 
We note that the above results are limited in that they do not 
cover large scale networks.  This may not be critical for the 
top-1 measure where a second order equation is sufficient 
for characterizing the space, particularly for node removal.  
If correlation is the issue, then additional analyses and larger 
networks need to be considered.  Further, even for top-1, a 
slightly better fit might be possible using an explicitly 
exponential model.  Overall, however, these results suggest 
that as we move to conditions of multiple uncertainties 
(missing nodes and edges, superfluous nodes due to aliases, 
etc.) that the overall response surface will become quite 
complicated.  One consequence is that larger networks and a 
greater portion of the response surface will need to be 
mapped with simulation.  Finally, these results suggest that 
the ability of the measures to correctly locate the specific 
actor who is at the top, deteriorates rapidly.  Hence, less 
restrictive measures of metric performance may be called 
for.  This is particularly true as the “top” actors may be hard 
targets and so a less useful choice. 
 
Note, we have not shown the cognitive load results as when 
only the social network is permuted (INT) the only portion 
of cognitive load that changes is the degree centrality 
portion so its behavior is like that of degree centrality. 
 

4. DESTABILIZATION 
We now demonstrate an application of these results to the 
destabilization of a covert network.  Through another 
project data on the Tanzania embassy bombing was 
collected (EB data).  This is a small data set with 
information on 16 actors,  8 types of knowledge/resources 
and 5 tasks - see [4] for details.  The overall density of the 
social network is .12. ORA we identify the most critical or 
key actors.  Wadih al Hage is highest in both degree and 

betweenness centrality.  Whereas, the DNA measures, such 
as cognitive load, identify Ahmed the German as key.  We 
used DyNet to determine the relative impact of removal of 
either of these nodes.  The results indicate that the removal 
of Wadih will improve performance, enhance the speed of 
information diffusion, and maintain the existing resource 
congruence and so long term performance.  Whereas, 
removal of Ahmed degrades performance, enhances the 
speed of information diffusion (though not as much as 
Wadih’s removal), and increases resource congruence.  
Collectively, the combination of changes results in a more 
rigid less adaptive organizational structure.    
 
We now ask, to what extent are Wadih or Ahmed really the 
key actors? To do this, we need the best estimate of the 
fraction missing nodes/edges or superfluous edges.  Then 
these values can be plugged into the response surface 
mapping equations to generate an error estimate.  So, e.g., a 
if 25% of the nodes are missing then these estimate are only 
likely to identify the key actor 65% of the time, and if 25% 
of the edges are missing then the key actor is identified 
correctly only 57to 59% of the time.  Since in fact there are 
likely to be both missing nodes and missing ties and a 
smaller number of superfluous ties, the correct identification 
of the key actor is probably even less likely. 
 
One problem with this application is that a key feature of 
covert networks is that they are cellular and distributed [6] 
rather than random.  For the EB data, to the extent that there 
is insufficient data to determine if the network is random or 
not, then use of errors based on random networks is a 
reasonable first approximation. 
 
 5. CONCLUSIONS 
This work demonstrates a procedure for determining the 
robustness of measures for identifying critical actors in 
networks and using that information in a dynamic context.  
Particular attention is placed on the measures degree 
centrality, betweenness centrality, and cognitive load.. 
 
Limitations and Future Work 

There are four key limitations to this work.  First, the 
robustness analysis was done using random iid networks.  
Under such conditions, cognitive load and degree centrality 
are conceptually similar and so should behave the same in 
terms of robustness.  However, on random iid networks this 
is likely not to be the case.  In deed, even a simple change, 
such as difference in the density of the task precedence 
matrix and the social network will engender differences in 
the robustness profile of centrality and cognitive load.  As 
we move further out to cellular networks, all of the 
robustness results are likely to change.   
 
Second, the networks that we simulated dynamically were 
cellular networks. Consequently we were applying 
robustness indicators assuming random iid networks but 



 6 

applying them to cellular networks.  This is more accurate 
than using random networks for both portions as this mixed 
approach let us capture the impact of cultural and 
organizational factors on the evolving network thus leading 
to a closer mapping to real data.  The key is to ask, given 
that there are biases in estimating our confidence in the 
results, how is the bias affecting the conclusion.  The 
distribution of links per node should be more normally 
distributed and may have a smaller range in random 
networks than in cellular networks.  This difference in 
distribution when coupled with the nature of cellular 
networks to be formed of cliques connected through leaders 
with a broader resource bases and task assignment should 
mean that SNA centrality measures are less robust under 
varying level of information assurance than indicated herein 
and DNA measures, such as cognitive load, are more robust 
assuming random information errors.  Essentially, 
individuals high in centrality will have fewer links to other 
entities than will those high in cognitive load; moreover, 
there is likely to be less variance in observable centrality 
than on cognitive load across actors.  Consequently, these 
results may be overestimating the ease of correctly 
identifying the key actors by centrality and underestimating 
the ease of correctly identifying the key actors by cognitive 
load.  Our next step is to discern the robustness 
characteristics of the metrics for networks with the same 
structure as those evolved, with particular attention to 
cellular networks.  When this is done, cognitive load and 
degree centrality should exhibit different robustness profiles. 
In future work, the differential impact of the “type of 
network” on the robustness profile of measures of actor 
criticality should be considered. 
 
The third limitation has to do with the data used for the 
evolutionary analysis.  The dataset is small particularly in 
terms of information about tasks and resources.  It is likely 
that were more known here, alternative actors may have 
been identified as key and the overall system might have 
appeared easier to destabilize.  More generally, the lack of 
information in terms of tasks and knowledge/resources is 
diminishing the difference between degree centrality and 
cognitive load leading them to act similarly.  Additional 
large scale databases are needed to examine this issue. 
 
The final limitation we wish to discuss is the distribution of 
information errors.  In this study, we have examined 
different kinds of errors; but, in each case the errors were 
distributed randomly.  It is unlikely, however, that this is the 
case for intelligence operations.  Rather, it is likely that the 
combination of known key actors, available surveillance 
technology and operatives will combine to generate a very 
non-random source of errors.  Future work should consider 
the biases in data collection that lead to non-random 
distributions of error. 
 
Final Comment 

These results suggest that likelihood of exactly determining 
the top actor on any dimension is extremely low with even 
moderate levels of missing data. Future work should explore 
whether estimation using cellular rather than random 
networks can improve on this. 
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